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1 Introduction

Characterizing the symmetries of a molecule is an importantstep in predicting its
chemical behavior. Chemists have long used the group of rigid symmetries, known as
thepoint group, as a means of representing the symmetries of a molecule. However,
molecules which are flexible or partially flexible may have symmetries which are not
included in the point group. Jon Simon [11] introduced the concept of thetopological
symmetry groupin order to study symmetries of such non-rigid molecules. The
topological symmetry group provides a way to classify, not only the symmetries of
molecular graphs, but the symmetries of any graph embedded in S3.

We define the topological symmetry group as follows. Letγ be an abstract graph, and
let Aut(γ) denote the automorphism group ofγ . Let Γ be the image of an embedding
of γ in S3 . Thetopological symmetry groupof Γ, denoted by TSG(Γ), is the subgroup
of Aut(γ) which is induced by homeomorphisms of the pair (S3,Γ). Theorientation
preserving topological symmetry groupof Γ, denoted by TSG+(Γ), is the subgroup
of Aut(γ) which is induced by orientation preserving homeomorphisms of the pair
(S3,Γ). In this paper we are only concerned with TSG+(Γ), and thus for simplicity
we abuse notation and refer to the group TSG+(Γ) simply as thetopological symmetry
groupof Γ.

Frucht [9] showed that every finite group is the automorphism group of some connected
graph. Since every graph can be embedded inS3, it is natural to ask whether every
finite group can be realized as TSG+(Γ) for some connected graphΓ embedded in
S3. Flapan, Naimi, Pommersheim, and Tamvakis proved in [7] that the answer to this
question is “no”, and proved that there are strong restrictions on which groups can
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occur as topological symmetry groups. For example, it was shown that TSG+(Γ) can
never be the alternating groupAn for n> 5.

The special case of topological symmetry groups of completegraphs is interesting
to consider because a complete graphKn has the largest automorphism group of any
graph withn vertices. In [8], Flapan, Naimi, and Tamvakis characterized which finite
groups can occur as topological symmetry groups of embeddings of complete graphs
in S3 as follows.

Complete Graph Theorem [8] A finite groupH is isomorphic toTSG+(Γ) for some
embeddingΓ of a complete graph inS3 if and only if H is a finite cyclic group, a
dihedral group, a subgroup ofDm × Dm for some oddm, or A4, S4, or A5.

We useDm to denote the dihedral group with 2m elements. The groupsA4, S4, or
A5, are known aspolyhedral groupsbecause they consist of: the group of rotations
of a tetrahedron (which is isomorphic toA4), the group of rotations of a cube or
octahedron (which is isomorphic toS4), and the group of rotations of a dodecahedron
or icosahedron (which is isomorphic toA5).

Observe that the Complete Graph Theorem does not tell us which complete graphs
can have a given groupH as their topological symmetry group. In this paper we
characterize which complete graphs can have each of the polyhedral groups as its
topological symmetry group. In particular, in the following results we determine for
which m, Km has an embeddingΓ with TSG+(Γ) ∼= A4, A5, or S4.

A4 Theorem A complete graphKm with m≥ 4 has an embeddingΓ in S3 such that
TSG+(Γ) ∼= A4 if and only if m≡ 0, 1, 4, 5, 8 (mod 12).

A5 Theorem A complete graphKm with m≥ 4 has an embeddingΓ in S3 such that
TSG+(Γ) ∼= A5 if and only if m≡ 0, 1, 5, 20 (mod 60).

S4 Theorem A complete graphKm with m≥ 4 has an embeddingΓ in S3 such that
TSG+(Γ) ∼= S4 if and only if m≡ 0, 4, 8, 12, 20 (mod 24).

Observe that ifKn has an embedding with topological symmetry group isomorphic to
A5 or S4 , thenKn also has an embedding with topological symmetry group isomorphic
to A4.

In [6] we characterize which complete graphs can have a cyclic group, a dihedral group,
or another subgroup ofDm × Dm as its topological symmetry group.
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2 Necessity of the conditions

In this section, we prove the necessity of the conditions given in theA4, A5 and S4

Theorems. We begin by listing some results that were proved elsewhere that will be
useful to us.

Orbits Lemma [3] If α and β are permutations of a finite set such thatα and β
commute, thenβ takesα-orbits toα-orbits of the same length.

D2 Lemma [3] If m ≡ 3 (mod 4), then there is no embeddingΓ of Km in S3 such
that TSG+(Γ) contains a subgroup isomorphic toD2.

Recall that the groupsA4 and A5 can be realized as the group of rotations of a solid
tetrahedron and a solid dodecahedron respectively. Looking at each of these groups of
rotations we see that any two cyclic subgroups of the same order are conjugate. The
group S4 can be realized as the group of rotations of a cube. It followsthat all cyclic
groups of order 3 or order 4 are conjugate. Up to conjugacy,S4 contains two cyclic
groups of order 2, those which are contained inA4 and those which are not. This
implies the following observation that we will make use of inthis section.

Fixed Vertex Property Let G ∼= A4, A5 and supposeG acts faithfully on a graphΓ.
Then all elements ofG of a given order fix the same number of vertices. Furthermore,
since all of the non-trivial elements ofG have prime order, all of the elements in a
given cyclic subgroup fix the same vertices.

Let H be isomorphic toS4 and suppose thatH acts faithfully onΓ. Then all elements
of H of order 3 fix the same number of vertices, and all elements ofH of order 4 fix
the same number of vertices. All involutions ofH which are inG ∼= A4 fix the same
number of vertices, and all involutions ofH which are not inG fix the same number
of vertices.

We will also use the theorem below to focus on embeddingsΓ of Km in S3 such
that TSG+(Γ) is induced by an isomorphic finite subgroup of SO(4) (the group of
orientation preserving isometries ofS3). This theorem follows from a result in [7]
together with the recently proved Geometrization Theorem [10].
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Isometry Theorem Let Ω be an embedding of someKm in S3. Then Km can be
re-embedded inS3 asΓ such thatTSG+(Ω) ≤ TSG+(Γ) andTSG+(Γ) is induced by
an isomorphic finite subgroup ofSO(4).

Suppose thatΩ is an embedding of a complete graphKm in S3 such thatG = TSG+(Ω)
is isomorphic toA4, A5 or S4 . By applying the Isometry Theorem, we obtain a re-
embeddingΓ of Km in S3 such thatG ≤ TSG+(Γ) is induced onΓ by an isomorphic
finite subgroupĜ ≤ SO(4). This simplifies our analysis since every finite order
element of SO(4) is either a rotation with fixed point set a geodesic circle or a glide
rotation with no fixed points. If the fixed point sets of two such rotations intersect but
do not coincide, then they intersect in 2 points. Furthermore, if all of the elements
of a finite subgroup of SO(4) pointwise fix the same simple closed curve, then that
subgroup must be cyclic (this can be seen by looking at the action of the subgroup on
the normal bundle).

For eachg ∈ G, we let ĝ denote the element of̂G which inducesg. SinceG has
finite order, if g ∈ G fixes both vertices of an edge, thenĝ pointwise fixes that edge.
Since the fixed point set of every element ofĜ is either a circle or the empty set, no
non-trivial element ofG can fix more than 3 vertices ofΓ. If g ∈ G fixes 3 vertices,
then fix(̂g) is precisely these 3 fixed vertices together with the edges between them.
Suppose thatg ∈ G fixes 3 vertices and has order 2. Theng must interchange some
pair of verticesv andw in Γ. Thus ĝ must fix a point on the edgevw. As this is not
possible, no order 2 element ofG fixes more than 2 vertices. SinceG ≤ Aut(Km) and
G is isomorphic toA4, A5 or S4 , m≥ 4. In particular, since nog ∈ G fixes more than
3 vertices, eachg ∈ G is induced by precisely onêg ∈ Ĝ. The following lemmas put
further restrictions on the number of fixed vertices of each element of a given order.

Lemma 2.1 Let G ≤ Aut(Km) which is isomorphic toA4 or A5. Suppose there is an
embeddingΓ of Km in S3 such thatG is induced onΓ by an isomorphic subgroup
Ĝ ≤ SO(4). Then no order 2 element ofG fixes more than 1 vertex ofΓ.

Proof As observed above, no order 2 elements ofG fixes more than 2 vertices.
Suppose some order 2 element ofG fixes 2 vertices ofΓ. Thus, by the Fixed Vertex
Property, each order 2 element ofĜ fixes 2 vertices, and hence also pointwise fixes the
edge between the 2 vertices. Now observe that two distinct involutions of Ĝ cannot
pointwise fix the same edge, since a cyclic group can have at most one element of order
2.
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Observe that̂G contains a subgroup̂H ∼= D2. SinceD2 contains 3 elements of order
2, Γ has 3 edges which are each pointwise fixed by precisely one order 2 element of̂G.
We see as follows that each order 2 element ofĤ must setwise fix all 3 of these edges.
Let ĝ andĥ be order 2 elements of̂H , and letx andy be the vertices of the edge that is
pointwise fixed bŷg. Since all elements ofD2 commute,g(h(x)) = h(g(x)) = h(x), so
h(x) is fixed byg. Sincex andy are the only vertices that are fixed byg, h(x) ∈ {x, y}.
Similarly for h(y). So ĥ setwise fixes the edgexy. It follows that each order 2 element
of Ĥ setwise fixes all 3 of these edges. This implies that each order 2 element fixes the
midpoint of each of the 3 edges. These 3 midpoints determine ageodesic, which must
be pointwise fixed by all 3 order 2 elements ofĤ . But this is impossible since a cyclic
group can have at most one element of order 2. �

Lemma 2.2 Let G ≤ Aut(Km) which is isomorphic toA4. Suppose there is an
embeddingΓ of Km in S3 such thatG is induced onΓ by an isomorphic subgroup
Ĝ ≤ SO(4). If an order 2 element ofG fixes some vertexv, thenv is fixed by every
element ofG.

Proof Suppose an order 2 elementϕ1 ∈ G fixes a vertexv. By Lemma2.1, ϕ1

fixes no other vertices ofΓ. SinceG ∼= A4, there is an involutionϕ2 ∈ G such that
〈ϕ1, ϕ2〉 ∼= Z2×Z2. Now by the Orbits Lemma,ϕ2 takes fixed vertices ofϕ1 to fixed
vertices ofϕ1 . Thusϕ2(v) = v. Hencev is fixed by〈ϕ1, ϕ2〉. Furthermore, all of the
order 2 elements ofG are in〈ϕ1, ϕ2〉. Thusv is the only vertex fixed by any order 2
element ofG.

Let ψ be an order 3 element ofG. Now ψϕ1ψ
−1 has order 2 and fixesψ(v). Thus

ψ(v) = v. SinceG = 〈ϕ1, ϕ2, ψ〉, v is fixed by every element ofG. �

Lemma 2.3 Let G ≤ Aut(Km) which is isomorphic toA4. Suppose there is an
embeddingΓ of Km in S3 such thatG is induced onΓ by an isomorphic subgroup
Ĝ ≤ SO(4). If some order 2 element ofG fixes a vertex ofΓ, then no element ofG
fixes 3 vertices.

Proof Suppose some order 2 element ofG fixes a vertexv. By Lemma 2, every
element ofG fixes v. Suppose thatG contains an elementψ which fixes 3 vertices.
It follows from Lemma 1 that the order ofψ must be 3. Now letg ∈ G have order 3
such that〈g, ψ〉 is not cyclic. It follows from the Fixed Vertex property thatfix(ψ̂) and
fix(ĝ) each consist of 3 vertices and 3 edges. Sincev ∈ fix(ĝ) ∩ fix(ψ̂), there must be
another pointx ∈ fix(ĝ) ∩ fix(ψ̂). However, since two edges cannot intersect in their
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interiors, x must be a vertex ofΓ. This implies thatψ̂ and ĝ pointwise fix the edge
xv. However, this is impossible since〈ψ,g〉 is not cyclic. Thus no element ofG fixes
3 vertices. �

Lemma 2.4 Let G ≤ Aut(Km) which is isomorphic toA5. Suppose there an em-
bedding Γ of Km in S3 such thatG is induced onΓ by an isomorphic subgroup
Ĝ ≤ SO(4). Then no element ofG fixes 3 vertices.

Proof Recall that the only even order elements ofA5 are involutions. By Lemma 1,
no involution ofG fixes more than 1 vertex. Letψ be an element ofG of odd order
q and suppose thatψ fixes 3 vertices. NowG contains an involutionϕ such that
〈ϕ,ψ〉 ∼= Dq. Thus for every vertexx which is fixed byψ , ψϕ(x) = ϕψ−1(x) = ϕ(x).
Henceϕ(x) is also fixed byψ . Soϕ setwise fixes the set of fixed vertices ofψ . Since
ψ fixes 3 vertices andϕ has order 2,ϕ must fix one of these 3 verticesv.

Let H ≤ G such thatH ∼= A4 andH contains the involutionϕ. Then by Lemma2.2,
every element ofH fixes v. Sinceϕ fixes v andψ fixes 3 vertices, it follows from
Lemma2.3 thatψ 6∈ H . Therefore〈ψ,H〉 = G, becauseA5 has no proper subgroup
containingA4 as a proper subgroup. Hence every element ofG fixesv. Now let g ∈ G
have orderq such that〈g, ψ〉 is not cyclic. By the Fixed Vertex Property, fix(ĝ) and
fix(ψ̂) each contain 3 vertices and 3 edges. Thus we can repeat the argument given in
the proof of Lemma2.3 to get a contradiction. �

Lemma 2.5 Let G ≤ Aut(Km) which is isomorphic toA5. Suppose there is an
embeddingΓ of Km in S3 such thatG is induced onΓ by an isomorphic subgroup
Ĝ ≤ SO(4). If an elementψ ∈ G with odd orderq fixes precisely one vertexv, thenv
is fixed by every element ofG and no other vertex is fixed by any non-trivial element
of G.

Proof There is an involutionϕ ∈ G such that〈ϕ,ψ〉 ∼= Dq. Now ψϕ(v) =

ϕψ−1(v) = ϕ(v). Sincev is the only vertex fixed byψ , we must haveϕ(v) = v.
Now G contains a subgroupH ∼= A4 containingϕ. By Lemma2.2, sinceϕ fixes v
every element ofH fixes v. SinceA4 does not containD3 or D5, ψ 6∈ H . Hence as
in the proof of Lemma2.4, 〈ψ,H〉 = G. Thus every element ofG fixes v. Every
involution in G is an element of a subgroup isomorphic toA4. Thus by Lemma2.1, v
is the only vertex which is fixed by any involution inG.

Let β ∈ G be of orderp = 3 or 5. Supposeβ fixes some vertexw 6= v. Thus all
of the elements in〈β〉 ∼= Zp fix v and w. Let n denote the number of subgroups of
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G that are isomorphic toZp. Thus n = 6 or n = 10 according to whetherp = 5
or p = 3 respectively. By the Fixed Vertex Property, all of the subgroups isomorphic
to Zp also fix 2 vertices. Ifg ∈ G fixes w, then g pointwise fixes the edgevw and
hence〈g, β〉 is cyclic. It follows that each of then subgroups isomorphic toZp fixes
a distinct vertex in addition tov. Thesen vertices together withv span a subgraph
Λ ⊆ Γ which is an embedding ofKn+1 such thatΛ is setwise invariant under̂G andĜ
induces an isomorphic group action onΛ. However,n + 1 = 7 or 11. SinceG ∼= A5

contains a subgroup isomorphic toD2, this contradicts theD2 Lemma. Thusv is the
only vertex which is fixed by any orderp element ofG. �

The following general result may be well known. However, since we could not find a
reference, we include an elementary proof here. Observe that in contrast with Lemma
2.6, if Ĝ acts onS3 as the orientation preserving isometries of a regular 4-simplex then
the order 5 elements are glide rotations.

Lemma 2.6 Suppose that̂G ≤ SO(4) such thatĜ ∼= A5 and every order 5 element
of Ĝ is a rotation ofS3. Then Ĝ induces the group of rotations of a regular solid
dodecahedron.

Proof The groupĜ contains subgroupsJ1, . . . , J6 which are isomorphic toZ5 and
involutions ϕ1, . . . , ϕ6 such that for eachi , Hi = 〈Ji , ϕi〉 ∼= D5. Now since every
order 5 element of̂G is a rotation ofS3, for eachi there is a geodesic circleLi which
is pointwise fixed by every element ofJi . Furthermore, becauseHi

∼= D5, the circle
Li must be inverted by the involutionϕi . Hence there are pointspi andqi on Li which
are fixed byϕi . Now every involution inHi

∼= D5 is conjugate toϕi by an element of
Ji . Hence every involution inHi also fixes bothpi and qi . For eachi , let Si denote
the geodesic sphereSi which meets the circleLi orthogonally in the pointspi andqi .
Now Si is setwise invariant under every element ofHi .

By analyzing the structure ofA5, we see that each involution inH1 is also contained
in precisely one of the groupsH2, . . . , H6. Thus for eachi 6= 1, the 2 points which
are fixed by the involution inH1 ∩ Hi are contained inS1 ∩ Si . Sincep1 is fixed by
every involution inH1, it follows thatp1 is contained in everySi . Observe that the set
of geodesic spheres{S1, . . . ,S6} is setwise invariant under̂G. Sincep1 is in everySi ,
this implies that the orbitP of p1 is contained in everySi .

If p1 is fixed by every element of̂G, thenĜ induces the group of rotations of a regular
solid dodecahedron centered atp1 . Thus we assume thatp1 is not fixed by every
element ofĜ. SinceĜ can be generated by elements of order 5, it follows that some
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order 5 element of̂G does not fixpi . The orbit ofp1 under that element must contain
at least 5 elements, and hence|P| ≥ 5. Suppose that someSi 6= S1. Then S1 ∩ Si

consists of a geodesic circleC containing the setP. Since |P| > 2, the circleC is
uniquely determined byP.

Now C must be setwise invariant under̂G sinceP is. Thus the coreD of the open
solid torusS3 − C is also setwise invariant under̂G. Since a pair of circles cannot
be pointwise fixed by a non-trivial orientation preserving isometry ofS3, Ĝ induces a
faithful action ofC∪ D taking each circle to itself. But the only finite groups that can
act faithfully on a circle are cyclic or dihedral, andA5 is not the product of two such
groups. Thus everySi = S1 .

Recall that for eachi , the geodesic circleLi is orthogonal to the sphereSi and is
pointwise fixed by every element ofJi . Since all of the geodesic circlesL1, . . . , L6

are orthogonal to the single sphereSi = S1, they must all meet at a pointx in a ball
bounded byS1. Now Ĝ = 〈J1, J2〉, and every element ofJ1 and J2 fixes x. ThusĜ
fixes the pointx. Hence again̂G induces the group of rotations of a solid dodecahedron
centered at the pointx. �

Suppose thatG is a group acting faithfully onKm. Let V denote the vertices ofKm

and let |fix(g|V)| denote the number of vertices ofKm which are fixed byg ∈ G.
Burnside’s Lemma [2] gives us the following equation:

# vertex orbits=
1
|G|

∑

g∈G

|fix(g|V)|

We shall use the fact that the left side of this equation is an integer to prove the
necessity of our conditions forKm to have an embeddingΓ such thatG = TSG+(Γ) is
isomorphic toA4 or A5. By the Fixed Vertex Property, all elements of the same order
fix the same number of vertices ofΓ. So we will usenk to denote the number of fixed
vertices of an element ofG of orderk. Observe thatn1 is always equal tom.

Theorem 2.7 If a complete graphKm has an embeddingΓ in S3 such thatTSG+(Γ) ∼=
A4, thenm≡ 0, 1, 4, 5, 8 (mod 12).

Proof Let G = TSG+(Γ) ∼= A4. By applying the Isometry Theorem, we obtain
a re-embeddingΛ of Km such thatG is induced onΛ by an isomorphic subgroup
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Ĝ ≤ SO(4). Thus we can apply our lemmas. Note that|A4| = 12, andA4 contains
3 order 2 elements and 8 order 3 elements. Thus Burnside’s Lemma tells us that
1
12(m+ 3n2 + 8n3) is an integer.

By Lemma 1, we know thatn2 = 0 or 1, and by Lemma 3 we know that ifn2 = 1 then
n3 6= 3. Also, by Lemma 2, ifn3 = 0, thenn2 = 0. So there are 5 cases, summarized
in the table below. In each case, the value ofm (mod 12) is determined by knowing
that 1

12(m+ 3n2 + 8n3) is an integer.

n2 n3 m (mod 12)
0 0 or 3 0
0 1 4
0 2 8
1 1 1
1 2 5

�

Theorem 2.8 If a complete graphKm has an embeddingΓ in S3 such thatTSG+(Γ) ∼=
A5, thenm≡ 0, 1, 5, 20 (mod 60).

Proof Let G = TSG+(Γ) ∼= A5. By applying the Isometry Theorem, we obtain
a re-embeddingΛ of Km such thatG is induced onΛ by an isomorphic subgroup
Ĝ ≤ SO(4). Note that|A5| = 60, andA5 contains 15 elements of order 2, 20
elements of order 3, and 24 elements of order 5. Thus Burnside’s Lemma tells us that
1
60(m+ 15n2 + 20n3 + 24n5) is an integer.

By Lemma 4, for everyk > 1, nk < 3. Every element ofG of order 2 or 3 is contained
in some subgroup isomorphic toA4. Thus as in the proof of Theorem 1, we see thatn2

= 0 or 1, and ifn3 = 0 thenn2 = 0. Also, by Lemma 5, if eithern3 = 1 or n5 = 1,
then all ofn2, n3 andn5 are 1.

Suppose thatn5 = 2. Then each order 5 element ofĜ must be a rotation. Let̂ψ ,
ϕ̂ ∈ Ĝ such thatψ̂ has order 5,̂ϕ has order 2, and〈ψ̂, ϕ̂〉 ∼= D5. Then there is a circle
which is fixed pointwise byψ̂ and inverted byϕ̂. Thus fix(̂ϕ) intersects fix(̂ψ) in 2
precisely points. By Lemma2.6, we know thatĜ induces the group of rotations on
a solid dodecahedron. Hence the fixed point sets of all of the elements ofĜ meet in
two points, which are the points fix(ϕ̂) ∩ fix(ψ̂). Now sincen5 = 2, fix(ψ̂) contains
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precisely 2 vertices, and hence an edgee. Thuse must be inverted bŷϕ. It follows
that the midpoint ofe is one of the two fixed points of̂G. SinceG is not a dihedral
group we know thate is not setwise invariant under every element ofĜ. Thus there
are other edges in the orbit ofe which intersecte in its midpoint. Since two edges
cannot intersect in their interiors, we conclude thatn5 6= 2.

There are four cases summarized in the table below.

n2 n3 n5 m (mod 60)
0 0 0 0
0 2 0 20
1 1 1 1
1 2 0 5

�

Theorem 2.9 If a complete graphKm has an embeddingΓ in S3 such thatTSG+(Γ) ∼=
S4, thenm≡ 0, 4, 8, 12, 20 (mod 24).

Proof Let G = TSG+(Γ) ∼= S4 . By applying the Isometry Theorem, we obtain
a re-embeddingΛ of Km such thatG is induced onΛ by an isomorphic subgroup
Ĝ ≤ SO(4). Suppose that some order 4 elementĝ ∈ Ĝ has non-empty fixed point set.
Then fix(̂g) ∼= S1. Thus fix(̂g2) = fix(ĝ). Let (v1, v2, v3, v4) be a 4-cycle of vertices
underg. Theng2 inverts the edgesv1v3 and v2v4 . Thus fix(̂g2) intersects bothv1v3

and v2v4 . Henceĝ fixes a point on each ofv1v3 and v2v4. But this is impossible
since (v1, v2, v3, v4) is induced byg. Thus every order 4 element of̂G has empty fixed
point set. In particular, no order 4 element ofG fixes any vertices ofΓ. Thusm 6≡ 1
(mod 4). SinceA4 ≤ S4 , by Theorem2.7, m≡ 0, 1 (mod 4). It follows thatm≡ 0
(mod 4).

Suppose thatm = 24n + 16 for somen. The groupS4 has 3 elements of order 2
which are contained inA4, 6 elements of order 2 which are not contained inA4, 8
elements of order 3, and 6 elements of order 4. By the Fixed Vertex Property, each of
the elements of any one of these types fixes the same number of vertices. So according
to Burnside’s Lemma1

24((24n + 16) + 3n2 + 6n′2 + 8n3 + 6n4) is an integer, where
n2 denotes the number of fixed vertices of elements of order 2 which are contained in
A4 and n′2 denotes the number of fixed vertices of elements of order 2 which are not
contained inA4.
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We saw above thatn4 = 0. By Lemma2.1, n2 = 0 or 1. However, sincen2 is the
only term with an odd coefficient, we cannot haven2 = 1. Also since the number of
verticesm = 24n + 16 ≡ 1 (mod 3), each element of order 3 must fix one vertex.
Thusn2 = 0 andn3 = 1. Hence 1

24(16+6n′2 +8) is an integer. It follows thatn′2 = 0,

sincen′2 6> 3. Letψ be an order 3 element of̂G. Sincen3 = 1, ψ must be a rotation
about a circleL containing a single vertexv. SinceĜ ∼= S4, there is an involution
ϕ ∈ Ĝ such that〈ψ,ϕ〉 ∼= D3. It follows thatϕ inverts L. However, sincev is the
only vertex onL, ϕ(v) = v. This is impossible sincen2 = n′2 = 0. Thusm 6≡ 16
(mod 24). The result follows. �

3 Embedding Lemmas

For a givenn, we would like to be able to construct an embedding ofKm which has a
particular topological symmetry group. We do this by first embedding the vertices of
Km so that they are setwise invariant under a particular group of isometries, and then
we embed the edges ofKm using the results below. Note that Lemma3.1applies to any
finite groupG of diffeomorphisms ofS3, regardless of whether the diffeomorphisms
in G are orientation reversing or preserving.

Lemma 3.1 Let G be a finite group of diffeomorphisms ofS3 and letγ be a graph
whose vertices are embedded inS3 as a setV such thatG induces a faithful action on
γ . Let Y denote the union of the fixed point sets of all of the non-trivial elements of
G. Suppose that adjacent pairs of vertices inV satisfy the following hypotheses:

(1) If a pair is pointwise fixed by non-trivial elementsh, g ∈ G, thenfix(h) = fix(g).

(2) No pair is interchanged by an element ofG.

(3) Any pair that is pointwise fixed by a non-trivialg ∈ G bounds an arc infix(g)
whose interior is disjoint fromV ∪ (Y− fix(g)).

(4) Every pair is contained in a single component ofS3 − Y.

Then there is an embedding of the edges ofγ such that the resulting embedding ofγ
is setwise invariant underG.

Proof We partition the edges ofγ into setsF1 andF2, whereF1 consists of all edges
of γ both of whose embedded vertices are fixed by some non-trivialelement ofG, and
F2 consists of the remaining edges ofγ . Thus, eachFi is setwise invariant underG.
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We first embed the edges inF1 as follows. Let{f1, . . . , fm} be a set of edges consisting
of one representative from the orbit of each edge inF1. Thus for eachi , some non-
trivial gi ∈ G fixes the embedded vertices offi . Furthermore, by hypothesis (1),
fix(gi) is uniquely determined byfi . By hypothesis (3), the vertices offi bound an
arc Ai ⊆ fix(gi) whose interior is disjoint fromV and from the fixed point set of any
element ofG whose fixed point set is not fix(gi ). We embed the edgefi as the arcAi .
Now it follows from our choice ofAi that the interiors of the arcs in the orbits ofA1,
. . . , Am are pairwise disjoint.

Now let f be an edge inF1 − {f1, . . . , fm}. Then for someg ∈ G and some edgefi ,
we haveg(fi ) = f . We embed the edgef as g(Ai). To see that this is well-defined,
suppose that for someh ∈ G and somefj , we also havef = h(fj ). Then i = j , since
we picked only one representative from each edge orbit. Thereforeg(fi ) = h(fi). This
implies h−1g fixes both vertices offi since by hypothesis (2) no edge ofγ is inverted
by G. Now, by hypothesis (1), ifh−1g is non-trivial, then fix(h−1g) = fix(gi ). Since
Ai ⊆ fix(gi), it follows that h(Ai) = g(Ai), as desired. We can thus unambiguously
embed all of the edges ofF1. Let E1 denote this set of embedded edges. By our
construction,E1 is setwise invariant underG.

Next we will embed the edges ofF2. Let π : S3 → S3/G denote the quotient map.
Then π|(S3 − Y) is a covering map, and the quotient spaceQ = (S3 − Y)/G is a
3-manifold. We will embed representatives of the edges ofF2 in the quotient space
Q, and then lift them to get an embedding of the edges inS3.

Let {e1, . . . ,en} be a set of edges consisting of one representative from the orbit of
each edge inF2. For eachi , let xi and yi be the embedded vertices ofei in V . By
hypothesis (4), for eachi = 1, . . . ,n, there exists a pathαi in S3 from xi to yi whose
interior is disjoint fromV ∪ Y. Let α′

i = π ◦ αi . Thenα′

i is a path or loop from
π(xi) to π(yi ) whose interior is inQ. Using general position inQ, we can homotop
eachα′

i , fixing its endpoints, to a simple path or loopρ′i such that the interiors of the
ρ′i(I ) are pairwise disjoint and are each disjoint fromπ(V ∪ Y). Now, for eachi , we
lift ρ′i to a pathρi beginning atxi . Then each int(ρi) is disjoint from V ∪ Y. Since
ρ′i = π ◦ ρi is one-to-one except possibly on the set{0,1}, ρi must also be one-to-one
except possibly on the set{0,1}. Also, sinceρ′i is homotopic fixing its endpoints to
α′

i , ρi is homotopic fixing its endpoints toαi . In particular,ρi is a simple path fromxi

to yi . We embed the edgeei asρi(I ).

Next, we will embed an arbitrary edgee of F2. By hypothesis (2) and the definition
of F2, no edge inF2 is setwise invariant under any non-trivial element ofG. Hence
there is a uniqueg ∈ G and a uniquei ≤ n such thate = g′(ei). It follows that e
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determines a unique arcg(ρi(I )) betweeng(xi) andg(yi). We embede asg(ρi (I )). By
the uniqueness ofg and i , this embedding is well-defined. LetE2 denote the set of
embedded edges ofF2. ThenG leavesE2 setwise invariant.

Now, since each int(ρ′i (I )) is disjoint fromπ(V), the interior of each embedded edge
of E2 is disjoint fromV . Similarly, sinceρ′i(I ) andρ′j (I ) have disjoint interiors when
i 6= j , for everyg, h ∈ G, g(ρi (I )) andh(ρj(I )) also have disjoint interiors wheni 6= j .
And sinceρ′i is a simple path or loop whose interior is disjoint fromπ(Y), if g 6= h,
theng(ρi(I )) andh(ρi(I )) have disjoint interiors. Thus the embedded edges ofE2 have
pairwise disjoint interiors.

Let Γ consist of the set of embedded verticesV together with the set of embedded
edgesE1 ∪ E2. ThenΓ is setwise invariant underG. Also, every edge inE1 is an arc
of Y, whose interior is disjoint fromV , and the interior of every edge inE2 is a subset
of S3 − (Y∪ V). Therefore the interiors of the edges inE1 andE2 are disjoint. Hence
Γ is an embedded graph with underlying abstract graphγ , andΓ is setwise invariant
underG. �

We use Lemma 7 to prove the following result. Note that Diff+(S3) denotes the group
of orientation preserving diffeomorphisms ofS3. Thus by contrast with Lemma3.1,
the Edge Embedding Lemma only applies to finite groups of orientation preserving
diffeomorphisms ofS3.

Edge Embedding Lemma Let G be a finite subgroup ofDiff +(S3) and letγ be a
graph whose vertices are embedded inS3 as a setV such thatG induces a faithful action
on γ . Suppose that adjacent pairs of vertices inV satisfy the following hypotheses:

(1) If a pair is pointwise fixed by non-trivial elementsh, g ∈ G, thenfix(h) = fix(g).

(2) For each pair{v,w} in the fixed point setC of some non-trivial element ofG,
there is an arcAvw ⊆ C bounded by{v,w} whose interior is disjoint fromV
and from any other such arcAv′w′ .

(3) If a point in the interior of someAvw or a pair{v,w} bounding someAvw is
setwise invariant under anf ∈ G, then f (Avw) = Avw.

(4) If a pair is interchanged by someg ∈ G, then the subgraph ofγ whose vertices
are pointwise fixed byg can be embedded in a proper subset of a circle.

(5) If a pair is interchanged by someg ∈ G, thenfix(g) is non-empty, and for any
h 6= g, thenfix(h) 6= fix(g).

Then there is an embedding of the edges ofγ in S3 such that the resulting embedding
of γ is setwise invariant underG.
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Proof Let γ′ denoteγ together with a valence 2 vertex added to the interior of every
edge whose vertices are interchanged by some element ofG. Then G induces a
faithful action onγ′ , sinceG induces a faithful action onγ . For eachg ∈ G we will
let g′ denote the automorphism ofγ′ induced byg, and letG′ denote the group of
automorphisms ofγ′ induced byG. No element ofG′ interchanges a pair of adjacent
vertices ofγ′ . SinceG induces a faithful action onγ′ , eachg′ ∈ G is induced by a
uniqueg ∈ G.

Let M denote the set of vertices ofγ′ which are not inγ . Each vertexm ∈ M
is fixed by an elementf ′ ∈ G′ which interchanges the pair of vertices adjacent to
m. We partition M into setsM1 and M2, whereM1 contains those vertices ofM
whose adjacent vertices are both fixed by a non-trivial automorphism inG′ and M2

contains those vertices ofM whose adjacent vertices are not both fixed by a non-trivial
automorphism inG′ .

We first embed the vertices ofM1. Let {m1, . . . ,mr} be a set consisting of one
representative from the orbit of each vertex inM1, and for eachmi , let vi andwi denote
the vertices which are adjacent to the vertexmi in γ′ . Thus vi and wi are adjacent
vertices ofγ . By definition of M1, eachmi is fixed both by some automorphism
f ′i ∈ G′ which interchangesvi andwi and by some elementh′i ∈ G′ which fixes both
vi andwi . Let fi andhi be the elements ofG which inducef ′i andh′i respectively. Let
Aviwi denote the arc in fix(hi) given by hypothesis (2). Sincefi interchangesvi and
wi , it follows from hypothesis (3) thatfi(Aviwi ) = Aviwi . Also sincefi has finite order,
there is a unique pointxi in the interior ofAviwi which is fixed byfi . We embedmi as
the pointxi . By hypothesis (2), ifi 6= j , thenAviwi and Avjwj have disjoint interiors,
and hencexi 6= xj .

We see as follows that the choice ofxi does not depend on the choice of eitherhi

or fi . Suppose thatmi is fixed by somef ′ ∈ G′ which interchangesvi and wi and
someh′ ∈ G′ which fixes bothvi and wi . Let f and h be the elements ofG which
induce f ′ and h′ respectively. Since bothf and h leave the pair{vi ,wi} setwise
invariant, by hypothesis (3) bothf and h leave the arcAviwi setwise invariant. Since
h has finite order and fixes bothvi andwi , h pointwise fixes the arcAviwi , and hence
fix(h) = fix(hi). Thus the choice of the arcAviwi does not depend onh. Also sinceG
has finite order, andf andfi both interchangevi andwi leavingAviwi setwise invariant,
f−1fi pointwise fixesAviwi . Hencef |Aviwi = fi |Aviwi , and thus the choice ofxi is indeed
independent offi and hi . In fact, by the same argument we see thatxi is the unique
point in the interior ofAviwi that is fixed by an element ofG which setwise but not
pointwise fixesAviwi (we will repeatedly use this fact below).
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Now let m denote an arbitrary point inM1. Then for somei and some automorphism
g′ ∈ G′ , m = g′(mi). Let v and w be the vertices that are adjacent to the vertexm
in γ′ . Then{v,w} = g′({vi ,wi}). Let g be the element ofG which inducesg′ . We
embedm as the pointg(xi ). To see that this embedding is unambiguous, suppose that
for some other automorphismϕ′ ∈ G′ , we also havem = ϕ′(mj). Then j = i , since
the orbits ofm1,. . . , mr are disjoint. Letϕ denote the element ofG which induces
ϕ′ . Then g−1ϕ(mi) = mi , and henceg−1ϕ({vi ,wi}) = {vi ,wi}. It follows from
hypothesis (3) thatg−1ϕ(Aviwi ) = Aviwi . Now xi is the unique point in the interior of
Aviwi that is fixed by an element ofG which setwise but not pointwise fixesAviwi . It
follows thatϕ(xi ) = g(xi). Thus our embedding is well defined for all of the points of
M1. Furthermore, sincem1, . . . , mr have distinct orbits underG′ , the pairs{v1,w1},
. . . , {vr ,wr} have distinct orbits underG. Hence the arcsAv1w1 ,. . . , Avrwr are not only
disjoint, they also have distinct orbits underG. Thus the points ofM1 are embedded
as distinct points ofS3.

Next we embed the vertices ofM2. Let {g′1, . . . ,g
′

q} consist of one representative from
each conjugacy class of automorphisms inG′ which fix a point inM2, and let eachg′i
be induced bygi ∈ G. For eachg′i , from the set of vertices ofM2 that are fixed by that
g′i , choose a subset{pi1, . . . ,pini} consisting of one representative from each of their
orbits underG.

Let Fi = fix(gi). By hypothesis (5) and Smith Theory [12], Fi
∼= S1 andFi is not the

fixed point set of any element ofG other thangi . Thus each arcAvw that is a subset of
Fi corresponds to some edge ofγ whose vertices are fixed bygi . By hypothesis (4) the
subgraph ofγ whose vertices are fixed bygi is homeomorphic to a proper subset of a
circle. Furthermore, sinceG ≤ Diff +(S3) is finite, the fixed point set of any non-trivial
element ofG other thangi meetsFi in either 0 or 2 points. Thus we can choose an
arc Ai ⊆ Fi which does not intersect anyAvw, is disjoint from the fixed point set of
any other non-trivial element ofG, and is disjoint from its own image under any other
non-trivial element ofG. Now we can choose a set{yi1, . . . , yini} of distinct points
in the arcAi , and embed the set of vertices{pi1, . . . ,pini} as the set{yi1, . . . , yini}.
Observe that if somepij were also fixed by a non-trivial automorphismg′ ∈ G′ such
that g′ 6= g′i , then eitherg′ or g′g′i would fix both vertices adjacent topij , which is
contrary to the definition ofM2. Henceg′i is the unique non-trivial automorphism in
G′ fixing pij . Thus our embedding ofpij is well defined.

We embed an arbitrary pointp of M2 as follows. Choosei , j , andg′ ∈ G′ such that
p = g′(pij ), andg′ is induced by a unique elementg ∈ G. Sincepij is embedded as a
point yij ∈ Ai ⊆ fix(gi), we embedp asg(yij ). To see that this is well defined, suppose
that for some automorphismϕ′ ∈ G′ we also havep = ϕ′(plk), andϕ′ is induced by
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ϕ ∈ G. Thenpij = plk , since their orbits share the pointp, and hence are equal. Now
(g′)−1ϕ′(pij ) = pij . But sincepij ∈ M2, no non-trivial element ofG′ other thanh′i fixes
pij . Thus either (g′)−1ϕ′ = g′i or g′ = ϕ′ . In the former case, the diffeomorphism
g−1ϕ = gi fixes the pointyij , sinceyij ∈ fix(gi). Hence in either caseg(yij ) = ϕ(yij ).
Thus our embedding is well defined for all points ofM2.

Recall that, ifi 6= j , thengi and gj are in distinct conjugacy classes ofG. Also, by
hypothesis (5),Fi is not fixed by any non-trivial element ofG other thangi . Now it
follows that Fi is not in the orbit ofFj , and hence the points ofM2 are embedded as
distinct points ofS3. Finally, since the points ofM1 are each embedded in an arcAvw

and the points ofM2 are each embedded in an arc which is disjoint from anyAvw, the
sets of vertices inM1 andM2 have disjoint embeddings.

Let V′ denoteV together with the embeddings of the points ofM . Thus we have
embedded the vertices ofγ′ in S3. We check as follows that the hypotheses of Lemma
7 are satisfied forV′ . When we refer to a hypothesis of Lemma 7 we shall put an *
after the number of the hypothesis to distinguish it from a hypothesis of the lemma we
are proving. We have definedV′ so that it is setwise invariant underG andG induces
a faithful action onγ′ . Also, by the definition ofγ′ , hypothesis (2*) is satisfied. Since
G is a finite subgroup of Diff+(S3), the unionY of all of the fixed point sets of the
non-trivial elements ofG is a graph inS3. Thus S3 − Y is connected, and hence
hypothesis (4*) is satisfied.

To see that hypothesis (1*) is satisfied forV′ , suppose a pair{x, y} of adjacent vertices
of γ′ are both fixed by non-trivial elementsh, g ∈ G. If the pair is inV , then they
are adjacent inγ , and hence by hypothesis (1) we know that fix(h) = fix(g). Thus
suppose thatx ∈ M . Then x ∈ M1, since the vertices inM2 are fixed by at most
one non-trivial automorphism inG′ . Now without loss of generality, we can assume
that x is one of themi ∈ M1 and y is an adjacent vertexvi . Thusx is embedded as
xi ∈ int(Aviwi ). Sinceh andg both fix xi , by hypothesis (3), bothh(Aviwi ) = Aviwi and
g(Aviwi ) = Aviwi . It follows that h andg both fix wi , since we know they fixvi . Now
{vi ,wi} are an adjacent pair inγ . Hence again by hypothesis (1), fix(h) = fix(g). It
follows that hypothesis (1*) is satisfied forV′ .

It remains to check that hypothesis (3*) is satisfied forV′ . Let s and t be adjacent
vertices ofγ′ which are fixed by some non-trivialg ∈ G. We will show thats and
t bound an arc in fix(g) whose interior is disjoint fromV′ , and if anyf ∈ G fixes a
point in the interior of this arc then fix(f ) = fix(g). First suppose thats and t are both
in V . Then no element ofG interchangess and t . Now, by hypothesis (2),s and
t bound an arcAst ⊆ fix(g) whose interior is disjoint fromV . Furthermore, by (2),
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int(Ast) is disjoint from any otherAvw, if {v,w} 6= {s, t}. Thus int(Ast) is disjoint from
the embedded points ofM1. Also the embedded points ofM2 are disjoint from any
Avw. Thus int(Ast) is disjoint fromV′ . Suppose somef ∈ G fixes a point in int(Ast).
Then by hypothesis (3),f (Ast) = Ast. So f either fixes or interchangess and t . In the
latter case,s and t would not be adjacent inγ′ . Thus f fixes boths and t . Now by
hypothesis (1), we must have fix(f ) = fix(g). So the pair of verticess and t satisfy
hypothesis (3*).

Next suppose thats∈ V′ − V . Sinces and t are adjacent inγ′ , we must havet ∈ V .
Now s is the embedding of somem∈ M , andm is adjacent to verticesv, t ∈ V which
are both fixed byg. Thusm ∈ M1. By our embedding ofM1, for someh ∈ G and
somei , we haves = h(xi ) wherexi is adjacent to verticesvi andwi in γ′ . It follows
that {v, t} = h({vi ,wi}). Thus h−1gh fixes vi and wi . Let hi and Aviwi ⊆ fix(hi )
be as in the description of our embedding of the points inM1. Thus vi and wi are
adjacent vertices ofγ which are fixed by bothhi and h−1gh. By hypothesis (1),
fix(hi) = fix(h−1gh). ThusAviwi ⊆ fix(h−1gh). Let A = h(Aviwi ). ThenA is an arc
bounded byv and t which is contained in fix(g). Furthermore, the interior ofAviwi is
disjoint from V and xi is the unique point in the interior ofAviwi that is fixed by an
element ofG which setwise but not pointwise fixesAviwi . Thus the interior ofA is
disjoint from V ands = h(xi ) is the unique point in the interior ofA that is fixed by an
element ofG which setwise but not pointwise fixesA. Let Ast denote the subarc ofA
with endpointss and t . Then int(Ast) is disjoint fromV′ , andAst satisfies hypothesis
(3*).

Thus we can apply Lemma 7 to the embedded vertices ofγ′ to get an embedding of
the edges ofγ′ such that the resulting embedding ofγ′ is setwise invariant underG.
Now by omitting the vertices ofγ′ − γ we obtain the required embedding ofγ . �

4 Embeddings with TSG+(Γ) ∼= S4

Recall from Theorem2.9 that if Km has an embeddingΓ with TSG+(Γ) ∼= S4, then
m ≡ 0, 4, 8, 12, 20 (mod 24). For each of these values ofm, we will use the Edge
Embedding Lemma to construct an embedding ofKm whose topological symmetry
group is isomorphic toS4.

Proposition 1 Let m≡ 0, 4, 8, 12, 20 (mod 24). Then there is an embeddingΓ of
Km in S3 such thatTSG+(Γ) ∼= S4 .
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Proof Let G ∼= S4 be the finite group of orientation preserving isometries ofS3 which
leaves the 1-skeletonτ of a tetrahedron setwise invariant. Observe that every non-
trivial element ofG with non-empty fixed point set is conjugate to one of the rotations
f , h, g, or g2 illustrated in Figure1. Furthermore, an even order element ofG has
non-empty fixed point set if and only if it is an involution. Also, for everyg ∈ G of
order 4, every point inS3 has an orbit of size 4 underg, sog does not interchange any
pair of vertices.Thus regardless of how we embed our vertices, hypothesis (5) of the
Edge Embedding Lemma will be satisfied.

h

f

B

g

τ

Figure 1: G leaves the 1-skeletonτ of a tetrahedron setwise invariant. The ballB is disjoint
from the fixed point set of any non-trivial element ofG and from its image under every
non-trivial element ofG.

Let n ≥ 0. We begin by defining an embedding ofK24n. Let B denote a ball which is
disjoint from the fixed point set of any non-trivial element of G, and which is disjoint
from its image under every non-trivial element ofG. Choosen points in B, and let
V0 denote the orbit of these points underG. Since|S4| = 24, the setV0 contains 24n
points. These points will be the embedded vertices ofK24n. Since none of the points in
V0 is fixed by any non-trivial element ofG, it is easy to check that hypotheses (1) - (4)
of the Edge Embedding Lemma are satisfied for the setV0. Thus the Edge Embedding
Lemma gives us an embeddingΓ0 of K24n which is setwise invariant underG. It
follows that TSG+(Γ0) contains a subgroup isomorphic toS4. However, we know by
the Complete Graph Theorem thatS4 cannot be isomorphic to a proper subgroup of
TSG+(Γ0). ThusS4

∼= TSG+(Γ0).

Next we will embedK24n+4. Let V4 denote the four corners of the tetrahedronτ
(illustrated in Figure1). We embed the vertices ofK24n+4 as the points inV4 ∪ V0.
Now the edges ofτ are the arcs required by hypothesis (2) of the Edge Embedding
Lemma. Thus it is not hard to check that the setV4 ∪ V0 satisfies the hypotheses

Algebraic & GeometricTopology XX (20XX)



Polyhedral topological symmetry groups 1019

of the Edge Embedding Lemma. By applying the Edge Embedding Lemma and the
Complete Graph Theorem as above we obtain an embeddingΓ4 of K24n+4 such that
S4

∼= TSG+(Γ4).

B

τ

τ1

2

Figure 2: The points ofV8 are the vertices ofτ1 ∪ τ2 . The arcs required by hypothesis (2) are
the gray arcs between corresponding vertices.

Next we will embedK24n+8 . Let T denote a regular solid tetrahedron with 1-skeleton
τ . Let τ1 denote the 1-skeleton of a tetrahedron contained inT and let τ2 denote
the 1-skeleton of a tetrahedron inS3 − T such thatτ1 ∪ τ2 is setwise invariant under
G. Observe thatτ1 and τ2 are interchanged by all elements conjugate toh in Figure
1, and eachτi is setwise fixed by all the other elements ofG. We obtain the graph
illustrated in Figure2 by connectingτ1 and τ2 with arcs contained in the fixed point
sets of the elements ofG of order 3. Now letV8 denote the vertices ofτ1 ∪ τ2. Then
V8 is setwise invariant underG. We embed the vertices ofK24n+8 as the points of
V8 ∪ V0. It is easy to check that hypothesis (1) of the Edge EmbeddingLemma is
satisfied. To check hypothesis (2), first observe that the only pairs of vertices that are
fixed by a non-trivial element ofG are the pairs of endpoints of the arcs joiningτ1

andτ2 (illustrated as gray arcs in Figure2). These arcs are precisely those required by
hypothesis (2). Now hypotheses (3) and (4) follow easily. Thus again by applying the
Edge Embedding Lemma and the Complete Graph Theorem we obtain an embedding
Γ8 of K24n+8 such thatS4

∼= TSG+(Γ8).

Next we will embedK24n+12. Let V12 be a set of 12 vertices which are symmetrically
placed on the edges of the tetrahedronτ so thatV12 is setwise invariant underG (see
Figure3). We embed the vertices ofK24n+12 as V12 ∪ V0. It is again easy to check
that hypothesis (1) of the Edge Embedding Lemma is satisfied by V12 ∪ V0. To check
hypothesis (2) observe that the only pairs of vertices that are fixed by a non-trivial
element ofG are pairs on the same edge ofτ . The arcs required by hypothesis (2) in
Figure3 are illustrated as gray arcs. Hypotheses (3) and (4) now follow easily. Thus
again by applying the Edge Embedding Lemma and the Complete Graph Theorem we
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B

τ

Figure 3: The points ofV12 are symmetrically placed on the edges ofτ . The arcs required by
hypothesis (2) are the gray arcs between vertices on the sameedge ofτ .

obtain an embeddingΓ12 of K24n+12 such thatS4
∼= TSG+(Γ12).

B

τ2

τ1

τ

Figure 4: The points ofV8 ∪ V12 are the vertices ofτ ∪ τ1 ∪ τ2 . The gray arcs required by
hypothesis (2) are the union of those in Figures 2 and 3.

Finally, in order to embedK24n+20 we first embed the vertices asV0 ∪ V8 ∪ V12 from
Figures2 and3. In Figure4, the 20 vertices ofV8 ∪ V12 are indicated by black dots
and the arcs required by hypothesis (2) are highlighted in gray. These vertices and arcs
are the union of those illustrated in Figures2 and3. Now again by applying the Edge
Embedding Lemma and the Complete Graph Theorem we obtain an embeddingΓ12

of K24n+8 such thatS4
∼= TSG+(Γ12). �

The following theorem summarizes our results on when a complete graph can have an
embedding whose topological symmetry group is isomorphic to S4.

S4 Theorem A complete graphKm with m≥ 4 has an embeddingΓ in S3 such that
TSG+(Γ) ∼= S4 if and only if m≡ 0, 4, 8, 12, 20 (mod 24).
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5 Embeddings Γ with TSG+(Γ) ∼= A5

Recall from Theorem2.8 that if Km has an embeddingΓ in S3 such thatG =

TSG+(Γ) ∼= A5, then m ≡ 0, 1, 5, or 20 (mod 60). In this section we show that
for all of these values ofm there is an embedding ofKm whose topological symmetry
group is isomorphic toA5.

Proposition 2 Let m≡ 0, 1, 5, 20 (mod 60). Then there exists an embeddingΓ of
Km in S3 such thatTSG+(Γ) ∼= A5.

Proof Let G ∼= A5 denote the finite group of orientation preserving isometries of
S3 which leaves a regular solid dodecahedronD setwise invariant. Every element
of this group is a rotation, and hence has non-empty fixed point set. Also the only
even order elements ofA5 are involutions. Thus regardless of how we embed our
vertices, hypothesis (5) of the Edge Embedding Lemma will besatisfied for the group
G. Let H ∼= A5 denote the finite group of orientation preserving isometries of S3

which leaves a regular 4-simplexσ setwise invariant. Observe that the elements of
order 2 ofH interchange pairs of vertices of the 4-simplex and hence have non-empty
fixed point sets. Thus regardless of how we embed our vertices, hypothesis (5) of the
Edge Embedding Lemma will be satisfied for the groupH . We will use eitherG or H
for each of our embeddings.

We shall useG to embedK60n. Let B be a ball which is disjoint from the fixed point
set of any non-trivial element ofG and which is disjoint from its image under every
non-trivial element ofG. Choosen points in B, and letV0 denote the orbit of these
points underG. We embed the vertices ofK60n as the points ofV0. Since none of
the points ofV0 is fixed by any non-trivial element ofG, the hypotheses of the Edge
Embedding Lemma are easy to check. Thus by applying the Edge Embedding Lemma
and the Complete Graph Theorem, we obtain an embeddingΓ0 of K60n in S3 such that
A5

∼= TSG+(Γ0).

In order to embedK60n+1 we again use the isometry groupG. We embed the vertices of
K60n+1 asV0∪{x}, wherex is the center of the invariant solid dodecahedronD. Since
x is the only vertex which is fixed by a non-trivial element ofG, the hypotheses of the
Edge Embedding Lemma are satisfied forV0 ∪ {x}. Thus as above, by applying the
Edge Embedding Lemma and the Complete Graph Theorem, we obtain an embedding
Γ1 of K60n+1 in S3 such thatA5

∼= TSG+(Γ1).

In order to embedK60n+5 we use the isometry groupH . Let B′ be a ball which is
disjoint from the fixed point set of any non-trivial element of H and which is disjoint
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from its image under every non-trivial element ofH . Thus B′ is disjoint from the
4-simplexσ . Choosen points inB′ , and letW0 denote the orbit of these points under
H . Let W5 denote the set of vertices of the 4-simplexσ . We embed the vertices of
K60n+5 as the points ofW0 ∪ W5. Now W0 ∪ W5 is setwise invariant underH , andH
induces a faithful action ofK60n+5. The arcs required by hypothesis (2) of the Edge
Embedding Lemma are the edges of the 4-simplexσ . Thus it is easy to check that
the hypotheses of the Edge Embedding Lemma are satisfied forW0 ∪ W5. Hence as
above by applying the Edge Embedding Lemma and the Complete Graph Theorem,
we obtain an embeddingΓ5 of K60n+5 in S3 such thatA5

∼= TSG+(Γ5).

B

‘

σ

Figure 5: The points ofW20 are symmetrically placed on the 4-simplexσ . The arcs required
by hypothesis (3) are the gray arcs between vertices on the same edge ofσ .

Finally, in order to embedK60n+20 we again use the isometry groupH . Observe that
each order 2 element ofH fixes one vertex ofσ , each order 3 element ofH fixes 2
vertices ofσ , and each order 5 element ofH fixes no vertices ofσ . Let W20 denote
a set of 20 points which are symmetrically placed on the edgesof the 4-simplexσ
so thatW20 is setwise invariant underH (see Figure 5). We embed the vertices of
K60n+20 as the points ofW0 ∪W20. The only pairs of points inW20 that are both fixed
by a single non-trivial element ofH are on the same edge of the 4-simplexσ and are
fixed by two elements of order 3. We illustrate the arcs required by hypothesis (2) of
the Edge Embedding Lemma as gray arcs in Figure5. Now as above, by applying the
Edge Embedding Lemma and the Complete Graph Theorem, we obtain an embedding
Γ20 of K60n+20 in S3 such thatA5

∼= TSG+(Γ20). �

The following theorem summarizes our results on when a complete graph can have an
embedding whose topological symmetry group is isomorphic to A5.

A5 Theorem A complete graphKm with m≥ 4 has an embeddingΓ in S3 such that
TSG+(Γ) ∼= A5 if and only if m≡ 0, 1, 5, 20 (mod 60).
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6 Embeddings Γ with TSG+(Γ) ∼= A4

Recall from Theorem2.7 that if Km has an embeddingΓ in S3 such thatG =

TSG+(Γ) ∼= A4, thenm≡ 0, 1, 4, 5, or 8 (mod 12). In this section we will show that
for these values ofm, there are embeddings ofKm whose topological symmetry group
is isomorphic toA4.

We begin with the special case ofK4. First, we embed the vertices ofΓ at the corners
of a regular tetrahedron. Then, we embed the edges ofΓ so that each set of three edges
whose vertices are the corners of a single face of the tetrahedron are now tangled as
shown in Figure6. The two dangling ends on each side in Figure6 continue into an
adjacent face with the same pattern. If we consider the knot formed by the three edges
whose vertices are the corners of a single face (and ignore the other edges ofΓ), we
see that this cycle is embedded as the knotK illustrated in Figure7.

Figure 6: One face of the embeddingΓ of K4 .

Lemma 6.1 The knotK in Figure7 is non-invertible.

Proof Observe thatK is the connected sum of three trefoil knots together with the
knot J illustrated in Figure8. SupposeK is invertible. Then by the uniqueness of
prime factorizations of oriented knots,J would also be invertible. SinceJ is the closure
of the sum of three rational tangles,J is an algebraic knot. Thus the machinery of
Bonahon and Siebenmann [1] can be used to show thatJ is non-invertible. It follows
that K is non-invertible as well. �

Proposition 3 Let Γ be the embedding ofK4 in S3 described above. ThenTSG+(Γ) ∼=
A4, andTSG+(Γ) is induced by the group of rotations of a solid tetrahedron.
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K

Figure 7: The knotK formed by three edges whose vertices are the corners of a single face.
We indicate the three edges of the triangle with different types of lines.

J

Figure 8: K is the connected sum of three trefoil knots together with theknot J illustrated
here.

Proof It follows from the Complete Graph Theorem that ifA4 is isomorphic to a
subgroup of TSG+(Γ), then TSG+(Γ) is isomorphic to eitherA4, S4, or A5. We will
first show that TSG+(Γ) contains a group isomorphic toA4, and then that TSG+(Γ)
is not isomorphic to eitherS4 or A5.

We see as follows thatΓ is setwise invariant under a group of rotations of a solid
tetrahedron. The fixed point set of an order three rotation ofa solid tetrahedron
contains a single vertex of the tetrahedron and a point in thecenter of the face opposite
that vertex. To see thatΓ is invariant under such a rotation, we unfold three of the
faces of the tetrahedron. The unfolded picture ofΓ is illustrated in Figure9. In order
to recover the embedded graphΓ from Figure9, we glue together the pairs of sides
with corresponding labels. When we re-glue these pairs, thethree vertices labeledx
become a single vertex. We can see from the unfolded picture in Figure9 that there
is a rotation ofΓ of order three which fixes the pointy in the center of the picture,
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together with the vertexx.

A

A

B
B

C

C

x

x x

y

Figure 9: This unfolded view illustrates an order three symmetry of Γ .

The fixed point set of a rotation of order two of a tetrahedron contains the midpoints
of two opposite edges. This rotation interchanges the two faces which are adjacent to
each of these inverted edges. To see thatΓ is invariant under such a rotation, we unfold
the tetrahedron into a strip made up of four faces of the tetrahedron. The unfolded
picture ofΓ is illustrated in Figure10. In order to recover the embedded graphΓ from
Figure10, we glue together pairs of sides with corresponding labels.When we glue
these pairs, the two points labeledv are glued together. We can see from the unfolded
picture in Figure10 that there is a rotation ofΓ of order two which fixes the pointw
that is in the center of the picture together with the pointv. Thus TSG+(Γ) contains a
subgroup isomorphic toA4.

Now assume thatS4
∼= TSG+(Γ). Label the four vertices ofΓ by the lettersa, b, c,

andd. Then there is a homeomorphismh of S3 which leavesΓ setwise invariant while
inducing the automorphism (ab) on its vertices. In particular, the image of the oriented
cycleabc is the oriented cyclebac. Thus the simple closed curve inΓ with verticesabc
is inverted byh. However, this simple closed curve is the knotK illustrated in Figure7,
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A

B
B

C C

A

v w v

Figure 10: This unfolded view illustrates an order two symmetry of Γ .

and we proved in Lemma6.1that K is non-invertible. Therefore,S4 6∼= TSG(Γ).

Finally, by Theorem 2,A5 6∼= TSG+(Γ), which completes the proof. �

Now we will show that for allm> 4 such thatm≡ 0,1,4,5,8 (mod 12), there is an
embeddingΓ of Km in S3 with TSG+(Γ) ∼= A4. The following Theorem from [5] will
be used in the proof.

Subgroup Theorem [5] Let Γ be an embedding of a 3-connected graph inS3.
Suppose thatΓ contains an edgee which is not pointwise fixed by any non-trivial
element ofTSG+(Γ). Then for everyH ≤ TSG+(Γ), there is an embeddingΓ′ of Γ

with H = TSG+(Γ′).

Proposition 4 Suppose thatm> 4 andm≡ 0,1,4,5,8 (mod 12). Then there is an
embeddingΓ of Km in S3 such thatTSG+(Γ) ∼= A4.

Proof We first consider the cases wherem≡ 0,4,8,12,20 (mod 24). LetG denote
the finite group of orientation preserving isometries of the1-skeletonτ of a regular
tetrahedron. Recall from the proof of Proposition1 that for eachk = 0, 4, 8, 12, or 20,
we embeddedK24n+k as a graphΓk with vertices in the setV0 ∪ V4 ∪ V8 ∪ V12 such
that TSG+(Γk) ∼= S4 is induced byG. We will show that eachΓk has an edge which
is is not pointwise fixed by any non-trivial element ofG.
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First suppose thatm = 24n+ k wheren> 0 andk = 0, 4, 8, 12, or 20. Recall thatV0

contains 24n vertices none of which is fixed by any non-trivial element ofG. Let e0

be an edge ofΓk with vertices inV0. Thene0 is not pointwise fixed by any non-trivial
element ofG. Hence by the Subgroup Theorem, there is an embeddingΓ of Km with
A4

∼= TSG+(Γ).

Next we suppose thatn = 0, and letΓ8, Γ12, andΓ20 denote the embeddings ofK8,
K12, and K20 given in the proof of Proposition1. Let e8 be an edge inΓ8 whose
vertices are not the endpoints of one of the gray arcs in Figure 2, let e12 be an edge in
Γ12 whose vertices are not the endpoints of one of the gray arcs inFigure3, and lete20

be an edge inΓ20 whose vertices are not the endpoints of one of the gray arcs inFigure
4. In each case,ek is not pointwise fixed by any non-trivial element ofG. Hence by
the Subgroup Theorem, there is an embeddingΓ of Kk with A4

∼= TSG+(Γ).

Next we consider the case wherem = 24n + 16. Thenm = 12(2n + 1) + 4. Let
H ∼= A4 denote a finite group of orientation preserving isometries of S3 which leaves
a solid tetrahedronT setwise invariant. Then every element ofH has non-empty fixed
point set, and the only even order elements are involutions.Thus regardless of how we
embed our vertices, hypothesis (5) of the Edge Embedding Lemma will be satisfied for
H . Also, observe that no edge of the tetrahedronT is pointwise fixed by any non-trivial
element ofH . Let W4 denote the vertices ofT . Let B denote a ball which is disjoint
from the fixed point set of any non-trivial element ofH , and which is disjoint from its
image under every non-trivial element ofH . Choose 2n + 1 points inB (recall that
we are not assuming thatn > 0) and letW0 denote the orbit of these points under
H . We embed the vertices ofK12(2n+1)+4 as the points ofW0 ∪ W4. Since no pair of
vertices inW0∪W4 are both fixed by a non-trivial elementh ∈ H , it is easy to see that
hypotheses (1) - (4) of the Edge Embedding Lemma are satisfied. Thus by applying
the Edge Embedding Lemma we obtain an embeddingΓ16 of K24n+16 which is setwise
invariant underH . Now by Theorems 2 and 3, we know that TSG+(Γ16) 6∼= A5 or S4.
Now it follows from the Complete Graph Theorem that TSG+(Γ16) ∼= A4.

Thus we have shown that ifm ≡ 0, 4, or 8 (mod 12) andm > 4, then there is an
embeddingΓ of Km in S3 with TSG+(Γ) ∼= A4.

Next suppose thatm = 12n + 1 andm 6≡ 1 (mod 60). Let the groupH and the ball
B be as in the above paragraph. Choosen points inB and letU0 denote the orbit of
these points underH . Let v denote one of the two points ofS3 which is fixed by every
element ofH . We embed the vertices ofKm as U0 ∪ {v}. Since no pair of vertices
in U0 ∪ {v} are both fixed by a non-trivial elementh ∈ H , it is easy to check that the
hypotheses of the Edge Embedding Lemma are satisfied. Now by the Edge Embedding

Algebraic & GeometricTopology XX (20XX)



1028 Erica Flapan, Blake Mellor and Ramin Naimi

Lemma together with Theorems 2 and 3 and the Complete Graph Theorem we obtain
an embeddingΓ of Km such that TSG+(Γ) ∼= A4.

Similarly, suppose thatm = 12n + 5 andm 6≡ 5 (mod 60). LetH , U0, W4, andv
be as above. We embed the vertices ofKm as U0 ∪ W4 ∪ {v}. The arcs required by
hypothesis (2) of the Edge Embedding Lemma are highlighted in gray in Figure11.
Now again by the Edge Embedding Lemma together with Theorems2 and 3 and the
Complete Graph Theorem we obtain an embeddingΓ of Km such that TSG+(Γ) ∼= A4.

B
v

T

Figure 11: The vertices ofW4∪{v} are indicated by black dots. The arcs required by hypothesis
(3) are highlighted in gray.

Next suppose thatm = 60n + 1 or m = 60n + 5 wheren > 0. Let G1 denote the
group of orientation preserving symmetries of a regular solid dodecahedron and letG5

denote the group of orientation preserving symmetries of a regular 4-simplex. We first
embedK60n+1 and K60n+5 as the graphsΓ1 and Γ5 respectively given in the proof
of Proposition2 such that TSG+(Γk) ∼= A5 is induced byGk , wherek = 1,5. Since
n> 0, we can choose an edgee0 of Γk both of whose vertices are inV0. Thene0 is not
pointwise fixed by any non-trivial element ofGk . Hence by the Subgroup Theorem,
we obtain an embeddingΓ of Km such that TSG+(Γ) ∼= A4.

Finally, let m = 5. Let µ denote an embedding of the 1-skeleton of a regular solid
tetrahedronT so that the edges ofµ each contain an identical trefoil knot. LetΓ

denote these vertices and edges together with a vertex at thecenter ofT which is
connected via unknotted arcs to the other vertices ofT (see Figure12). We chooseΓ
so that it is setwise invariant under a group of orientation preserving isometries ofT .
Thus TSG+(Γ) contains a subgroup isomorphic toA4. SinceΓ is an embedding of
K5, by Theorem 2 we know that TSG+(Γ) 6∼= S4 . Furthermore, any homeomorphism
of (S3,Γ), must take each triangle which is the connected sum of 3 trefoil knots to
a triangle which also is the connected sum of 3 trefoil knots.Thus TSG+(Γ) must
leaveµ setwise invariant. Sinceµ is an embedding ofK4, TSG+(Γ) induces a faithful
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action onK4. However,A5 cannot act faithfully onK4. Thus TSG+(Γ) 6∼= A5. Now
it follows from the Completeness Theorem that TSG+(Γ) ∼= A4.

Γ

Figure 12: An embeddingΓ of K5 such that TSG+(Γ) = A4.

The above four paragraphs together show that ifm≡ 1,5 (mod 12) andm> 4, then
there is an embeddingΓ of Km in S3 with TSG+(Γ) ∼= A4. �

The following theorem summarizes our results on when a complete graph can have an
embedding whose topological symmetry group is isomorphic to A4.

A4 Theorem A complete graphKm with m≥ 4 has an embeddingΓ in S3 such that
TSG+(Γ) ∼= A4 if and only if m≡ 0, 1, 4, 5, 8 (mod 12).
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