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Abstract. We present the concept of the topological symmetry group as a

way to analyze the symmetries of non-rigid molecules. Then we characterize
all of the groups which can occur as the topological symmetry group of an

embedding of a complete graph of the form K4r+3 in S3.

1. Topological symmetry groups. Knowing the symmetries of a molecule helps
to predict its chemical behavior. But, what exactly do we mean by “symmetries?”
If we consider only rigid molecules, then the molecular symmetries are rotations,
reflections, and reflections composed with rotations. Chemists have defined the
point group of a molecule as its group of rigid symmetries. While this is a useful
tool for rigid molecules, it can be misleading when applied to non-rigid molecules.
For example, consider the molecule illustrated in Figure 1. The Cl on the far left
is in front of the page, the Cl in the middle is behind the page, and the Cl on the
right is in the page.
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Figure 1. The point group of this molecule is the cyclic group Z2.
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The point group of the molecule in Figure 1 is the cyclic group Z2 because the
only rigid symmetry of the molecule is a reflection through the plane which contains
the three hexagons. However, the three Cl’s at the top can rotate around the bond
connecting them to the hexagons (as indicated by the arrow) while the hexagons
themselves remain fixed. We would like to define a group which includes both the
rigid and non-rigid symmetries of molecules.

We begin by defining a molecular graph as a graph embedded in R3 where the
edges represent bonds and the vertices represent atoms or groups of atoms. We
then use the following definition.

Definition 1.1. An automorphism of a molecular graph γ is a permutation of the
vertices preserving adjacency, taking atoms of a given type to atoms of the same
type (e.g., carbons go to carbons, oxygens go to oxygens, and so on). Aut(γ) is
defined as the group of automorphisms of γ.

The automorphism group is the group of symmetries of the abstract graph, in-
dependent of any embedding in R3. However the symmetries of a molecule are only
those symmetries of the abstract graph which occur as symmetries of the molecular
graph. In particular, we have the following definition.

Definition 1.2. We define the molecular symmetry group of a molecular graph γ as
the subgroup of Aut(γ) induced by chemically possible motions taking the molecule
to itself together with reflections which take the molecule to itself.

The molecular symmetry group of the graph illustrated in Figure 1 is D3 (the
dihedral group with six elements) and is generated by the automorphism induced
by a planar reflection together with the automorphism induced by a 120◦ rotation
of the three Cl’s at the top keeping the rest of the graph fixed.

While the molecular symmetry group makes sense chemically, it cannot be de-
fined mathematically because the existence of a particular molecular symmetry may
depend on the flexibility of the molecule or the possibility of rotating around cer-
tain bonds within the molecule. Rather than assuming all molecules are completely
rigid as the point group does, we now consider the group obtained by treating all
molecules as if they were completely flexible.

Definition 1.3. The topological symmetry group of a graph Γ embedded in R3

is the subgroup of Aut(Γ) induced by diffeomorphisms of the pair (R3,Γ). It is
denoted by TSG(Γ)

Consider the graph of the molecular Möbius ladder illustrated in Figure 2. This
molecule is large enough to be somewhat flexible. We number some of the vertices
so that we can write the automorphisms more conveniently. The automorphism
(23)(56)(14) is induced by turning the molecule upside down. This is the only non-
trivial automorphism which is induced by a rigid symmetry. Thus the point group
of the molecule is Z2. However, the automorphism (123456) is induced by rotating
the molecule by 120◦ while slithering the half-twist back to its original position.
Thus the topological symmetry group of this molecule is D6 (the dihedral group
of order 12). Because of the flexibility of the molecule, this is also the molecular
symmetry group.

While the motivation for the study of topological symmetry groups came from
considering the symmetries of non-rigid molecules, we can consider the topological
symmetry group of any graph embedded in R3. In fact, the study of topological
symmetry groups is a natural extension of the study of the symmetries of knots.
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Figure 2. The topological symmetry group of this molecule is D6.

Thus, as is typical in knot theory, we prefer to consider graphs embedded in S3

rather than in R3. Observe that the topological symmetry group of a graph em-
bedded in R3 is the same as it is if we consider the same embedding of the graph
in S3.

Definition 1.4. Let Γ be a graph embedded in S3. The orientation preserv-
ing topological symmetry group, TSG+(Γ), is the subgroup of TSG(Γ) induced by
orientation preserving diffeomorphisms of the pair (S3,Γ).

Observe that either TSG+(Γ) = TSG(Γ) or TSG+(Γ) is a normal subgroup of
TSG(Γ) of index 2. So understanding TSG+(Γ) is a key step in understanding
TSG(Γ). For the rest of this paper we will focus our attention on the orientation
preserving topological symmetry group. However, for the sake of simplicity we will
abuse terminology and refer to these groups simply as topological symmetry groups.

The general question we are interested in is: for a given graph, what groups
can occur as topological symmetry groups? In [5] it was shown that not every
finite group can occur as the topological symmetry group of some graph in S3. In
particular, TSG+(Γ) cannot be the alternating group An for n > 5 for any embedded
graph Γ in S3. However, there is no known classification of all possible topological
symmetry groups of graphs in S3. A complete graph, Kn, is a graph with n vertices
and an edge between every pair of vertices. The class of complete graphs is an
interesting family of graphs to consider because Aut(Kn) is the symmetric group
Sn, which is the largest automorphism group of any graph with n vertices. In [6],
Flapan, Naimi, and Tamvakis proved the following theorem, characterizing which
finite groups can occur as topological symmetry groups of embeddings of complete
graphs in S3.

Complete Graph Theorem. [6] A finite group H is TSG+(Γ) for some embedding
Γ of a complete graph in S3 if and only if H is isomorphic to a finite cyclic group,
a dihedral group, S4, A4, A5, or a subgroup of Dm ×Dm for some odd m.

Observe that the Complete Graph Theorem does not tell us for a given n, what
groups can occur as the topological symmetry group of some embedding of Kn in S3.
In this paper we characterize what groups can occur as the topological symmetry
group of an embedding of any complete graph of the form K4r+3 in S3.

2. Topological symmetry groups of complete graphs. In addition to the
Complete Graph Theorem, we will make use of several results from other papers.
The following result from [5] shows us that for 3-connected graphs (i.e., those which
cannot be disconnected or reduced to a single vertex by deleting fewer than 3 ver-
tices), we only need to consider topological symmetry groups that are induced by
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a finite subgroup of Diff+(S3) (i.e., the group of orientation preserving diffeomor-
phisms of S3).

Finiteness Lemma. [5] Let H = TSG+(Γ) for some 3-connected graph Γ embedded
in S3. Then Γ can be re-embedded as ∆ such that H ≤ TSG+(∆) and TSG+(∆) is
induced by an isomorphic finite subgroup of Diff+(S3).

We contrast this result with the example, illustrated in Figure 1, in which the
rotation of the three Cl’s cannot be induced by any finite order diffeomorphism.
Observe that the graph in Figure 1 can be disconnected by removing a single vertex,
and hence it is not 3-connected.

The following theorem classifies which automorphisms of Kn can be induced
by a finite order orientation preserving diffeomorphism of some embedding of Kn

in S3. For simplicity we will use the word cycle only for non-trivial cycles of an
automorphism. Note that, if n = 4r + 3, then n > 6.

Automorphism Theorem. [2] Let Kn be a complete graph on n > 6 vertices and
let ϕ be an automorphism of Kn. Then there is an embedding Γ of Kn in S3 such
that ϕ is induced by an orientation preserving diffeomorphism h of (S3,Γ) of order
m if and only if the cycles and fixed vertices of ϕ can be described by one of the
following:

1. m > 2 is even, all cycles of ϕ are of order m, and ϕ fixes no vertices.
2. m = 2, all cycles of ϕ are of order m, and ϕ fixes at most two vertices.
3. m is odd, all cycles of ϕ are of order m, and ϕ fixes at most three vertices.
4. m is an odd multiple of 3 and m > 3, all cycles of ϕ are of order m except

one of order 3, and ϕ fixes no vertices.

We will say that an automorphism ϕ of Kn is of type 4, if it is described by
Condition (4) of the Automorphism Theorem.

We now prove some general lemmas about automorphisms of graphs and sub-
groups of Diff+(S3) which are the product of two cyclic groups. We will use fix(h) to
denote the fixed point set of a diffeomorphism h of S3. Note that if h is orientation
preserving, then by Smith Theory [7] either fix(h) ∼= S1 or fix(f) = ∅.

Orbits Lemma. Suppose α and β are commuting automorphisms of a finite set
V1. Then β takes α-orbits to α-orbits of the same length.

Proof. Let A denote a minimal length α-orbit (i.e., no α-orbit has a shorter length).
Then

β(A) = β(α(A)) = α(β(A)).

Thus α takes β(A) to β(A). This implies that β(A) is a union of α-orbits. However,
|β(A)| = |A|, which is a minimal length α-orbit. Hence β(A) is actually a single
α-orbit.

Let A1, A2, ..., An denote all the minimal length α-orbits in V1, then for each i,
there exists a j such that β(Ai) = Aj . Thus

β(A1 ∪A2 ∪ ... ∪An) = A1 ∪A2 ∪ ... ∪An
Let V2 = V1 − (A1 ∪ A2 ∪ ... ∪ An), then α(V2) = V2 and β(V2) = V2. Now

start with V2, and repeat the above argument as necessary to see that β takes every
α-orbit to an α-orbit of the same length. �
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Disjoint Fixed Points Lemma. Suppose g, h ∈ Diff+(S3) such that 〈g, h〉 =
Zp × Zq is not cyclic or equal to D2. Then fix(g) and fix(h) are disjoint.

Proof. Let G = 〈g, h〉. Suppose there exists x ∈ fix(g) ∩ fix(h). Let B(x) denote a
regular neighborhood of x in S3, and let N(x) =

⋂
f∈G f(B(x)). Since G is finite

and fixes x, N(x) is a ball around x which is setwise invariant under G.
Let H be the restriction of G to the sphere, ∂N(x). By Smith Theory [7], if some

f ∈ G pointwise fixes ∂N(x), then f must be the identity. Thus H ∼= G = Zp×Zq,
and H is neither cyclic nor equal to D2. Since this is impossible, fix(g) and fix(h)
must in fact be disjoint. �

In the next several lemmas we put restrictions on the types of automorphisms
that can be induced on an embedding Γ of Kn by a group Zp × Zq ≤ Diff+(S3)

3-Cycle Lemma. Let Γ be an embedding of Kn in S3, and let α and β be orien-
tation preserving diffeomorphisms of (S3,Γ) of odd orders p and q respectively such
that p, q > 1 and p|q. Suppose that 〈α, β〉 = Zp × Zq, and 〈α〉 ∩ 〈β〉 = 〈e〉. Then
the following hold.

1. α cannot be of type 4, and if β is of type 4 then p = 3.
2. If α and β have no fixed vertices and either α or β has no 3-cycles, then pq|n.
3. There are at most two disjoint sets of 3 vertices which are setwise invariant

under both α and β.

Proof. Suppose that there is some diffeomorphism δ ∈ 〈α, β〉 which is of type 4.
Then, by the Automorphism Theorem, there exists a unique δ-cycle A of order
3. Now by the Orbits Lemma, α(A) = A and β(A) = A. Thus α3 and β3 fix A
pointwise, and therefore by the Disjoint Fixed Points Lemma, at least one of p = 3
or q = 3. If α is of type 4, then p 6= 3 and since p|q, q 6= 3. Hence α cannot be of
type 4. If β is of type 4, then q 6= 3 and hence p = 3. Thus Conclusion (1) holds.

Suppose α and β have no fixed vertices. Let A and B denote the α-orbit and
β-orbit respectively of some vertex v. Suppose that for some i < q, βi(A) = A.
Then βi(v) = αk(v) for some k < p. Let w ∈ A. Then w = αs(v) for some s < p.
Thus

αk(w) = αk(αs(v)) = αs(αk(v)) = αs(βi(v)) = βi(αs(v)) = βi(w)

Hence αkβ−i fixes every w ∈ A. Also, since 〈α〉 ∩ 〈β〉 = 〈e〉, αkβ−i is not the
identity. By the Automorphism Theorem, this implies that |A| ≤ 3. Since p is
odd and v is not fixed by α, we must have |A| = 3. Similarly, if for some j < p,
αj(B) = B, then |B| = 3.

Suppose that α has no 3-cycles. Then by the above argument, for every i < q,
βi(A) 6= A. We know by the Orbits Lemma that β takes α-orbits to α-orbits.
Since β has order q, β permutes the α-orbits in cycles of length q. Since α has no
fixed vertices or 3-cycles, every α-orbit has length p. This implies that pq|n. By
switching the roles of α and β, we obtain the same result when β has no 3-cycles.
Thus Conclusion (2) follows.

Now suppose that A1, A2, and A3 are disjoint sets of three vertices such that for
each i, α(Ai) = Ai and β(Ai) = Ai. Then α and β each have at least two 3-cycles
and either a third 3-cycle or 3 fixed vertices. Hence by the Automorphism Theorem
p = 3 = q. For each i, we take the union of the three edges of Γ joining pairs of
vertices in Ai to obtain a triangle Bi which is setwise invariant under both α and
β. Thus B1, B2, and B3 are disjoint simple closed curves which are each setwise
invariant under the group 〈α, β〉 ≤ Diff+(S3).
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Observe that no pair of α, β, αβ, and αβ2 are equal or inverses of one another.
Since all non-trivial elements of 〈α, β〉 = Z3×Z3 are of order 3, for each i, there are
at most three distinct diffeomorphisms in 〈α, β〉 leaving Bi setwise invaraint. Thus
for each i, at least two of α, β, αβ, and αβ2 induce the same diffeomorphism of Bi.
Hence for each i, there is a non-trivial fi ∈ 〈α, β〉 which pointwise fixes Bi.

By the Geometrization Conjecture for Orbifolds [1], the group of diffeomorphisms
〈α, β〉 is conjugate to a group of isometries of S3. However, up to conjugacy there
is only one group H of isometries of S3 which is isomorphic to Z3 ×Z3. The group
H consists of all isometries of the unit sphere S3 of C2 of the form (z1, z2) 7→
(ωk1z1, ω

k2z2) where ω is a third root of unity. The only simple closed curves which
can be the fixed point set of a non-trivial element of this group of isometries are
the intersections of S3 with one of the two axes in C2. Thus B1, B2, and B3 cannot
each be pointwise fixed by a non-trivial element of 〈α, β〉. It follows that there are
at most two sets of 3 vertices which are setwise invariant under both α and β, and
hence Conclusion (3) follows. �

Fixed Vertex Lemma. Let Γ be an embedding of Kn in S3. Let α and β be
orientation preserving diffeomorphisms of (S3,Γ) of odd orders p and q respectively
such that p, q > 1 and p|q. Suppose that 〈α, β〉 = Zp×Zq such that 〈α〉∩ 〈β〉 = 〈e〉.
Then the following are true.

1. If either α or β fixes any vertices, then it fixes 3 vertices.
2. If β fixes any vertices then p = 3, and if α fixes any vertices, then p = q = 3.

Proof. Suppose that α fixes precisely one vertex v1. Then by the Orbits Lemma,
β(v1) = v1, since {v1} is the only α-orbit of length 1. This implies v1 is a fixed
vertex of β. However, since 〈α, β〉 is neither cyclic nor D2, we can apply the Disjoint
Fixed Points Lemma to get a contradiction. Thus neither α nor β can have precisely
one fixed vertex. Suppose that α fixes precisely two vertices, v1 and v2. Then by the
Orbits Lemma, β({v1, v2}) = {v1, v2}, and by the Disjoint Fixed Points Lemma, β
cannot fix either vi. This implies that β has an orbit of length 2, which contradicts
the Automorphism Theorem since p and q are of odd order. Since we did not use
the hypothesis that p|q (except in assuming that 〈α, β〉 is not cyclic), the roles of α
and β could be switched. Thus Conclusion (1) holds.

Suppose that β has 3 fixed vertices. Then by the Orbits and Disjoint Fixed
Points Lemmas, these 3 vertices are a 3-cycle of α. Now α cannot be of type 4 by
the 3-Cycle Lemma. Thus p = 3. Suppose that α has 3 fixed vertices. Then these
vertices form a 3-cycle of β. Now β3 and α have these 3 fixed vertices in common.
Thus by the Disjoint Fixed Points Lemma β3 must be the identity, and hence q = 3
which implies that p = 3. Therefore, Conclusion (2) holds. �

pq Lemma. Let Γ be an embedding of Kn. Let α and β be orientation preserving
diffeomorphisms of (S3,Γ) of odd orders p and q respectively such that p, q > 1 and
p|q. Suppose that 〈α, β〉 = Zp × Zq such that 〈α〉 ∩ 〈β〉 = 〈e〉. Then the following
conclusions hold:

1. If p > 3, then pq|n.
2. If p = 3 and β is of type 4, then pq|n− 3.
3. If p = 3, q 6= 3, and β is not of type 4, then either pq|n or pq|n− 3.
4. If p = q = 3, then either pq|n or pq|n− 3 or pq|n− 6.

Proof. Suppose that p > 3. Then by the Fixed Vertex Lemma, neither α nor β
fixes any vertices. By the 3-Cycle Lemma, α cannot be of type 4. Hence α has no
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3-cycles, and hence by the 3-Cycle Lemma pq|n. Thus we obtain Conclusion (1).
For the rest of the proof, we assume that p = 3.

Suppose β is of type 4. By the Automorphism Theorem, β has precisely one
3-cycle A, and β fixes no vertices. Also, since q 6= 3, by the Fixed Vertex Lemma
α fixes no vertices. By the Orbits Lemma, α takes β-orbits to β-orbits of the same
length. Hence, α(A) = A. Let Γ′ denote the embedding of Kn−3 obtained from Γ
by deleting the vertices in A and the edges containing them. Then α and β leave
Γ′ setwise invariant, neither α nor β fixes any vertices of Γ′, and β has no 3-cycles
in Γ′. Thus by the 3-Cycle Lemma applied to Γ′, we know that pq|n − 3. Hence
Conclusion (2) holds.

Next suppose that q 6= 3 and β is not of type 4. Then β has no orbits of length
3. By the Fixed Vertex Lemma, α has no fixed vertices and β has either 0 or 3 fixed
vertices. If β has no fixed vertices, then by the 3-Cycle Lemma, pq|n. Suppose that
fix(β)=A contains 3 vertices. By the Orbits Lemma α(A) = A. Define Γ′ to be the
embedding of Kn−3 obtained from Γ by removing the vertices in A and the edges
containing them. Then α and β leave Γ′ setwise invariant, neither α nor β fixes any
vertices of Γ′, and β has no 3-cycles. Thus we can apply the 3-Cycle Lemma to Γ′

to conclude that pq|n− 3. Thus Conclusion (3) holds.
Finally, suppose p = q = 3. By the Fixed Vertex Lemma, α and β each have

either 0 or 3 fixed vertices. By the Disjoint Fixed Points Lemma, the sets of fixed
vertices of α and β are disjoint, and by the Orbits Lemma the fixed vertices of one
of α and β are setwise invariant under the other. Let X denote the union of all
of the sets of 3 vertices which are setwise invariant under both α and β. Thus X
includes the fixed vertices of α and β, as well as any set of 3 vertices which is an
orbit of both α and β. By the 3-Cycle Lemma, no more than two disjoint sets of 3
vertices are setwise invariant under both α and β. Thus |X| = 0, 3, or 6.

Let Γ′′ be obtained from Γ by removing the vertices in X together with the edges
between them. Thus α and β leave Γ′′ setwise invariant and no set of 3 vertices
of Γ′′ are setwise invariant under both α and β. Furthermore, no vertices of Γ′′

are fixed by α, and hence all α-orbits have p = 3 vertices. We know by the Orbits
Lemma that β takes α-orbits to α-orbits; and no orbits of α are also orbits of β.
Therefore, β permutes the α-orbits in cycles of length q = 3. Let m denote the
number of vertices of Γ′′, then pq|m. However, m is either n, n− 3, or n− 6. Thus
Conclusion (4) follows. �

3. Topological symmetry groups of K4r+3. Now we focus on embeddings of
complete graphs of the form K4r+3.

D2 Lemma. There is no embedding Γ of any K4r+3 in S3 such that D2 ≤ TSG+(Γ).

Proof. Suppose that Γ is an embedding of some K4r+3 such that D2 ≤ TSG+(Γ).
Let ϕ1 and ϕ2 be distinct non-trivial elements of D2 ≤ TSG+(Γ). Since the number
of vertices of Γ is 4r+3, by the Automorphism Theorem, each ϕi must be composed
of (2r + 1) 2-cycles with precisely one fixed vertex. Thus, ϕ1ϕ2 can be written as
the product of (4r + 2) (not necessarily disjoint) 2-cycles. However, ϕ1ϕ2 also has
order 2, and hence by the Automorphism Theorem can also be written as a product
of (2r+1) 2-cycles. However, no automorphism can be written as both the product
of an even number of 2-cycles and the product of an odd number of 2-cycles. Hence
such an embedding of K4r+3 cannot exist. �

Observe that D2 is contained in the groups A4, S4, and A5. Thus by the D2

Lemma, there is no embedding Γ of K4r+3 in S3 such that TSG+(Γ) is A4, S4, or
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A5. Now it follows from the Complete Graph Theorem, that for any embedding Γ
of K4r+3 in S3, TSG+(Γ) is either cyclic, dihedral, or a subgroup of Dm ×Dm for
some odd m. The following is our main result.

Theorem. Let n = 4r + 3. A finite group G is isomorphic to TSG+(Γ) for some
embedding Γ of Kn in S3 if and only if one of the following holds:

1. G is Z2

2. G is Dp or Zp where p is odd and either p|n, p|n− 1, p|n− 2, or p|n− 3.
3. G = Zp × Zq where p and q are odd, p|q and one of the following holds.

• pq|n.
• p = 3 and pq|n− 3.
• p = q = 3 and pq|n− 6.

In order to construct the required embeddings, we will first define an embed-
ding of the vertices of K4r+3 which is setwise invariant under a finite subgroup of
Diff+(S3) and then use the following result to embed the edges.

Edge Embedding Lemma. [4] Let G be a finite subgroup of Diff+(S3) and let
γ be a graph whose vertices are embedded in S3 as a set V such that G induces
a faithful action on γ. Suppose that adjacent pairs of vertices in V satisfy the
following hypotheses:

1. If a pair is pointwise fixed by non-trivial elements h, g ∈ G, then fix(h) =
fix(g).

2. For each pair {v, w} in the fixed point set C of some non-trivial element of
G, there is an arc Avw ⊆ C bounded by {v, w} whose interior is disjoint from
V and from any other such arc Av′w′ .

3. If a point in the interior of some Avw or a pair {v, w} bounding some Avw is
setwise invariant under an f ∈ G, then f(Avw) = Avw.

4. If a pair is interchanged by some g ∈ G, then the subgraph of γ whose vertices
are pointwise fixed by g can be embedded in a proper subset of a circle.

5. If a pair is interchanged by some g ∈ G, then fix(g) is non-empty, and for any
h 6= g, then fix(h) 6= fix(g).

Then there is an embedding of the edges of γ in S3 such that the resulting em-
bedding of γ is setwise invariant under G.

The Edge Embedding Lemma will give us an embedding Γ of K4r+3 in S3 with
G ≤ TSG+(Γ). In order to create an embedding Γ′ with G = TSG+(Γ′) we will
need the following result which was proved as Theorem 2 of [3].

Subgroup Theorem. [3] Let n > 6, and suppose that Γ is an embedding of Kn

in S3 such that TSG+(Γ) is cyclic, dihedral, or a subgroup of Dm ×Dm for some
odd m. Then for every H ≤ TSG+(Γ), there is an embedding Γ′ of Kn such that
H = TSG+(Γ′).

With these results in hand, we prove our theorem as follows.

Proof. We begin by assuming that G = TSG+(Γ) for some embedding Γ of Kn in
S3. As we observed above, it follows from the Complete Graph Theorem and the
D2 Lemma that G is either a finite cyclic group, a dihedral group, or a subgroup of
Dm×Dm for some odd m. By the Finiteness Theorem, there exists a re-embedding
∆ of Kn in S3 such that G is induced by an isomorphic finite subgroup of Diff+(S3).

Suppose G is equal to Zp or Dp for some integer p. If p = 2, then G = Z2 since
we know by the D2 Lemma that G 6= D2. Thus we assume that p > 2. Now suppose
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that p is even. Since n = 4r + 3, n > 6. Thus by the Automorphism Theorem, the
elements of G of order p are composed of p-cycles with no fixed vertices. Hence p|n.
However, since p is even and n = 4r + 3, this is impossible. Thus p must be odd.
Now by the Automorphism Theorem, the elements of G are each composed entirely
of p-cycles with up to 3 fixed vertices. This means that either p|n, p|n− 1, p|n− 2,
or p|n− 3.

Next we assume that G ≤ Dm×Dm for some odd m, but G is neither cyclic nor
dihedral and G does not contain D2. It follows that there exist α, β ∈ G of odd
order a and b respectively such that 〈α, β〉 = Za×Zb ≤ G and Za×Zb is not cyclic.

Suppose for the sake of contradiction that G contains an order 2 element ϕ.
Since G ≤ Dm ×Dm, for every g ∈ G, either gϕ = ϕg or gϕ = ϕg−1. If αϕ = ϕα,
then αϕ has order 2a, since a is odd. However, since 2a > 2, by the Automorphism
Theorem, αϕ fixes no vertices. But this is impossible since 2a does not divide 4r+3.
Thus we must have αϕ = ϕα−1. Now, since ϕ has order 2 and n = 4r + 3, ϕ fixes
some vertex v of Γ. Thus ϕα−1(v) = αϕ(v) = α(v), and hence (ϕα−1)2(v) = α2(v).
However, since (ϕα−1)2(v) = ϕα−1ϕα−1(v) = ϕ2αα−1(v) = v. Thus α2 is a non-
trivial element of Za × Zb which fixes v. Using an analogous argument we see that
β2 is a non-trivial element of Za × Zb which also fixes v. However, since α and β
both have odd order, 〈α2, β2〉 = 〈α, β〉 = Za × Zb, which is not cyclic or equal to
D2. Thus we can apply the Disjoint Fixed Points Lemma to get a contradiction.
Thus G does not contain any element of order 2.

It follows that G = Zp×Zq for some odd p and q such that p|q. Now the required
conclusions all follow from the pq Lemma.

In order to prove the converse, we consider two cases as follows.
Case 1: Either G = Dp or Zp for p odd, or G = Z2

First let G = Dp with p odd and let G′ ∼= Dp be a subgroup of Diff+(S3)
generated by a rotation g by 2π

p about a circle Cg together with a rotation f by π

about a circle Cf which meets Cg in two points. Observe that the orbit of Cf under
G′ is p circles which are each the fixed point set of an order 2 element of G′.

Suppose that n = kp for some integer k. First observe that since n = 4r+ 3 and
p are both odd, k must be odd. Let x1 be a point on one of the arcs in Cf − Cg.
The orbit of x1 consists of p points x1, x2, . . . , xp, each on the fixed point set of a
distinct element of order 2 in G′. We embed p of the n vertices as the points x1,
x2, . . . , xp.

Let Y denote the union of the fixed point sets of all non-trivial elements of G′.
Let B denote a ball which is disjoint from Y and from its image under every non-
trivial element of G′. Since k is odd, we can embed k−1

2 points in B. Since the

order of G′ is 2p, the orbit of these k−1
2 points is (k − 1)p points z1, . . . zp(k−1) in

S3 − Y . We embed the remaining (k − 1)p vertices as this set of points. Observe
that the sets of embedded vertices X = {x1, . . . , xp} and Z = {z1, . . . , zp(k−1)} of
Kn are setwise invariant under G′, and G′|X ∪ Z induces G on Kn.

Since no pair of vertices is fixed by a non-trivial element of G′ and G′ contains
no even order elements with order greater than 2, it is not hard to check that the
hypotheses of the Edge Embedding Lemma are satisfied for the embedded vertices
of Kn. Thus we can apply the Edge Embedding Lemma to get an embedding Γ
of Kn with Dp ≤ TSG+(Γ). Finally, since n = 4r + 3, we know by the forward
direction of our proof that TSG+(Γ) is either cyclic, dihedral, or a subgroup of
Dm ×Dm for some odd m. Thus we can apply the Subgroup Theorem to get the
required embedding Γ′ of Kn with Dp = TSG+(Γ′).
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Now let n = kp+ 2 for some k. Since n = 4r + 3 and p are both odd, k is again
odd. Thus we can embed kp vertices as described above. Now we add two additional
vertices v and w in Cg −Cf so that f interchanges them. Thus we have embedded
all of the vertices of Kkp+2 as a set V such that G′|V induces G on Kkp+2. Observe
that v and w are the only pair of vertices which are fixed by a non-trivial element
of G. Let Avw be one of the arcs in Cg which is bounded by v and w. Then Avw
satisfies hypotheses (2) and (3) of the Edge Embedding Lemma. Thus, as above,
we apply the Edge Embedding Lemma and then the Subgroup Lemma to get the
required embedding Γ′ of Kn with Dp = TSG+(Γ′).

Next let n = kp + 1 for some integer k. In this case, since n = 4r + 3 and p
are both odd, k must be even. Let B be the ball described above, and choose k

2
points in B. The orbit of these points under G′ consists of kp points which will be
embedded vertices. We embed the final vertex x as one of the points in Cg ∩ Cf .
Thus x is fixed by every element of G′. Since again no pair of vertices is fixed
by a non-trivial element of G′, we again obtain the required embedding of Kn by
applying the Edge Embedding Lemma followed by the Subgroup Theorem.

Finally, let n = kp+3 for some k. Embed kp+1 vertices as we did when n = kp+1.
Now add two additional vertices v and w in Cg − Cf so that f interchanges them.
Now Cg−{x, v, w} has three components, whose closures will be the arcs Axv, Avw,
and Awx required by hypotheses (2) and (3) of the Edge Embedding Lemma. Now
all of the hypotheses of the Edge Embedding Lemma are satisfied. Hence we again
obtain the required embedding of Kn by applying the Edge Embedding Lemma
followed by the Subgroup Theorem.

To get embeddings Λ of Kn with TSG+(Λ) = Zp, we apply the Subgroup Theo-
rem to each of the above embeddings.

Finally, to get embeddings whose topological symmetry group is Z2 let p = 3.
Then for some integer k, n = kp, kp+ 1, or kp+ 2. Hence by the above, Kn has an
embedding Γ in S3 with TSG+(Γ) = Dp. Thus by the Subgroup Theorem, Kn has
an embedding Ω with TSG+(Ω) = Z2.
Case 2: G = Zp × Zq where p and q are odd and p|q.

In this case, let G′ ∼= Zp×Zq be a subgroup of Diff+(S3) generated by a rotation
g by 2π

p around a circle Cg together with a rotation f by 2π
q around a disjoint circle

Cf with lk(Cg, Cf ) = 1. Thus Cf and Cg are each setwise invariant under G′. Also,
the fixed point set of every non-trivial element of G′ is either the empty set, Cg, or
Cf .

First let k be an integer such that n = kpq. Let B denote a ball which is disjoint
from Cg ∪ Cf and from its image under every non-trivial element of G′. Choose
k points in B. The orbit of these points will be the kpq embedded vertices of
Kn. Since no vertices are fixed or interchanged by any non-trivial element of G′,
the hypotheses of the Edge Embedding Lemma are satisfied. Thus by the Edge
Embedding Lemma together with the Subgroup Theorem, we obtain the required
embedding of Kn.

Next let p = 3 and suppose that n = kpq + 3 for some integer k. We embed kpq
vertices as described in the above paragraph. Then add a vertex v1 on Cf . The
orbit of v1 under G is 3 vertices v1, v2, and v3 on Cf . Thus we have embedded
all kpq + 3 vertices. Now it is not hard to check that the hypotheses of the Edge
Embedding Lemma are satisfied. Thus by the Edge Embedding Lemma together
with the Subgroup Theorem, we obtain the required embedding of Kn.
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Finally, let p = q = 3 and suppose that n = kpq+6 for some integer k. We embed
kpq + 3 vertices as in the above paragraph. Then add a vertex w1 on Cg together
with its orbit. This gives us three more vertices contained in Cg. Thus we have
embedded all kpq+ 6 vertices. Again it is not hard to check that the hypotheses of
the Edge Embedding Lemma are satisfied. Now by the Edge Embedding Lemma
together with the Subgroup Theorem, we obtain the required embedding of Kn. �

Examples. In order to demonstrate the usefulness of the above theorem, we apply
the theorem to the complete graph Kn for n=7, 15 and 27.

• K7 can be embedded in S3 as Γ such that G = TSG+(Γ) if and only if G is
one of the following: Z2, Z3, Z5, Z7, D3, D5, or D7.

• K15 can be embedded in S3 as Γ such that G = TSG+(Γ) if and only if G
is one of the following: Z2, Z3, Z5, Z7, Z13, Z15, D3, D5, D7, D13, D15, or
Z3 × Z3.

• K27 can be embedded in S3 as Γ such that G = TSG+(Γ) if and only if G is
one of the following: Z2, Z3, Z5, Z9, Z13, Z25, Z27, D3, D5, D9, D13, D25,
D27, Z3 × Z3, or Z3 × Z9.
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