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Abstract

We prove that every embedding of K10 in R3 contains a non-split link of three components. We
also exhibit an embedding of K9 with no such link of three components.  2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In 1983, Conway and Gordon [1] and Sachs [4] showed that there exist graphs G with
the property that every embedding of G in R3 contains a non-trivial link. Such graphs
are said to be intrinsically linked. In particular, Conway and Gordon [1] proved that every
embedding of K6, the complete graph on six vertices, contains a pair of disjoint triangles
whose mod 2 linking number equals one, and hence K6 is intrinsically linked. They also
showed that K7 is intrinsically knotted in the sense that every embedding of K7 contains
a non-trivial knot. Sachs [4] defined the Petersen family as the set of graphs which can be
obtained from K6 by a finite sequence of moves which either replace a triangle by a Y, or
a Y by a triangle. Sachs proved that every embedding of a graph in this family contains a
pair of disjoint simple closed curves whosemod 2 linking number equals one. Furthermore,
no minor of a graph in the Petersen family is intrinsically linked. Conversely, Robertson
et al. [5] proved that any intrinsically linked graph contains a graph in the Petersen family
as a minor.
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Recently, Joel Foisy asked which graphs G have the property that every embedding of
G contains a link of three components. To make this more precise we define a link L to
be split if there is an embedding of a 2-sphere F in R3 − L such that each component
of R3 − F contains a component of L. We define a triple link as a non-split link of three
components, and we say that a graph is intrinsically triple linked if every embedding of it
contains a triple link.
The team of Hespen et al. [2] proved that K3,3,3 is not intrinsically triple linked, and

conjectured that K9 is intrinsically triple linked. In this paper we will show that this
conjecture is false. Indeed, ten is the minimum number of vertices necessary for a graph to
be intrinsically triple linked.

Theorem. K10 is intrinsically triple linked, andK9 is not intrinsically triple linked.

In order to prove that K10 is intrinsically triple linked, we actually prove that every
embedding ofK10 contains a set of three pairwise disjoint simple closed curves,B , C, and
D which have the property that the mod 2 linking number of B with each of C and D

is one. We begin by making some elementary homological observations, and using these
observations to analyze sets of linked triangles in any embedding ofK9 which has no triple
links. We conclude the paper with an embedding of K9 which contains no triple links. In
fact, we will see that we can add an extra vertex and four more edges to this embedding of
K9 to obtain an embedded graph which still contains no triple links.
There are several interesting questions for further study. One might wonder whether

K10 is a minimal intrinsically triple linked graph, in the sense that no minor of K10 is
intrinsically triple linked. In the spirit of the work of Robertson et al. [5], it would also be
interesting to find a complete list of minimal intrinsically triple linked graphs.
The concept of intrinsically triple linked graphs can be generalized to the concept of

intrinsically p-linked graphs in the sense that every embedding of the graph contains a
non-split link of p components. For every natural number p, a graph is exhibited in [6]
which has 7p − 6 vertices and is intrinsically p-linked (in fact this graph is minimally
intrinsically p-linked). It follows that K7p−6 is intrinsically p-linked. Using a different
argument, it can be shown that K6p−6 is intrinsically p-linked. By the results of this
paper, 6p − 6 is not best possible in the case p = 3. Thus it is natural to ask for a
given number p, what is the minimum number n necessary for Kn to be intrinsically
p-linked.
As a final note observe that sinceK10 is intrinsically triple linked, every graph which has

K10 as a minor is also intrinsically triple linked. Furthermore, Motwani et al. [3] proved
that if a graph G is intrinsically linked, and a graph G′ is obtained from G by replacing a
triangle in G by a Y, then G′ is also intrinsically linked. It is easy to see that their proof
can be modified to show the analogous statement for intrinsically triple linked graphs. If
G is intrinsically triple linked and G′ is obtained from G by replacing a triangle in G

by a Y, then G′ is also intrinsically triple linked. Thus all of the graphs which can be
obtained from K10 by replacing finitely many triangles by Y’s will also be intrinsically
triple linked.
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2. Proof that K10 is intrinsically triple linked

We shall use the following notation. We letK9 be the complete graph with vertices 1,2,
. . . ,9, and let K10 be the complete graph with vertices 1,2, . . . ,9,A. We let abc denote
the triangle with vertices a, b, and c, and let 〈a1, . . . , an〉 denote the complete graph with
vertices a1, . . . , an. For any pair of disjoint simple closed curves B and C in R3, we let
ω(B,C) denote the mod 2 linking number of B and C. Before we begin we make the
following two elementary homological observations which we shall use repeatedly in our
proofs.

Observation 1. Let K4 be embedded in R3 and let γ1, γ2, γ3, and γ4 be the four triangles
in K4. Let γ5 be a simple closed curve in R3 which is disjoint from K4. Then the number
of [γ1], [γ2], [γ3], and [γ4] which are non-trivial in H1(R3 − γ5;Z2) is even.

Proof. InH1(R
3−γ5;Z2), we have the equation [γ1]+[γ2]+[γ3]+[γ4] = 0, fromwhich

the result follows. !

Observation 2. Suppose that G is a graph which is embedded in R3, and contains simple
closed curves γ1, γ2, γ3, and γ4. Suppose that γ1 and γ4 are disjoint from each other and
both are disjoint from γ2 and γ3, and γ2 ∩ γ3 is an arc. If ω(γ1, γ2) = 1 and ω(γ3, γ4) = 1,
then G contains a triple link.

Proof. We know that [γ2] is non-trivial in H1(R3 − γ1;Z2), and [γ3] is non-trivial in
H1(R3− γ4;Z2). Let γ5 denote the simple closed curve obtained from γ2 ∪ γ3 by omitting
the interior of the arc γ2 ∩ γ3. Then in H1(R3 − γ1;Z2) and in H1(R3 − γ4;Z2) we
have the equation [γ5] = [γ2] + [γ3]. Thus precisely one of [γ3] and [γ5] is non-trivial in
H1(R3 − γ1;Z2), and precisely one of [γ2] and [γ5] is non-trivial in H1(R3 − γ4;Z2).
Now we have ω(γ1, γ2) = 1 and either ω(γ1, γ3) = 1 or ω(γ1, γ5) = 1, and we have
ω(γ4, γ3) = 1 and either ω(γ4, γ2) = 1 or ω(γ4, γ5) = 1. Thus in any case, G contains
a triple link. !

In order to prove that K10 is intrinsically triple linked, we begin by analyzing linked
triangles in embeddings of K9. We want to consider what happens when a triangle B in
K9 is not a component of a triple link, and yet there are triangles C and D in K9 such that
ω(B,C) = 1 and ω(B,D) = 1. For this to be the case, the triangles C and D must share
at least one vertex. In Lemma 1 we suppose that there exist such triangles C and D which
share only one vertex, and show that in this case B has non-zero mod 2 linking number
with precisely six triangles in K9. In Lemma 2 we consider a triangle B in K9 with the
property that for every pair of triangles C and D such that ω(B,C) = 1 and ω(B,D) = 1,
then C and D share two vertices. Lemma 2 shows that in this case, B has non-zero mod 2
linking number with precisely four triangles in K9.
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Lemma 1. Suppose thatK9 is embedded in R3. Also, suppose that there exist triangles B ,
C, and D in K9 such that ω(B,C) = 1 and ω(B,D) = 1, and C and D share precisely
one vertex, and B is not a component of a triple link. Then:
(a) There are precisely six triangles E such that ω(B,E) = 1.
(b) These six triangles E can be described as follows. There are vertices p, q , r in K9

such that E = pqx or E = prx , where x is any vertex other than p, q , r , and the
vertices of B .

Proof. We shall prove the lemma by repeatedly applying Observation 1. Without loss of
generality we suppose that B = 456, C = 123, and D = 178. First observe that since 456
is not a component of a triple link, ω(456,123) = 1 implies that ω(456,789) = 0, and
ω(456,178) = 1 implies that ω(456,239) = 0. Applying Observation 1 to 〈1,2,3,9〉,
we see that precisely one of ω(456,129) and ω(456,139) is non-zero; and applying
Observation 1 to 〈1,7,8,9〉, we see that precisely one of ω(456,179) and ω(456,189)
is non-zero. So without loss of generality we shall assume that ω(456,129) = 1,
ω(456,139) = 0, ω(456,179) = 1, and ω(456,189) = 0. Now since 456 is not a
component of a triple link, ω(456,378) = 0 and ω(456,238) = 0. Now by Observation 1
in 〈1,2,8,9〉 precisely one of ω(456,128) and ω(456,289) is non-zero.

Claim. ω(456,128) = 1.

Proof. For the sake of contradiction, we suppose that ω(456,128) = 0 and hence
ω(456,289) = 1. Since 456 is not a component of a triple link, we must have
ω(456,137) = 0. So by Observation 1 in 〈1,3,7,9〉 we have ω(456,379) = 1, and
in 〈1,2,3,8〉 we have ω(456,138) = 1. The latter implies that ω(456,279) = 0 since
456 is not a component of a triple link. Now by Observation 1 in 〈1,2,7,9〉 we have
ω(456,127) = 0. Hence in 〈1,2,3,7〉 we have ω(456,237) = 1. Also by Observation 1 in
〈1,2,7,8〉 we have ω(456,278) = 1. Now in 〈1,3,8,9〉 we have ω(456,389) = 1.
At this point, we have shown that ω(456,G) = 1 for G equal to 123, 178, 129, 179,

289, 379, 138, 237, 278, and 389. Consider theK6 given by 〈1,2,3,7,8,9〉. Every pair of
disjoint triangles in this K6 contains one of the ten triangles listed above. By Conway and
Gordon’s Theorem [1], there is a pair of triangles E and F in this K6 with ω(E,F ) = 1.
Also either ω(456,E) = 1 or ω(456,F ) = 1. Hence 456 is a component of a triple link.
This contradicts our hypothesis and hence the claim is established. !

Thus ω(456,128) = 1, and hence ω(456,289) = 0. Recall from the beginning of our
proof that ω(456,E) = 1 for E equal to 123, 178, 129, and 179, and ω(456,E) = 0 for E
equal to 789, 239, 139, 189, 378, and 238. Now by Observation 1, in 〈1,2,3,8〉 we have
ω(456,138) = 0, and in 〈2,3,8,9〉 we have ω(456,389) = 0. It follows that in 〈1,3,7,8〉
we have ω(456,137) = 1, and hence in 〈1,3,7,9〉 we have ω(456,379) = 0.
For the sake of contradiction, suppose that ω(456,127) = 1. Then by Observation 1

in 〈1,2,3,7〉, 〈1,2,7,8〉, and 〈1,2,7,9〉 we have ω(456,E) = 1 for E equal to 237,
278, and 279. Thus at this point we have ω(456,E) = 1 for E equal to 123, 178, 129,
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179, 128, 137, 127, 237, 278, and 279. Every pair of disjoint triangles in 〈1,2,3,7,8,9〉
contains one of the ten triangles on this list. Thus for any pair of disjoint triangles E and
F in 〈1,2,3,7,8,9〉, either ω(456,E) = 1 or ω(456,F ) = 1. By Conway and Gordon’s
Theorem [1], there is a pair of disjoint triangles E and F in this K6 with ω(E,F ) = 1.
However, this contradicts our hypothesis that 456 is not a component of a triple link.
Therefore, our assumption that ω(456,127) = 1 was incorrect. Hence ω(456,127) = 0.
So by Observation 1 in 〈1,2,3,7〉, 〈1,2,7,8〉, and 〈1,2,7,9〉 we have ω(456,E) = 0

for E equal to 237, 278, and 279. In summary, ω(456,E) = 1 if E equals 123, 178, 129,
179, 128, and 173; and ω(456,E) = 0 if E equals 789, 239, 139, 189, 378, 238, 138, 389,
379, 127, 237, 278, and 279. The 20 triangles that we have listed are precisely those in K9
which are disjoint from 456. Hence ω(456,E) = 1 if and only if E equals 128, 123, 129,
178, 173, or 179. This completes the proof of the lemma. !

Lemma 2. Let K9 be embedded in R3. Suppose that some triangle B in K9 has non-zero
mod 2 linking number with some triangle in K9, and there is no pair of triangles C and D

which share precisely one vertex such that ω(B,C) = 1 and ω(B,D) = 1. Then there is a
pair of vertices p and q , which are disjoint from the vertices of B , such that if E = pqx

for any vertex x which is disjoint from p, q , and the vertices of B then ω(B,E) = 1.
Furthermore, if B is not a component of a triple link then ω(B,E) = 0 for every triangle
E which is not of the above form.

Proof. Without loss of generality we assume that B = 456 and ω(456,123) = 1. Now by
Observation 1 in 〈1,2,3,8〉 there is another triangle whose mod 2 linking number with
456 is non-zero. So without loss of generality, we assume that ω(456,128) = 1. Now
by Observation 1, there is a triangle C in 〈1,2,3,7〉 with C (= 123 and ω(456,C) = 1.
If C (= 127 then C has one vertex in common with 128, which is contrary to our
hypothesis. Hence ω(456,127) = 1. Similarly, by Observation 1 in 〈1,2,3,9〉, we have
ω(456,129) = 1. Thus we have proved the first half of our lemma.
Now suppose that 456 is not a component of a triple link. Then for every triangle C

with ω(456,C) = 1 it must be that C has either two or three vertices in common with each
of the triangles 123, 127, 128, and 129. However, there is no triangle which shares two
vertices with all four of these triangles. Thus, in fact, C is one of these triangles. !

By Lemmas 1 and 2, we know that given any embedding of K9 in R3, for every triangle
B in K9 one of the following statements is satisfied:
(a) B has zero mod 2 linking number with every triangle inK9 disjoint from B .
(b) B is a component of a triple link.
(c) B has non-zero mod 2 linking number with precisely six triangles ofK9 which have

the form pqx or prx for a fixed p, q , and r .
(d) B has non-zero mod 2 linking number with precisely four triangles of K9 which

have the form pqx for a fixed p and q .
A triangle which has non-zero mod 2 linking number with the six triangles of the form

pqx or prx for a fixed p, q , and r will be said to have 6-pattern pr
q . A triangle which has
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non-zero mod 2 linking number with the four triangles of the form pqx for a fixed p and q

will be said to have 4-pattern pq . Thus, if K9 has no triple link, then every triangle in K9
which has non-zero mod 2 linking number with some other triangle either has a 6-pattern
or has a 4-pattern.

Proposition. Every embedding of K9 with no triple link has a triangle with a 6-pattern.

Proof. Assume that K9 has no triple link and no triangles with a 6-pattern. Then every
triangle in K9 which has non-zero mod 2 linking number with some other triangle in K9
has a 4-pattern. By Conway and Gordon’s Theorem [1], there is a pair of triangles B and C

in 〈1,2,3,4,5,6〉 such that ω(B,C) = 1. Without loss of generalityB = 123 and C = 456
and 456 has 4-pattern 12. So ω(456,127) = 1, ω(456,128) = 1, and ω(456,129) = 1.
Now the triangles 123, 127, 128, and 129 each must have a 4-pattern pq where p,
q ∈ {4,5,6}. As there are only three pairs in {4,5,6}, at least two of 123, 127, 128, and 129
each have 4-pattern pq for the same p and q . Assume, without loss of generality, that 123
and 127 both have 4-pattern 45. It follows that ω(123,458) = 1 and ω(127,458) = 1.
Hence 458 has 4-pattern 12. Similarly, ω(123,459) = 1 and ω(127,459) = 1, so 459
as has 4-pattern 12. Now ω(126,458) = 1 and ω(126,459) = 1, so 126 has 4-pattern
45. Also, ω(128,456) = 1 and ω(128,459) = 1, so 128 has 4-pattern 45. Furthermore,
ω(123,457) = 1 and ω(126,457) = 1, so 457 has 4-pattern 12; and ω(127,453) = 1 and
ω(126,453) = 1, so 453 has 4-pattern 12. Finally, ω(129,458) = 1 and ω(129,456) = 1,
so 129 has 4-pattern 45. Thus for every distinct pair of vertices x , y /∈ {1,2,4,5} we have
ω(12x,45y) = 1.
Now we create a new embeddingK ′

9 ofK9 which is identical to our original embedding
except that an additional crossing has been added between edges 12 and 45. Adding this
new crossing has the effect of adding one to the mod 2 linking number of every pair
of triangles of the form 12x and 45y . Thus in K ′

9, for every pair of distinct vertices x ,
y /∈ {1,2,4,5}, we have ω(12x,45y) = 0. All other pairs of triangles have the same mod
2 linking number in K9 as in K ′

9. Thus K ′
9 has no triple links and no triangles with a

6-pattern.
We can repeat the above argument to obtain embeddings ofK9 with progressively fewer

pairs of triangles with non-zero mod 2 linking number. In this way, we will eventually
obtain an embedding of K9 with the property that for every pair of triangles B and C we
have ω(B,C) = 0. However, this contradicts Conway and Gordon’s Theorem for K6 [1].
Therefore, our original embedding of K9 had to contain a triangle with a 6-pattern. !

Now we prove our main result.

Theorem. K10 is intrinsically triple linked.

Proof. Let the K10 = 〈1,2, . . . ,9,A〉 be embedded in R3, and consider the embedded
subgraph K9 = 〈1,2, . . . ,9〉. If this K9 has a triple link, then K10 has a triple link and so
we are done. Thus we assume that K9 has no triple link. Now by the proposition, K9 has



E. Flapan et al. / Topology and its Applications 115 (2001) 239–246 245

a triangle with a 6-pattern. Without loss of generality 123 has 6-pattern 465 in K9. Thus we
have ω(123,B) = 1 for B equal to 457, 458, 459, 467, 468, 469.
Now consider the tripartite subgraphK3,3,1 with sets of vertices {5,6,A}, {7,8,9}, and

{4}. Sachs [4] has proven that every K3,3,1 contains a triangle T and a square S with
ω(T ,S) = 1. So there is such a pair T and S in our K3,3,1, and T necessarily contains
the vertex 4. Suppose that T = 4ax and S = byAz for a, b ∈ {5,6} and x , y , z ∈ {7,8,9}.
Since 123 has 6-pattern 465 in K9, we know that ω(123,4ax) = 1 for all a ∈ {5,6} and
x ∈ {7,8,9}. So in this case K10 contains a triple link and hence we are done.
So without loss of generality we assume that ω(4A8,7596) = 1. InH1(R3−(4A8);Z2),

we know that [7596] is non-trivial and [7596] = [759] + [769]. So either ω(4A8,759) = 1
or ω(4A8,769) = 1. Without loss of generality we assume that ω(4A8,759) = 1. Now let
γ1 = 123, γ2 = 486, γ3 = 4A8, and γ4 = 759. Then γ2∩ γ3 is the arc 48, and γ1 and γ4 are
disjoint from each other and both are disjoint from γ2 and γ3. Furthermore, ω(γ1, γ2) = 1
and ω(γ3, γ4) = 1. Now by Observation 2, K10 necessarily contains a triple link. !

3. An embedding of K9 with no triple link

Fig. 1 illustrates an embedding of K9 which contains no triple link. We created and
checked this embedding with the help of the mathematical programMAPLE. Furthermore,
we checked by hand that in this embedding, not only do there not exist disjoint trianglesA,

Fig. 1. This embedding of K9 has no triple link.
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B , and C such that ω(A,B) = 1 and ω(B,C) = 1, but there is no non-split link of three
components of any type. Thus K9 is not intrinsically triple linked.
SinceK10 is intrinsically triple linked andK9 is not, it is natural to ask which subgraphs

of K10 containing K9 are intrinsically triple linked. For example, one might wonder if
K10 with a single edge removed is intrinsically triple linked. While we do not answer this
question here, we note that if we remove five edges incident to a single vertex of K10,
we obtain a graph G which is not intrinsically triple linked. To construct the embedding
of G we start with the embedding of K9 in Fig. 1 and add a vertex v in the center of
the tetrahedron 〈4,5,6,7〉, as well as straight line edges from v to each of 4, 5, 6, and 7.
We see that G has no triple link as follows. Suppose that G contained a triple link with
components B , C, and D. Since K9 contains no triple link, some component, say B , of
the triple link would have to contain the vertex v and two of the vertices 4, 5, 6, and 7.
Since each of the triangles in 〈4,5,6,7, v〉 bounds a disk in the complement of G, the
component B cannot be entirely contained in this K5. Thus B contains four vertices and
each of C and D contains three vertices. Now the triangle B ′, which contains all of the
vertices of B except v, is ambient isotopic to B in R3 − G. Hence the link B ′ ∪ C ∪ D is
a triple link in K9. This is a contradiction, and henceG contains no triple link.
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