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Abstract. We characterize which automorphisms of an arbitrary complete bipartite
graph Kn,m can be induced by a homeomorphism of some embedding of the graph in S3.

1. Introduction. Knowing the symmetries of a molecule helps to pre-
dict its chemical behavior. Chemists use the point group as a way to rep-
resent the rigid symmetries of a molecule. However, molecules which are
large enough to be flexible (such as long polymers) or have pieces which
rotate separately may have symmetries which are not induced by rigid mo-
tions. By modeling a molecule as a graph Γ embedded in S3, the rigid and
non-rigid symmetries of the molecule can be represented by automorphisms
of Γ which are induced by homeomorphisms of the pair (S3, Γ ). Different
embeddings of the same abstract graph may have different automorphisms
which are induced by homeomorphisms of the graph in S3. In fact, a given
automorphism of an abstract graph may or may not be induced by a hom-
eomorphism of some embedding of the graph. In particular, it was shown
in [F1] that a cyclic permutation of four vertices of the complete graph on
six vertices K6 cannot be induced by a homeomorphism of S3, no matter
how the graph is embedded in S3.

In general, we are interested in which automorphisms of a graph can be
induced by a homeomorphism of some embedding of the graph in S3. Flapan
[F2] answered this question for the family of complete graphs Kn. Now we
do the same for the family of complete bipartite graphs Kn,m. This is an
interesting family of graphs to consider because it was shown in [FNPT]
that for every finite subgroup G of Diff+(S3), there is an embedding Γ of
some complete bipartite graph such that the group of all automorphisms
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of Γ which are induced by orientation preserving homeomorphisms of S3 is
isomorphic to G. By contrast, it was shown in [FNT] that this is not the
case for the complete graphs.

We prove the following Classification Theorem which determines pre-
cisely which automorphisms of a complete bipartite graph can be induced
by a homeomorphism of (S3, Γ ) for some embedding Γ of the graph in S3.
The theorem is divided into two parts, according to whether the homeo-
morphism inducing a particular automorphism is orientation preserving or
reversing. The automorphisms are described by their fixed vertices and their
cycle structure. Note that in this paper we use the term “cycle” to refer to a
cycle in the permutation on the vertices of a graph induced by an automor-
phism of the graph, not to a cycle in the graph in the usual graph-theoretic
sense.

Classification Theorem. Let m,n > 2 and let ϕ be an order r auto-
morphism of a complete bipartite graph Kn,m with vertex sets V and W .
There is an embedding Γ of Kn,m in S3 with an orientation preserving hom-
eomorphism h of (S3, Γ ) inducing ϕ if and only if all vertices are in r-cycles
except for the fixed vertices and exceptional cycles explicitly mentioned below
(up to interchanging V and W ):

(1) There are no fixed vertices or exceptional cycles.
(2) V contains one or more fixed vertices.
(3) V and W each contain at most two fixed vertices.
(4) j | r and V contains some j-cycles.
(5) r = lcm(j, k), and V contains some j-cycles and k-cycles.
(6) r = lcm(j, k), and V contains some j-cycles and W contains some

k-cycles.
(7) V and W each contain one 2-cycle.
(8) r/2 is odd, V and W each contain one 2-cycle, and V contains some

(r/2)-cycles.
(9) ϕ(V ) = W and V ∪W contains one 4-cycle.

There is an embedding Γ of Kn,m in S3 with an orientation reversing homeo-
morphism h of (S3, Γ ) inducing ϕ if and only if r is even and all vertices
are in r-cycles except for the fixed vertices and exceptional cycles explicitly
mentioned below (up to interchanging V and W ):

(10) ϕ(V ) = V and there are no fixed vertices or exceptional cycles.
(11) r = 2 and all vertices of V and at most two vertices of W are fixed.
(12) V contains at most two fixed vertices, and one of the following is

true:

(a) W contains one 2-cycle.
(b) V contains some 2-cycles.



Symmetries of embedded graphs 3

(c) V may contain some 2-cycles, r/2 is odd, and all vertices of
W are in (r/2)-cycles.

(d) W contains at most one 2-cycle, r/2 is odd, and all non-fixed
vertices of V are in (r/2)-cycles.

(13) 4 | r, ϕ(V ) = W and V ∪W contains at most two 2-cycles.

We will begin by proving the necessity of the conditions in the Classi-
fication Theorem, and then provide constructions to show that each of the
cases listed can actually occur.

2. Necessity of the conditions. The following result allows us to
focus our attention on finite order homeomorphisms of embeddings of our
graphs in S3.

Automorphism Theorem ([F2]). Let ϕ be an automorphism of a 3-con-
nected graph which is induced by a homeomorphism f of (S3, Γ1) for some
embedding Γ1 of the graph in S3. Then ϕ is induced by a finite order homeo-
morphism h of (S3, Γ2) for some possibly different embedding Γ2 of Γ1 in S3.
Furthermore, h is orientation reversing if and only if f is orientation re-
versing.

If n,m ≤ 2, then it is easy to see that all of the automorphisms of Kn,m

can be induced by a homeomorphism of some embedding ofKn,m in S3. Thus
for the remainder of the paper, we focus on Kn,m with n,m > 2. In this case,
Kn,m is 3-connected, and hence we can apply the Automorphism Theorem.
It follows that any automorphism which is induced by a homeomorphism
for some embedding of Kn,m is induced by a finite order homeomorphism
for some (possibly different) embedding of the graph. Thus we begin with
some results about finite order homeomorphisms of S3. The following is a
special case of a well-known result of P. A. Smith.

Smith Theory ([Sm]). Let h be a non-trivial finite order homeomor-
phism of S3. If h is orientation preserving, then fix(h) either is the empty
set or is homeomorphic to S1. If h is orientation reversing, then fix(h) is
homeomorphic to either S0 or S2.

Lemma 1. Let h be a finite order homeomorphism of S3 which is fixed
point free. Then there are at most two circles which are the fixed point set
of some power of h less than r.

Proof. Suppose that some power of h has non-empty fixed point set.
Then by Thurston’s Orbifold Theorem [BLP], h is conjugate to an orienta-
tion preserving isometry g of S3. Now g can be extended to an orientation
preserving isometry ĝ of R4 fixing the origin, i.e. an element of SO(4). Every
element of SO(4) is the composition of two rotations about perpendicular
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planes in R4 (see [D], for example), and it is easy to show that these are the
only planes fixed by any power of ĝ. It follows that there are at most two
circles in S3 which are the fixed point set of some power of g. Finally, since
h is conjugate to g, there are at most two circles which are the fixed point
set of some power of h.

Lemma 2. Let h be an order r homeomorphism of S3 which is fixed point
free such that for some minimal k < j < r, A = fix(hk) and B = fix(hj) are
distinct circles. Then:

(1) A ∩B = ∅.
(2) h(A) = A and h(B) = B.
(3) The points in A, B, and S3 − (A ∪ B) are in k-, j-, and r-cycles

respectively.
(4) r = lcm(k, j).

Proof. Suppose, for the sake of contradiction, that there exists some
x ∈ A∩B. Then x is fixed by both hk and hj . Since k is the smallest power
of h with a non-empty fixed point set, we see that k | j, and so A ⊆ B.
But this is impossible since A and B are distinct circles. Thus condition (1)
holds.

Let x ∈ A; then hk(x) = x. Hence hk(h(x)) = h(hk(x)) = h(x). So h(x)
is fixed by hk. It follows that h(x) ∈ A. Thus condition (2) holds.

Observe that k is the smallest power of h that fixes any point of S3. Thus
all of the points in A have order k under h. Similarly, j is the smallest power
of h that fixes any point of S3−A, and hence of B. Thus all of the points in
B have order j under h. Finally, it follows from Lemma 1 that every point
of S3 − (A ∪B) has order r under h, and hence condition (3) holds.

Observe that hlcm(k,j) fixes A∪B and hence must be the identity. Thus r
divides lcm(k, j). But we also know that k and j both divide r since fix(hk)
and fix(hj) are non-empty. So lcm(k, j) divides r. It follows that condition
(4) holds.

Now we consider complete bipartite graphs. Throughout the paper, we
will use V and W to denote the vertex sets of a complete bipartite graph
Kn,m. We begin with the following well-known result about automorphisms
of complete bipartite graphs.

Fact. Let ϕ be a permutation of the vertices of Kn,m. Then ϕ is an
automorphism of Kn,m if and only if ϕ either interchanges V and W or
setwise fixes each of V and W .

We will use the above lemmas to obtain necessary conditions on finite
order homeomorphisms of complete bipartite graphs embedded in S3.
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Lemma 3. Let n,m > 2. Suppose that Γ is an embedding of Kn,m in
S3 with a finite order homeomorphism h of (S3, Γ ). If fix(h) ∼= S2, then V
or W is entirely contained in fix(h).

Proof. Since fix(h) ∼= S2, it follows from Smith Theory that h is ori-
entation reversing, and hence interchanges the components A and B of
S3 − fix(h). Suppose for the sake of contradiction that neither V nor W
is entirely contained in fix(h). Then, since A and B are interchanged by h,
there are vertices v of V and w of W such that v ∈ A and w ∈ B. Now
the edge vw intersects fix(h), and hence h fixes a point of vw. Thus h inter-
changes w and v. From the above Fact we know that h(V ) = V or h(V ) = W .
Hence we must have h(V ) = W . It follows that no vertices of the graph are
fixed. Since n > 2, without loss of generality, there is a pair of distinct ver-
tices v1 and v2 of V which are contained in A. Then h(v2) ∈ B and h(v2) is
in W . However, the edge v1h(v2) intersects fix(h), and hence h(v1) = h(v2).
But this is impossible since h is a bijection. Thus fix(h) contains one of the
vertex sets.

Fixed Vertices Lemma. Let m,n > 2. Suppose that Γ is an embedding
of Kn,m in S3 with an order r homeomorphism h of (S3, Γ ) which fixes at
least one vertex if h is orientation preserving and at least three vertices if h
is orientation reversing. Then all non-fixed vertices are in r-cycles and one
of the following holds (up to interchanging V and W ):

(1) If h is orientation preserving, then either h fixes no vertices of W ,
or h fixes at most two vertices of each of V and W .

(2) If h is orientation reversing, then h has order 2, and h fixes all
vertices of V and at most two vertices of W .

Proof. First suppose that h is orientation preserving. If h fixes at least
three vertices of V , then h cannot fix any vertices of W , since otherwise
fix(h) ∼= S1 would contain a K3,1 graph. Thus condition (1) is satisfied.

Next suppose that h is orientation reversing. Since at least three vertices
are fixed by h, by Smith Theory fix(h) ∼= S2. Hence h has order 2. Also, by
Lemma 3, without loss of generality fix(h) contains all of V , which includes
at least three vertices. If fix(h) also contained more than two vertices of W ,
then fix(h) ∼= S2 would contain the non-planar graph K3,3. Thus condition
(2) is satisfied.

In either case, by Smith Theory all non-fixed vertices are in r-cycles.

Orientation Reversing Lemma. Let m,n > 2. Suppose that Γ is
an embedding of Kn,m in S3 with an order r orientation reversing hom-
eomorphism h of (S3, Γ ) which fixes at most two vertices. Then the fixed
vertices are in a single vertex set V , and one of the following holds, with all
remaining non-fixed vertices in r-cycles:
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(1) There are no fixed vertices or exceptional cycles, and h(V ) = V .
(2) W contains one 2-cycle.
(3) V contains some 2-cycles.
(4) V ∪W contains at most two 2-cycles, r/2 is even, and h(V ) = W .
(5) V may contain some 2-cycles, r/2 is odd, and all vertices of W are

in (r/2)-cycles.
(6) W contains at most one 2-cycle, r/2 is odd, and all non-fixed vertices

of V are in (r/2)-cycles.

Proof. Observe that since h is orientation reversing, r must be even.
We will observe that if r/2 is odd, then h(V ) = V . Towards contradiction,
suppose r/2 is odd, and h(V ) = W . Then hr/2 is also orientation reversing,
interchanges V and W and divides V ∪W into 2-cycles (viwi). But then hr/2

must fix a point on each edge viwi; since m,n > 2, this means fix(hr/2) = S2.
But, by Lemma 3, this contradicts the fact that hr/2 does not fix any vertices.
Hence h(V ) = V . In particular, if r = 2 then h(V ) = V , and conditions (1)
and/or (3) follow trivially.

So we assume that r > 2. Since n,m ≥ 3 and no more than two vertices
are fixed by h, both V and W must contain non-fixed vertices. Thus by
Lemma 3, fix(h) cannot be homeomorphic to S2. Now it follows from Smith
Theory that h has precisely two fixed points. Thus h cannot fix one vertex
from each vertex set, since that would force h to fix every point on the edge
between the fixed vertices. So without loss of generality, all fixed vertices
are in V .

Since h2 is orientation preserving and has non-empty fixed point set,
fix(h2) ∼= S1. By applying Smith Theory to h2 we see that all points not fixed
by h2 are in (r/2)-cycles under h2, and hence are either in (r/2)-cycles or in
r-cycles under h. So all non-fixed vertices of Γ are in 2-cycles, (r/2)-cycles,
or r-cycles under h.

Suppose at least one vertex of V is fixed and some vertex w ∈ W is in
a 2-cycle. Then h2 fixes these two vertices of W together with any vertices
of V which are fixed by h. If W contained a second 2-cycle then fix(h2)
would contain a K1,4 graph, and if V contained a 2-cycle then fix(h2) would
contain a K3,2 graph. Both cases are impossible since fix(h2) ∼= S1. Hence
the 2-cycle in W is the only 2-cycle in the graph. So, if there is a fixed vertex
and no vertices of Γ are in (r/2)-cycles (or r = 4), then either condition (2)
or (3) is satisfied, depending on whether or not W contains a 2-cycle.

Suppose there are no fixed vertices in Γ . Then the vertex sets V and
W are interchangeable. As above, if fix(h2) contains more than two vertices
of V , then it cannot contain any vertices of W since fix(h2) ∼= S1. Thus either
there are at most two 2-cycles in V ∪W and these are the only 2-cycles in Γ ,
or all of the 2-cycles of Γ are in V . If there are 2-cycles (v1v2) and (w1w2)
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then fix(h2) must be exactly these four vertices and the edges between them.
But this set contains the two points of fix(h); since h does not fix a vertex
it must fix a point on an edge, and hence must interchange the endpoints
of this edge. But then h(V ) = W , which contradicts the assumption that
h(v1) = v2.

So, if there are 2-cycles involving both V and W , it must be the case
that h(V ) = W , and hence r/2 must be even. Thus either there are at most
two 2-cycles in V ∪W , r/2 is even and h(V ) = W , or all of the 2-cycles of Γ
are in V and h(V ) = V . In particular, if r = 4 or no vertices of Γ are in
(r/2)-cycles, then one of conditions (1), (3) or (4) is satisfied.

So we can assume that some vertex of Γ is in an (r/2)-cycle and r 6= 4.
Then the vertices in the (r/2)-cycle are not fixed by h2. But if r/2 is even,
then fix(h2) ⊆ fix(hr/2) = S1, so the fixed point sets are the same. Hence r/2
must be odd and r ≥ 6. Thus hr/2 fixes at least three vertices from an (r/2)-
cycle. Since hr/2 is orientation reversing, this implies that fix(hr/2) ∼= S2.
Now by Lemma 3, fix(hr/2) contains all of the vertices in one of the vertex
sets. Let X denote the vertex set contained in fix(hr/2) and let Y denote the
other vertex set. Hence all of the non-fixed vertices of X are in (r/2)-cycles.
Suppose that some vertex y ∈ Y is also in an (r/2)-cycle. Then y, h(y),
and h2(y) are distinct vertices in fix(hr/2). Since X contains at least three
vertices, this would imply that fix(hr/2) contains a K3,3 graph. As this is
impossible, no vertex in Y is in an (r/2)-cycle. In particular, V and W
cannot both contain (r/2)-cycles. Now if W is contained in fix(hr/2) then
condition (5) is satisfied. If there are no fixed vertices, then V and W are
interchangeable, and hence again condition (5) is satisfied. If there is at
least one fixed vertex and V is contained in fix(hr/2), then condition (6) is
satisfied since in this case W contains at most one 2-cycle.

The situation is somewhat more complicated if h is orientation preserving
and fixes no vertices of Γ . In this case, by Lemma 1 one or two distinct
circles (but no more) could be fixed by different powers of h. This gives
many possibilities depending on whether these circles contain vertices from
the sets V and/or W .

Orientation Preserving Lemma. Let m,n > 2. Suppose that Γ is
an embedding of Kn,m in S3 with an order r orientation preserving home-
omorphism h of (S3, Γ ) which fixes no vertices. If some power of h less
than r fixes a vertex, then one of the following holds (up to interchanging V
and W ), with all remaining vertices in r-cycles:

(1) If there is precisely one circle fix(hj) containing a vertex and j < r
is minimal, then one of the following holds:

(a) V may contain some j-cycles.
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(b) fix(hj) contains vertices v1, v2 ∈ V and w1, w2 ∈ W such that
either j = 2 and h induces (v1v2)(w1w2), or j = 4 and h induces
(v1w1v2w2).

(2) If there are two circles fix(hj) and fix(hk) containing vertices and
j, k < r are minimal, then one of the following holds:

(a) V contains some j-cycles and k-cycles.
(b) V contains some j-cycles and W contains some k-cycles.
(c) j = 2, fix(h2) contains v1, v2 ∈ V and w1, w2 ∈ W such that

h induces (v1v2)(w1w2), and V contains some (r/2)-cycles with
r/2 odd.

Proof. By our hypotheses, some power of h less than r fixes a vertex,
though h itself fixes no vertices. Since h is orientation preserving it follows
from Smith Theory that h is fixed point free.

First suppose that there is a circle A = fix(hj) which contains v1 ∈ V and
w1 ∈W and j is minimal. Since h is fixed point free and h(A) = A, we know
that h rotates the circle A. Thus A contains the same number of vertices
from each of the vertex sets V and W , and since A must also contain the
edges between vertices this number must be at least 2 (or h would not send
edges to edges). Thus A must consist of vertices v1, w1, v2, w2 together with
the edges between them, and j = 2 or 4. If no vertex is fixed by any other
power of h less than r, then condition (1b) is satisfied. Suppose that some
vertex not on A is fixed by hk with k minimal such that j < k < r. Since
hk does not fix any point of A, j cannot divide k. In particular, B = fix(hk)
cannot contain vertices from both V and W (since then k = 2 or 4 by
the same argument, and j would divide k). Thus without loss of generality,
B only contains vertices of V . Since h(B) = B, we must have h(V ) = V .
Thus h must induce (v1v2)(w1w2). Now it follows from Smith Theory that
k is odd and from Lemma 2 that k = r/2. Hence condition (2c) is satisfied.

Thus we assume that no power of h less than r simultaneously fixes
vertices from each of V and W . Now by Lemmas 1 and 2, it is easy to check
that one of conditions (1a), (2a), or (2b) is satisfied.

3. Realizing automorphisms of complete bipartite graphs. We
will provide constructions to show that each case of the Classification The-
orem is possible. Our constructions proceed by first embedding the vertices
of Kn,m so that there is an isometry of S3 that acts on them as desired, and
then embedding the edges using the following Edge Embedding Lemma, so
that the resulting embedding of Kn,m is setwise invariant under g, and g
induces ϕ on Kn,m. Recall that a graph H is a subdivision of a graph G if
H is the result of adding distinct vertices to the interiors of the edges of G.
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Edge Embedding Lemma ([FMNY]). Let V and W denote the vertex
sets of Kn,m and let γ be a subdivision of Kn,m constructed by adding ver-
tices Z. Assume the vertices of γ are embedded in S3 so that an isometry g
of S3 of order r induces a faithful action on γ. Let Y denote the union of
the fixed point sets of all the gi for i < r. Suppose the following hypotheses
hold for adjacent pairs of vertices in V ∪W ∪ Z:

(1) If a pair is pointwise fixed by gi and gj for some i, j < r, then
fix(gi) = fix(gj).

(2) No pair is interchanged by any gi.
(3) Any pair that is pointwise fixed by some gi with i < r bounds an arc

in fix(gi) whose interior is disjoint from V ∪W ∪ Z ∪ (Y − fix(gi)).
(4) Every pair is contained in the closure of a single component of S3−Y .

Then there is an embedding of the edges of γ in S3 such that the resulting
embedding of γ is setwise invariant under g.

Note that if g is an isometry, then Y only separates S3 if fix(gi) = S2 for
some i. So, by Lemma 3, condition (4) of the Edge Embedding Lemma is
equivalent to saying that if fix(gi)=S2 then either V ⊆fix(gi) or W ⊆fix(gi).

We will first consider automorphisms ϕ of Kn,m which can be realized
by orientation preserving isometries of S3. The roles of V and W can be re-
versed in all the following lemmas. Notice that the conditions of each lemma
are numbered to match the corresponding conditions in the Classification
Theorem. We first show that the first three cases of the Classification The-
orem are realizable by rotations in S3, as long as the automorphism fixes V
and W setwise.

Rotations Lemma. Let m,n > 2 and let ϕ be an order r automorphism
of Kn,m with vertex sets V and W . Suppose that ϕ(V ) = V and all vertices
are in r-cycles except for the fixed vertices and exceptional cycles explicitly
mentioned below (up to interchanging V and W ):

(1) There are no fixed vertices or exceptional cycles.
(2) V contains one or more fixed vertices.
(3) V and W each contain at most two fixed vertices.

Then ϕ is realizable by a rotation of S3 of order r.

Proof. Let g be a rotation of S3 by 2π/r around a circle X. Then the
order of g is r. Embed all the fixed points of ϕ on X. In the case where
V and W each contain two fixed vertices, alternate vertices from V and W
around X. Embed the remaining vertices in pairwise disjoint r-cycles of g
in S3 −X. Thus g induces ϕ on V ∪W .

We now check that the conditions of the Edge Embedding Lemma are
satisfied. Since g(V ) = V and g(W ) = W , condition (2) is satisfied. Notice
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that for every i < r we have fix(gi) = X, and X does not separate S3, so
conditions (1) and (4) are satisfied. Furthermore, if ϕ fixes either one or two
vertices in each of V and W , there is a collection of arcs in X from each of
the fixed points of V to each of the fixed points of W such that the interior
of each arc is disjoint from V ∪ W . Hence condition (3) is met. Thus by
the Edge Embedding Lemma, there is an embedding of Kn,m such that ϕ is
realized by g.

The next six cases of the Classification Theorem are realizable by glide
rotations in S3, along with the automorphisms in case (1) that interchange
the vertex sets V and W . Recall that a glide rotation is the composition of
two rotations about linked circles such that each rotation fixes the axis of
the other rotation setwise.

Glide Rotations Lemma. Let m,n > 2 and let ϕ be an order r au-
tomorphism of Kn,m with vertex sets V and W . Suppose that there are no
fixed vertices, and all vertices are in r-cycles except for the exceptional cycles
explicitly mentioned below (up to interchanging V and W ):

(1) ϕ(V ) = W and there are no exceptional cycles.
(4) j | r and V contains some j-cycles.
(5) r = lcm(j, k), and V contains some j-cycles and k-cycles.
(6) r = lcm(j, k), and V contains some j-cycles and W contains some

k-cycles.
(7) V and W each contain one 2-cycle.
(8) r/2 is odd, V and W each contain one 2-cycle, and V contains some

(r/2)-cycles.
(9) ϕ(V ) = W and V ∪W contains one 4-cycle.

Then ϕ is realizable by a glide rotation of S3 of order r.

Proof. Let X and Y be geodesic circles in S3 which are the intersections
of S3 with perpendicular planes through the origin in R4. We define a glide
rotation g in each case as follows (we split case (1) into two parts, depending
on whether r/2 is odd or even; since ϕ(V ) = W , we know r must be even):

(1a) (r/2 is odd) g is the composition of a rotation by 4π/r around X
and a rotation by 2π/r around Y .

(1b) (r/2 is even) g is the composition of a rotation by π/2 around X
and a rotation by 2π/r around Y .

(4) g is the composition of a rotation by 2π/j around X and a rotation
by 2π/r around Y .

(5) g is the composition of a rotation by 2π/j around X and a rotation
by 2π/k around Y .

(6) Same as case (5).
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(7) g is the composition of a rotation by π around X and a rotation by
2π/r around Y .

(8) g is the composition of a rotation by π around X and a rotation by
4π/r around Y .

(9) Same as case (1b).

Observe that in case (7), r is even since there is a 2-cycle. In case (8),
r/2 is odd by assumption, and in case (9), r is divisible by 4 since there is
a 4-cycle (so r/2 is even). Hence in each case, the order of g is r.

We begin by embedding the vertices of Kn,m in each case. In cases (4),
(5) and (6), g|Y has order j, and we embed all of the j-cycles of V under ϕ
in Y as pairwise disjoint j-cycles of g. In cases (7) and (8), g|Y has order 2,
and we embed the 2-cycles of V and W in Y as alternating pairwise disjoint
2-cycles of g. In case (9), g|Y has order 4, and we embed the 4-cycle in Y
with v’s and w’s alternating. In cases (5) and (6), g|X has order k, and we
similarly embed all of the k-cycles of V or W under ϕ in X. In case (8),
g|X has order r/2, and we embed all of the (r/2)-cycles of V under ϕ in X.
Finally, in all the cases we embed the r-cycles of V and W in S3− (X ∪Y ).
Thus g induces ϕ on V ∪W .

We will now use the Edge Embedding Lemma to embed the edges of
Kn,m. We will first consider case (1a), which is a bit more complex than the
others. In this case we need to first embed the midpoints of all the edges
that are inverted by any gi for i < r. Since all the cycles are length r, this is
only possible if i = r/2. Furthermore, since r/2 is odd, gr/2 inverts n edges
of Kn,n (since ϕ(V ) = W , we have n = m in this case). For each edge vw
which is inverted by ϕr/2 we add a vertex zvw at the midpoint of the edge of
the abstract graph Kn,n. Denote this set of n vertices by Z. Observe that the
vertices of Z are in (r/2)-cycles under ϕ. Then we define H = Kn,n∪Z, so H
is a subdivision of Kn,n. Now g|Y has order r/2. We embed the (r/2)-cycles
of vertices zvw under ϕ as an (r/2)-cycle of g in Y . Thus g induces ϕ on
V ∪W ∪ Z.

We now check that the conditions of the Edge Embedding Lemma are
satisfied for H. If any pair of adjacent vertices of H is fixed by gi, then gi

must fix a vertex of V ∪ W , but none of these vertices are embedded in
X ∪ Y . So conditions (1) and (3) are trivially satisfied. Since fix(gi) 6= S2

for all i, condition (4) is satisfied. For every pair of vertices v ∈ V and
w ∈ W such that gr/2(v) = w, there exists a vertex zvw ∈ Z such that
zvw ∈ fix(gr/2) = X, so v and w are not adjacent in H. Hence condition (2)
is satisfied. Thus by the Edge Embedding Lemma, there is an embedding
of H that is setwise invariant under g. Finally, we delete the embedded
midpoint vertices of our embedding of H to obtain an embedding of Kn,n

such that ϕ is realized by g.
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We now check that the conditions of the Edge Embedding Lemma are
satisfied for the other cases. In cases (4)–(8) we see that g(V ) = V and
g(W ) = W , hence condition (2) is satisfied. For cases (1b) and (9) we observe
that ϕi inverts an edge of Kn,n if and only if i is odd and ϕ has a vertex
cycle of length 2i. But the only vertex cycles in these cases are length 4
or r, and r/2 is even. So none of the edges are inverted, and condition
(2) is again satisfied. Since no gi with i < r pointwise fixes X ∪ Y , if two
points are fixed by gi then they are either both in X or both in Y . The
only cases when vertices of both V and W are embedded in the same circle
is when both V and W have a single 2-cycle embedded in Y , or when a
4-cycle is embedded in Y . If gi and gj both fix such a pair, for i, j < r,
then fix(gi) = fix(gj) = Y , so condition (1) is satisfied. Also, since the four
vertices in each case alternate between v’s and w’s, condition (3) is satisfied.

Otherwise, vertices of W and V are not both embedded in the same
circle. Hence gi for i < r does not simultaneously fix both a v ∈ V and a
w ∈ W , and conditions (1) and (3) follow trivially. Since fix(gi) 6= S2 for
every i < r, condition (4) is satisfied. Thus by the Edge Embedding Lemma,
there is an embedding of Kn,m such that ϕ is realized by g.

We now consider the automorphisms that can be realized by orientation
reversing isometries of S3. Case (11) of the Classification Theorem can be
realized by a reflection.

Reflections Lemma. Let m,n > 2 and let ϕ be an automorphism of
Kn,m of order 2 that fixes all of the vertices of V and at most two vertices
of W , with the remaining vertices of W partitioned into 2-cycles. Then ϕ
is realizable by a reflection of S3.

Proof. Let g be a reflection of S3 through a sphere S. Embed all the
fixed vertices of ϕ in S, and embed the 2-cycles of ϕ in S3 − S as pairwise
disjoint 2-cycles of g. Thus g induces ϕ on V ∪W .

We now check that the conditions of the Edge Embedding Lemma are
satisfied by the embedded vertices V ∪W of Kn,m. By construction we have
g(V ) = V and g(W ) = W , hence condition (2) is satisfied. Since the order
of g is 2, condition (1) of the Edge Embedding Lemma is met. Since K2,n

is a planar graph, there is a collection of disjoint arcs in S connecting the
vertices of V to the (at most two) fixed vertices of W in S, hence condition
(3) is satisfied. Furthermore, since V ⊆ fix(g), condition (4) is satisfied. Thus
by the Edge Embedding Lemma, there is an embedding of Kn,m such that
ϕ is realized by g.

Cases (10), (12) and (13) of the Classification Theorem can be realized
by improper rotations. An improper rotation of S3 is the composition of a
reflection through a geodesic 2-sphere S and a rotation about a geodesic
circle X that intersects S perpendicularly in two points.
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Improper Rotations Lemma. Let m,n > 2 and let ϕ be an order r
(where r is even) automorphism of Kn,m with vertex sets V and W . Suppose
that all vertices are in r-cycles except for the fixed vertices and exceptional
cycles explicitly mentioned below (up to interchanging V and W ):

(10) ϕ(V ) = V and there are no fixed vertices or exceptional cycles.
(12) ϕ(V ) = V , V contains at most two fixed vertices, and one of the

following is true:

(a) W contains one 2-cycle.
(b) V contains some 2-cycles.
(c) V may contain some 2-cycles, r/2 is odd, and all vertices of W

are in (r/2)-cycles.
(d) W contains at most one 2-cycle, r/2 is odd, and all non-fixed

vertices of V are in (r/2)-cycles.

(13) 4 | r, ϕ(V ) = W and V ∪W contains at most two 2-cycles.

Then ϕ is realizable by an improper rotation of S3 of order r.

Proof. Let S be a geodesic sphere in S3, and X be a geodesic circle which
intersects S perpendicularly at exactly two points. In cases (10), (12a), (12b)
and (13), we define an improper rotation g as the composition of a reflection
in S with a rotation by 2π/r around X. In cases (12c) and (12d) (where r/2
is odd), we define g as the composition of a reflection in S with a rotation by
4π/r around X. In each case, g has order r. We will now embed the vertices
of Kn,m.

Let F = fix(g) = X∩S, so |F | = 2. In each case, embed the fixed vertices
of ϕ (if any) as points of F . If r = 2, then ϕ(V ) = V and we embed the
remaining vertices as 2-cycles in S3 − (S ∪X); in this case, the conditions
of the Edge Embedding Lemma are easily verified. So we will assume r > 2.

Observe g|X has order 2. In each case, we embed any 2-cycles under
ϕ in X − F as pairwise disjoint 2-cycles of g (in cases (12a) and (12d),
the embedded vertices of W will alternate with any vertices of V embedded
in F ); in case (13), we also alternate vertices from V and W around X. Next
observe that in cases (12c) and (12d), g|S has order r/2. In these cases, we
embed the (r/2)-cycles under ϕ in S − F as pairwise disjoint (r/2)-cycles
of g. Finally, we embed the r-cycles under ϕ as pairwise disjoint r-cycles
of g in S3 − (S ∪X). Thus g induces ϕ on V ∪W .

We now check that the conditions of the Edge Embedding Lemma are
satisfied. We first consider cases (10) and (12); case (13) is slightly more
complex. For (10) and (12) we have g(V ) = V and g(W ) = W , hence
condition (2) is satisfied. Since no gi with i < r pointwise fixes S ∪ X, if
two vertices are fixed by gi then they are both in S or both in X. In each of
cases (10) and (12a)–(12d), all the vertices embedded in X−F are from the



14 E. Flapan et al.

same vertex set, and all the vertices embedded in S − F are from the same
vertex set. So we only need to consider the cases when there are vertices
of V embedded in F and vertices of W in either X − F (cases (12a) and
(12d)) or S − F (case (12c)). In cases (12a) and (12d), any gi (with i < r)
that fixes an adjacent pair has fixed point set X, so condition (1) is satisfied;
since there are at most two vertices of V and W embedded in X, alternating
between V and W , condition (3) is also satisfied. In case (12c), any gi (with
i < r) that fixes an adjacent pair has fixed point set S, so condition (1)
is satisfied; since K2,n is planar there there is a collection of disjoint arcs
connecting the vertices of W in S−F to the vertices of V in F , so condition
(3) is also satisfied. The only cases when fix(gi) = S are (12c) and (12d),
when i = r/2. In these cases, either V ⊂ S or W ⊂ S, so condition (4) is
satisfied. Thus by the Edge Embedding Lemma, there is an embedding of
Kn,m such that ϕ is realized by g.

Finally, we consider case (13). Here we need to first embed the mid-
points of any edges that are inverted by any gi for i < r. Since r/2 is even,
ϕr/2(V ) = V , so this will not happen for any of the vertices in the r-cycles; it
remains to consider the 2-cycles. For each 2-cycle (vw) we add a vertex zvw
at the midpoint of the edge vw in the abstract graph Kn,n (since ϕ(V ) = W ,
we have n = m). Denote this set of vertices by Z; note that |Z| ≤ 2. Then
we define H = Kn,n ∪ Z, so H is a subdivision of Kn,n. The vertices of Z
are fixed by ϕ, so we embed them as points in F (these points are available,
since ϕ does not fix any vertices of V ∪W ). Thus g induces ϕ on V ∪W ∪Z.

We now check that the conditions of the Edge Embedding Lemma are
satisfied for H. If any pair of adjacent vertices of H is fixed by gi, then
gi must fix X, so condition (1) is satisfied. Since the vertices of V and W
alternate around X (with at most one vertex of Z in between each pair),
condition (3) is satisfied. Since fix(gi) 6= S for all i, condition (4) is satisfied.
For every pair of vertices v ∈ V and w ∈W such that g(v) = w, there exists
a vertex zvw ∈ Z such that zvw ∈ fix(g) = F , so v and w are not adjacent
in H. Hence condition (2) is satisfied. Thus by the Edge Embedding Lemma,
there is an embedding of H that is setwise invariant under g. Finally, we
delete the embedded midpoint vertices of our embedding of H to obtain an
embedding of Kn,n such that ϕ is realized by g.

4. Conclusion

Proof of the Classification Theorem. The theorem follows immediately
from our lemmas. Let ϕ be an automorphism. If |fix(ϕ)| ≥ 1, then ϕ is only
realizable by an orientation preserving homeomorphism if it falls into case
(2) or (3), by the Fixed Vertices Lemma. In these cases, ϕ is realizable by a
rotation. If |fix(ϕ)| = 0, but some power of ϕ fixes a vertex, then ϕ is only
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realizable by an orientation preserving homeomorphism if it falls into one
of cases (4)–(9), by the Orientation Preserving Lemma. In these cases, ϕ is
realizable by a glide rotation. If |fix(ϕ)| = 0 and no power of ϕ fixes a vertex,
then ϕ is realizable by either a rotation or a glide rotation, depending on
whether ϕ(V ) = V .

If |fix(ϕ)| ≥ 3, then ϕ is only realizable by an orientation reversing
homeomorphism if it falls into case (11) by the Fixed Vertices Lemma. In
this case, ϕ is realizable by a reflection. If 1 ≤ |fix(ϕ)| ≤ 2, then ϕ is
only realizable by an orientation reversing homeomorphism if it falls into
case (12), by the Orientation Preserving Lemma. In this case, ϕ is realizable
by an improper rotation. If |fix(ϕ)| = 0, then ϕ is only realizable by an
orientation reversing homeomorphism if it falls into case (10), (12) or (13),
by the Orientation Preserving Lemma. In each of these cases, ϕ is realizable
by an improper rotation. This accounts for all possibilities, and completes
the proof.

Now that we have determined which automorphisms of Kn,m can be
induced by a homeomorphism of an embedding in S3, the next step is to
explore which groups of automorphisms can be realized as the group of
symmetries of an embedding in S3. It is known that for every finite subgroup
G of Diff+(S3), there is an embedding Γ of some complete bipartite graph
Kn,n such that the group of all automorphisms of Γ which are induced
by orientation preserving homeomorphisms of S3 is isomorphic to G (see
[FNPT]). However, this result does not tell us which groups are possible for
embeddings of a particular bipartite graph.

Question. Given n and m, which subgroups of the automorphism group
of Kn,m are induced by the orientation preserving homeomorphisms of the
pair (S3, Γ ) for some embedding Γ of Kn,m?

The analogous question for complete graphs has been completely an-
swered (see [FMNY]). For bipartite graphs, the question has been studied
for Kn,n when the subgroup is isomorphic to A4, S4 or A5 (see [M]) and when
it is isomorphic to Zn, Dn or Zn×Zm (see [HMP]), but there is substantial
work still to be done.
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