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Discrimination of time series is an important practical problem with applications in various scientific fields. We propose and study a novel
approach to this problem. Our approach is applicable to cases where time series in different categories have a different “shape.” Although
based on the idea of feature extraction, our method is not distance-based, and as such does not require aligning the time series. Instead,
features are measured for each time series, and discrimination is based on these individual measures. An AR process with a time-varying
variance is used as an underlying model. Our method then uses shape measures or, better, measures of concentration of the variance
function, as a criterion for discrimination. It is this concentration aspect or shape aspect that makes the approach intuitively appealing.
We provide some mathematical justification for our proposed methodology, as well as a simulation study and an application to the problem
of discriminating earthquakes and explosions.
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1. INTRODUCTION

There exists a large amount of literature dealing with the
problem of discriminating nonstationary time series. One class
of proposed discrimination methods finds certain features in
time series, such as structural breaks of certain kinds, and
then bases the discrimination on the presence or absence of
those features. Usually, however, time series under considera-
tion must be aligned in a certain way (e.g., using time warping)
for the procedures to work. Moreover, the resulting methodolo-
gies, although having an intuitive appeal, also often have an ad
hoc flavor because the mathematical underpinning is missing.
This kind of work can be found in the area of data mining (e.g.,
time series data mining archive at University of California,
Riverside). The statistical literature includes several approaches
for discriminating nonstationary time series that are based on
nonparametric spectral density estimation. These methods are
distance-based, and hence also require alignment of the time
series.

The novel methodology proposed and studied in this article is
also based on feature extraction. However, in contrast to many
other methods, it is not distance-based, and hence no alignment
of time series is necessary. Moreover, the method is computa-
tionally feasible, and we provide a more rigorous mathematical
underpinning of our procedure. Our approach is semiparametric
in nature by using a time-varying AR model. More specifically,
given a training set of time series, such as recordings of a spe-
cial event by a seismograph at a given specific geographic loca-
tion, say, we construct a discrimination rule that automatically
assigns a new time series (the event) into one of k groups, πi,
i = 1, . . . , k. In a time-varying AR model, Xt has mean νt, and
the centered time series, Xc

t = Xt − νt, satisfies the equations
Xc

t = ∑p
k=1 ψk(t)Xc

t−k + εtτ(t), where the errors εt are assumed
to be iid with mean 0. Here, however, we consider a rescaled
version of this model. As introduced by Dahlhaus (1997), we
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rescale time to the unit interval; that is, instead of time running
from 1 to T , it now runs from 1/T to 1. In this rescaled time,
we denote by the mean function by µ(u), the AR coefficient
functions by φk(u), k = 1, . . . ,p, and the variance function by
σ 2(u),u ∈ [0,1]. With Xc

t,T = Xt − µ(t/T), our model is

Xc
t,T =

p∑

k=1

φk(t/T)Xc
t−k,T + εtσ(t/T). (1)

Our procedures are based on X1,T , . . . ,XT,T . The rescaling will
enable us to derive asymptotic results for our procedures. In
this article we consider the class of problems in which all
of the discrimination information is contained in σ 2(·). Thus
µ(·) and φk(·), k = 1, . . . ,p, are treated as nuisance parameters.
The order p assumed to be known. Our method for discriminat-
ing between classes of time series is then based on character-
istics of the variance function σ 2(·) only. The motivation for
this approach comes from the problem of discriminating earth-
quakes and mining explosions. We would like to point out, how-
ever, that the idea underlying our approach is more general.
Other parameter functions can, of course, be included in the
discrimination procedure. What is needed is some information
on the shape of these functions to construct an appropriate cri-
terion. Our theoretical results allow estimation of the nuisance
parameters as a function, and open the door to derive joint dis-
tributions of our criterion with additional criteria based on other
parameter functions.

In our motivating example of discriminating earthquakes and
mining explosions, we actually assume that the AR parame-
ters are constant over time, that is, φk(u) = φk, k = 1, . . . ,p,
where the φk are real constants. We also assume that the mean is
constant at 0, a standard assumption in this context. Intuitively,
the purpose of the (now) stationary AR part in our model is
to remove the underlying “noise,” leaving us with the “signal,”
which is represented by the variance function. Seismic events
of the type under consideration actually consist of two differ-
ent signals, the p-wave and the s-wave (see Fig. 1). It is ap-
parent from Figure 1 that the underlying variance function of
both the p-wave and the s-wave has a unimodal shape; this ap-
plies to earthquakes as well as to explosions. The concentration
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Figure 1. A Typical Earthquake and Explosion. The two parts in each
series (indicated by a small gap) are called the p-wave (left) and the
s-wave (right).

of this (unimodal) variance function then serves as a character-
istic used for discrimination of the earthquake/explosion data.
Using the concentration of the variance function for discrimi-
nation is motivated by the known fact that decay of volatility
is different for earthquakes and explosions. In other words, the
concentration of the variance function is the essential feature
that allows us to discriminate between different classes. Differ-
ent measures of concentration on which to base the discrimina-
tion will be proposed, all relating to the excess mass functional
introduced independently by Müller and Sawitzki (1987) and
Hartigan (1987).

Other potential applications of our method include the dis-
crimination of types of animals based on geophone recordings
of their footfalls. In one particular study (J. Wood, personal
communication, 2004), the focus was on discriminating ele-
phant footfalls from those of other animals. Yet another possible
application is the analysis of electroencephalography record-
ings of seizures. In all of these applications, the signals of inter-
est show different shapes compared with either the background
or other signals not of main interest. This is the situation where
the basic idea of our method applies.

The discrimination of earthquakes and explosions used as a
guiding example is an interesting problem. It can be used to
monitor nuclear proliferation, where we would want to dis-
criminate between earthquakes, mining explosions, and small
nuclear testing. This problem has been approached in sev-
eral different ways. Early procedures dealt with considering
relative amplitudes of the two main phases present in each
seismographic reading or considering ratios of power compo-
nents in particular frequency bands of the two phases (e.g.,
Bennett and Murphy 1986). A more recent approach was to
consider the discrepancy between the spectral structure of mul-
tivariate processes (Kakizawa, Shumway, and Taniguchi 1998)
while treating such processes as stationary and later consider-
ing dynamic or time-varying spectral densities (Sakiyama and

Taniguchi 2001). Kakizawa et al. considered different discrep-
ancy measures that formed quasi-distances, allowing for classi-
fication. Sakiyama and Taniguchi essentially considered a ratio
of Gaussian log-likelihoods to perform discriminant analysis.
Yet another approach based on the so-called SLEX model was
considered by Huang, Ombao, and Stoffer (2004). There the
time-varying spectral density is estimated using a SLEX basis,
and again a certain generalized likelihood ratio statistic is used
for classification. Although these approaches all deal with the
spectrum itself or an amplitude that is proportional to the inte-
grated spectrum, we propose a technique that bases discrimina-
tion on feature extraction in the time domain.

Our model (1) is a special case of a nonstationary time series
whose distribution varies (smoothly) in time. Under appropriate
assumptions, the model is a special case of a locally stationary
time series as defined by Dahlhaus (1997). This definition was
extended by Dahlhaus and Polonik (2004), who required only
bounded variation of all the parameter functions. In particular,
this includes the possibility of jumps in the variance function,
our target. Note also that although this model has a paramet-
ric form, the variance is a function of rescaled time, and we
use a nonparametric method to estimate this variance function.
In fact, as motivated earlier, we estimate the variance function
under the assumption of unimodality.

We would like to point out, however, that the purpose of
this article is not only to study the specific method considered
here, but also to promote the way of thinking underlying our
approach.

The article is organized as follows. Section 2, assuming that
we have access to an estimate of the variance function, intro-
duces two discrimination measures based on the excess mass
functional of the variance function. Section 3 deals with esti-
mation of both the finite- and infinite-dimensional parameters.
Section 4 presents theorems dealing with the asymptotic behav-
ior of the concentration measures. They serve as justification of
our discrimination methods introduced earlier. Section 5 con-
tains a numeric study consisting of earthquakes and explosions
recorded in Scandinavia, as well as a comparison of our meth-
ods with some of the spectral-based methods mentioned earlier.
We defer all of the proofs to Section 6.

2. THE DISCRIMINATION METHOD

2.1 Measures of Concentration

Our discrimination method is based on our model (1) and
on measures of concentration of the variance function σ 2(·).
As indicated earlier, this is motivated by the well-known fact
that variation in earthquakes and explosions decay differently.
Two different types of measures of concentration are consid-
ered. As stated earlier, both are based on the excess mass idea.
The excess mass functional of a distribution F with pdf f is
defined as

EF(λ) = sup
C

(∫

C
dF(x) − λ|C|

)

=
∫ ∞

−∞
( f (x) − λ)+ dx, (2)

where a+ = max(a,0), the sup is extended over all (measur-
able) sets C, and |C| denotes the Lebesgue measure of C. In
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our application, the role of the density f is taken over by the
(normalized) variance function.

The excess mass measures the concentration of the underly-
ing distribution. In fact, the excess mass functional is a convex
function (as a supremum of linear functions) that is linear for a
uniform distribution, and a higher degree of convexity indicates
a higher concentration. Hence different rates of decay can be
expected to lead to different behavior of the excess mass, or of
functionals thereof.

The excess mass approach has been used to, for instance, in-
vestigate the modality of a distribution and to estimate level
sets of densities and regression functions (Müller and Sawitzki
1987; Hartigan 1987; Nolan 1991; Polonik 1995; Cavalier
1997; Cheng and Hall 1998a,b; Polonik and Wang 2005).

For our purposes, we propose to consider the excess mass
functional of the normalized variance function

σ̄ 2(α) = σ 2(α)
∫ 1

0 σ 2(u)du
. (3)

σ̄ 2(·) does not depend on the magnitude of the series. This is
important, because in the case of discrimination between earth-
quakes and explosions, the magnitude of the signals can vary
greatly. The excess mass functional of the normalized variance
function is then

E(λ) = Eσ̄ 2(λ) =
∫ 1

0

(
σ̄ 2(u) − λ

)+
du, λ ∈ R. (4)

This excess mass functional is used as a basis to define two
different types of measures of concentration that eventually will
be used for discrimination.

Integrated Excess Mass. Our first discrimination measure
is based on an integral functional of the excess mass. Less con-
centrated functions will have an excess mass with a higher de-
gree of convexity compared to concentrated functions. Hence
we might suspect that the tail behavior of the excess mass func-
tional contains a lot of the discriminatory power. Because the
tail would have little weight if we only considered the integral
of the excess mass, we include a weight to allow for a greater
contribution from the tail to our measure. Our discrimination
measure then is

IE(β) =
∫ ∞

0
λβE(λ)dλ, β > 0. (5)

Larger values of β will result in a larger emphasis on the tail
of the excess mass functional, which corresponds to the peak of
the variance function. For applications we propose to choose β

from the data. For the theory presented here, however, we con-
sider a fixed β .

We would like to make additional comments on IE(β). Us-
ing IE(β) is equivalent to using nonlinear functionals of σ̄ 2(u).
In fact, using Fubini’s theorem, it is straightforward to see that
∫ ∞

0 λβE(λ)dλ = 1/[(β + 1)(β + 2)] ∫ 1
0 (σ̄ 2(u))β+2 du. Hence,

using IE(0) for discrimination is equivalent to base discrimina-
tion on the L2-norm of σ̄ 2(·).

“Quantile” of the Excess Mass Functional. The second
type of discrimination measure is a “quantile” of the excess
mass functional. In other words, we define

λ(q) = E−1(q) = sup{λ : E(λ) ≥ q}, 0 < q < 1. (6)

More concentrated variance functions have larger excess mass
quantiles than less concentrated variance functions. Similar to
the tuning parameter β , the parameter q will be considered fixed
for the theory that we provide later in this article. However, for
the applications herein we propose a method to automatically
select a value for q.

2.2 Empirical Versions of the Discrimination Measures

Empirical versions, or estimates, of the two discrimination
measure are constructed via a plug-in method by using an esti-
mator ¯̂σ 2

s (·) of σ̄ 2(·) which we define in Section 3. Using this
estimate, we define

Ê(λ) = E ¯̂σ 2
s
(λ) =

∫ 1

0

( ¯̂σ 2
s (u) − λ

)+
du, λ ∈ R, (7)

and define the empirical measures of concentration ÎE(β)

and λ̂(q) as

ÎE(β) =
∫ ∞

0
λβ Ê(λ)dλ, β > 0, (8)

and

λ̂(q) = Ê−1(q) = sup{λ : Ê(λ) ≥ q}, 0 < q < 1. (9)

3. ESTIMATION OF THE VARIANCE FUNCTION

In this section we describe the construction of our estima-
tor σ̂ 2(·), and we also introduce a smoothed version σ̂ 2

s (·). The
reason for considering a smoothed version is that smoothing
helps in some special cases. This will become clear later.

Our estimator σ̂ 2(u) can be considered a minimum distance
estimator that minimizes a criterion function WT over the pa-
rameter space. Motivated by the application of our method to
seismic data, we define the parameter space of our model as the
class of all unimodal functions on [0,1]. To introduce some no-
tation, let U(m) denote the class of all positive unimodal func-
tion on [0,1] with mode at m, that is, positive functions that
are increasing to the left of m and decreasing to the right. Then
U = ⋃

m∈[0,1] U(m) denotes the class of all unimodal functions
on [0,1].

As a criterion function, we consider the negative conditional
Gaussian likelihood with estimated nuisance parameters. Let

WT(σ 2) =
T∑

t=1

{

logσ 2
(

t

T

)

+
(
Xĉ

t,T − φ̂1(
t
T )Xĉ

t−1,T − · · · − φ̂p(
t
T )Xĉ

t−p,T

)2

σ 2( t
T )

}

,

where φ̂ = (φ̂1, . . . , φ̂p) denotes an estimator of φ = (φ1, . . . ,

φp), Xĉ
t;T = Xt,T − µ̂(t/T), and µ̂(·) is an estimator of µ(·). We

define

σ̂ 2 = argmin
σ 2∈U

WT(σ 2). (10)
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To speed up the calculation, the mode might be estimated in
a preliminary step. Let m̂ denote an estimate of the unknown
mode m of the true variance function. Then we define

σ̂ 2
m̂ = argmin

σ 2∈U(m̂)

WT(σ 2). (11)

As our final estimate of σ 2(·), we propose using “smoothed”
versions of the estimates just defined.

Note that a good approximation of the negative Gaussian log-
likelihood is given by the Whittle likelihood (Whittle 1962).
Thus the estimation approach can be considered a maximum
Whittle likelihood approach. However, whereas the Whittle
likelihood is considered a function in the frequency domain,
our approach considers the time domain.

Finding the estimator σ̂ 2 or σ̂ 2
m̂ means solving a constrained

optimization problem.

Basic Algorithm for Finding the Minimizers in (10) and (11).
First, we discuss the case where the mode is estimated. Note
that the solution σ̂ 2

m̂(·) is monotonically increasing to the left
of the mode m̂ and decreasing to the right, and estimation of
both parts can be done separately, using essentially the same
techniques. The key observation is that the foregoing likeli-
hood WT(·) is of exactly the form needed to apply the theory
of generalized isotonic regression (e.g., Robertson, Wright, and
Dykstra 1988). It follows that both the decreasing and the in-
creasing parts of σ 2(·) can be found by a generalized isotonic
regression on the squared residuals based on given values for
the AR parameters. For both parts, the pool-adjacent-violators
algorithm can be applied. Let e2

t denote the squared residual,
that is,

e2
t =

(

Xĉ
t,T − φ̂1

(
t

T

)

Xĉ
t−1,T − · · · − φ̂p

(
t

T

)

Xĉ
t−p,T

)2

, (12)

To the left of the estimated mode m̂ it is the (right-continuous)
slope of the greatest convex minorant to the cumulative sum di-
agram given by the points (k/T, (1/T)

∑k
t=1 e2

t ), k = 1, . . . ,T ,
and to the left of m̂ it is the (left-continuous) slope of the least
concave majorant to the same cumulative sum diagram (cf.
Robertson et al. 1988, thm. 1.2.1).

In the event the mode is not estimated, then the algorithm
just described must be performed T times, because any time
point t/T , t = 1, . . . ,T , is a potential mode. (The estimator
is known to have jumps only at t/T for some t = 1, . . . ,T .)
Among the resulting T different estimators, the one with the
overall largest value of WT is chosen.

There is, however, a small problem with the solution of the
algorithm just described. It is well known in density estima-
tion that the maximum likelihood estimator of a unimodal den-
sity does not behave well at the mode (i.e., is not consistent
at the mode, and behaves irregularly close to the mode). This
is sometimes called the spiking problem. The spiking problem
also applies when estimating the variance function under the
unimodality restriction. In some cases, however, estimation of
the maximum value of σ 2(·) is of importance for our method,
because it may be needed to estimate the (asymptotic) variance
of one of our discrimination measures (cf. Thm. 1). The spiking
problem can be avoided by introducing some smoothing.

Smoothing to Avoid Irregular Behavior at the Mode. Intu-
itively, the spiking problem can be understood by observing that
the isotonic regression is given by the slope of the least concave
majorant to the cumulative sum diagram based on the squared
residuals and hence the estimate of the mode depends on only a
few observations, regardless of sample size. One large squared
residual in the neighborhood of the mode will therefore cause
problems.

Sun and Woodroofe (1993) proposed a penalized least
squares approach to make the estimate of a density consistent at
the mode. Although this does not readily generalize beyond the
density case, another approach to stabilize the estimate is to first
smooth the squared residuals, via a kernel smoother, and then
perform isotonic regression on the smoothed data. This is the
approach that we use. That is, we form the smoothed residuals

e∗2
t =

∑∞
s=−∞ K

( s−t
[b T]

)
e2

s
∑∞

s=−∞ K
( s−t

[b T]
) , (13)

and find

σ̂ 2
s (·) = argmin

σ 2∈U

T∑

t=1

{

logσ 2
(

t

T

)

+ e∗2
t

σ 2( t
T )

}

(14)

or

σ̂ 2
s,m̂(·) = argmin

σ 2∈U(m̂)

T∑

t=1

{

logσ 2
(

t

T

)

+ e∗2
t

σ 2( t
T )

}

. (15)

Using these estimates, we define

Ê(λ) =
∫ 1

0

(
σ̂ 2

s (u) − λ
)+

du (16)

and similarly Êm̂(λ), where σ̂ 2
s is replaced by σ̂ 2

s,m̂. These
two empirical excess mass functions have corresponding em-
pirical discrimination measures ÎE(β) and λ̂(q), as defined in
(8) and (9), as well as the corresponding quantities ÎEm̂(β)

and λ̂m̂(q), which are defined using Êm̂(λ) instead of Ê(λ). We
study the large-sample behavior of all these quantities in the
next section.

We discuss later that using e∗2
t instead of the regular squared

residuals e2
t makes no difference asymptotically. We also

mention that isotonizing the variance function followed by
a smoothing step would also alleviate the spiking problem.
Mammen (1991) showed that the resulting estimator is asymp-
totically first-order equivalent to the estimator we use.

4. ASYMPTOTIC NORMALITY OF THE EMPIRICAL
CONCENTRATION MEASURES

Results on asymptotic normality of the empirical concentra-
tion measures formulated in this section motivate the use of our
discrimination procedures, which are known to be optimal in
the normal case. We need the following assumptions.

Assumption 1. (a) ε1, ε2, . . . are iid with Eε2
t = 1 and

E(ε4
1 log |ε1|) < ∞.

(b) sup1≤t≤T EX4
t,T < ∞.

(c) σ 2(·) ∈ U(m), supα∈[0,1] σ 2(α) < M < ∞, and

0 <
∫ 1

0 σ 2(α)dα.



244 Journal of the American Statistical Association, March 2006

Further, we assume that σ 2(·) has no “flat parts,” that is,

sup
λ>0

∣
∣
{
u ∈ [0,1] : |σ 2(u) − λ| < ε

}∣
∣ → 0 as ε → 0. (17)

Recall that for a (measurable) set C, we denote its Lebesgue
measure by |C|. Assumption 1(b) follows from Assump-
tion 1(a) if, for instance, we assume Xt,T to be a “locally station-
ary” process in the sense discussed by Dahlhaus and Polonik
(2004). Note that this definition of local stationarity does not
require that the parameter functions and the variance functions
be continuous; only a finite bounded variation is required. In
particular, our variance function is allowed to have jumps. We
would also like to point out that assumption (17) in particular
implies that the excess mass functional is continuously differ-
entiable for unimodal σ 2(·). This fact is needed in the proofs.
It is important to note, however, that unimodality of σ 2(·) is
not a necessary assumption for our discrimination procedure.
It could be dropped for the cost of additional, more complex
assumptions.

Our next assumption uses bracketing numbers of a class
of functions G. In this context, a set [g∗,g∗] := {h ∈ G : g∗ ≤
h ≤ g∗} is called a “bracket.” Given a metric ρ on G and δ > 0,
the bracketing number N(δ,G, ρ) is the smallest number of
brackets [g∗,g∗] with ρ(g∗,g∗) ≤ δ needed to cover G. If there
is no such class of brackets, then N(δ,G, ρ) = ∞.

Assumption 2. (a) The kernel function K is symmetric
around 0, is bounded, and has support [−1,1]. The smoothing
parameter b satisfies bT → ∞ and b

√
T → 0 as T → ∞.

(b) The estimators φ̂j of φj, j = 1, . . . ,p, satisfy the follow-
ing conditions:

1. φ̂j ∈ G, where G is a class of functions with ‖φ‖∞ < a for

some 0 < a < ∞, and
∫ 1

0

√
log N(δ,G,‖ · ‖∞)dδ < ∞,

where ‖ · ‖∞ denotes sup-norm.
2. ‖µ̂ − µ‖∞ = oP(T−1/4), ‖φ̂j − φj‖∞ = oP(T−1/4) for all

j = 1, . . . ,p.

Examples of function classes satisfying the finite integral
assumption in (b.1) include Hölder smoothness classes (with
appropriate smoothness parameters), the class of monotonic
functions, and of course constant functions. (For more details
and more examples, as well as for a definition of the brack-
eting covering numbers, see van der Vaart and Wellner 1996.)
In our application presented later we use a model with constant
AR parameters; thus the rate of convergence of these estimators
is

√
T . Note, however, that we do not require a

√
T-consistent

estimator in (b.2). [For estimators satisfying (b.2), see Dahlhaus
and Neumann 2001.]

When using a global estimate of the mode m̂, we also require
the following assumption.

Assumption 3.
∫ 1

0

(
σ 2(u) − σ 2(m̂)

)+
du = oP(1/

√
T ).

Assumption 3 is satisfied if, for instance T1/6(m̂ − m) =
oP(1) and σ 2(·) behaves like a quadratic around the mode m.

Our concentration measures are smooth functionals of the
empirical excess mass Ê, which itself is asymptotic normal.
This explains their asymptotic normality. Asymptotic normal-
ity of the excess mass is also of independent interest.

Lemma 1 (Asymptotic normality of the excess mass). Under
model (1) and Assumptions 1 and 2 the excess mass process√

T(Ê − E)(λ) converges in distribution to a mean-0 Gaussian
process in C[0, σ̄ 2(m)] with covariance function c(λ1, λ2)

given by

(µ4 − 1)

(


(�(0))

∫

�(λ1)∩�(λ2)

σ̄ 4(u)du

+ 
(�(λ1))
(�(λ2))

∫ 1

0
σ̄ 4(u)du

− 
(�(λ1))
(�(0))

∫

�(λ2)

σ̄ 4(u)du

− 
(�(λ2))
(�(0))

∫

�(λ1)

σ̄ 4(u)du

)

,

where µ4 = Eε4
1 , �(λ) = {u ∈ [0,1] : σ̄ 2(u) ≥ λ} and 
(C) =

∫
C σ̄ 2(u)du. If in addition Assumption 3 is assumed, then the

same results holds for
√

T(Êm̂ − E)(λ).

Theorem 1 (Asymptotic normality of the ÎE(β)). Under the
corresponding assumptions of Lemma 1, both

√
T(ÎE(β) −

IE(β)) and
√

T(ÎEm̂(β) − IE(β)) are asymptotically normal
with mean 0 and variance

∫ σ̄ 2(m)

0
λ

β

1

∫ σ̄ 2(m)

0
λ

β

2 c(λ1, λ2)dλ1 dλ2,

where c(λ1, λ2) is the covariance function of the excess mass
process given in Lemma 1.

Theorem 2 (Asymptotic normality of the λ̂(q)). Let q ∈ (0,1]
be fixed. Under the corresponding assumptions of Lemma 1,
both

√
T (̂λ(q) − λ(q)) and

√
T (̂λm̂(q) − λ(q)) are asymptoti-

cally normal with mean 0 and variance
(

1

|�(λ(q))|
)2

c
(
λ(q), λ(q)

)
, (18)

where c(·, ·) is the asymptotic variance of the empirical excess
mass given in Lemma 1.

An estimate of the variance can be found by plugging in the
empirical estimates for the corresponding theoretical values.

5. THE DISCRIMINATION PROCEDURE

In this section we describe our discrimination procedure in
some detail. The common setup is to assume the availability of
a training set with known types or classes. This training data
are used to estimate unknown quantities and to derive the ac-
tual classification rule. A new, unknown event is then assigned
to a category based on the value of the classification rule. Our
discrimination rule is based on the (empirical) discrimination
measures described earlier.

The actual format of the rule is motivated by asymptotic
normality of the empirical concentration measures. Under the
assumption that the observations within each class are iid
Gaussian random variables, optimal discrimination techniques
are well studied. Motivated by asymptotic normality of our
discrimination measures, we use such optimal normality-based
discrimination rules.
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A Two-Dimensional Variant. In the application study pre-
sented herein, where we apply our procedure to the discrimina-
tion of seismic times series, we follow a well-known practice
(see, e.g., Kakizawa et al. 1998) by treating each seismic time
series as bivariate by considering the p-wave and the s-wave
individually, and also assume the two waves are independent.
Figure 1 shows two examples of seismic time series (one earth-
quake and one explosion) split into p-waves and s-waves.

Applying our discrimination measures to the p-waves and
s-waves separately, we end up with a two-dimensional measure
of discrimination. We then apply a normality-based quadratic
classification rule to assign future observations into one of the
two classes, π1 = “earthquake” or π2 = “explosion.” That is,
if we let T(X) denote one of the two discrimination measures
ÎE(β) or λ̂(q), and we let X = (Xp,Xs) denote the decomposi-
tion of the seismic time series into p-wave Xp and s-wave Xs,
then T(X) = (T(Xp),T(Xs)) denotes the two-dimensional dis-
crimination measure. Then we allocate a newly observed time
series, X, to π1 based on T(X) if

−1

2
T(X)′(S−1

1 − S−1
2 )T(X) + (T′

1S−1
1 − T′

2S−1
2 )T(X) − k

≤ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]

, (19)

where

k = 1

2
ln

( |S1|
|S2|

)

+ 1

2
(T′

1S−1
1 T1 − T′

2S−1
2 T2), (20)

Ti denotes the sample average classification measure for
group i, Si is the estimated covariance matrix of the empirical
concentration measures for group i, |Si| is the determinant of Si,
c(i| j) is the cost associated with allocating an observation from
group j into group i, and pi is the proportion of observations
from group i in the population (see, e.g., Johnson and Wichern
1998). Because of the assumed independence of the p-wave and
s-wave Si, i = 1,2, will be diagonal matrices. Next, we study
this discrimination procedure numerically.

5.1 Classifying Seismic Time Series

The dataset that we use here was first published by Kakizawa
et al. (1998), who also provided a description of the events. (For
a detailed discussion of the problem, see also Shumway and
Stoffer 2000.) The dataset consists of eight known earthquakes
and 8 mining explosions, all measured by stations in Scandi-
navia at regional distances. It also contains an event of unknown
origin. One could envision a scenario where this procedure
would be used to monitor nuclear treaties, where classifying
a nuclear test as an earthquake would carry with it a different
cost than the opposite type of error. Nevertheless, for what is
done in the following, we set the cost associated with allocating
a series to the wrong class as equal for both cases. Likewise,
we assume that the proportions of each type are equal, that is,
p1 = p2 in (19). For this example, we use a second-order au-
toregressive process, because it seems to be a good fit for the
data available.

In this application we use the special case of our general
methodology described earlier, where we assume mean 0, con-
stant AR parameters, and p = 2. Further evidence that this as-
sumption is justified for classification purposes is provided by

Figure 2. Discrimination Scatterplot for the Quantile Method
(o, earthquake; ∗, explosion; �, unknown event).

the fact that our classification results presented herein did not
change when we applied the methodology with the mean func-
tion estimated (nonparametrically via a kernel estimator).

We use the excess mass quantile as our discrimination
measure, and first discuss the selection of the parameter q
determining the value λ(q) = E−1(q) on which to base our
discrimination. Clearly, selection of this quantity is crucial,
because q = 1 would provide no discriminatory power, since
λ(1) = 0 for all series. Because we want to discriminate be-
tween series belonging to π1 and π2, we search for a quan-
tile q that makes observations within πi as homogenous as
possible, while simultaneously making series in different cat-
egories as different as possible. Therefore, we search for the
value q that maximizes the ratio of between sums to squares
to within sums of squares. Assuming each wave to be inde-
pendent, we choose a different q independently for each type
of wave (see Fig. 3). As may be apparent from Figure 2,
much of the discriminatory power lies in the p-waves. The
data select a value of q = .01 for the p-wave. The scatter-
plot of the discrimination measures is shown in Figure 2. It
is of interest to note that the unknown event is clearly clas-
sified as an earthquake. Whereas the discrimination measure
results in complete separation of the two classes, the discrim-
ination rule results in two misclassifications as a result of the
identical distribution assumption having been apparently vi-
olated. Inherent in using the quadratic discrimination rule is
the assumption that the discrimination measures for each ex-
plosion or earthquake are identically distributed with respect
to others in the same class. It is not clear from Figure 2
whether this assumption is justified; nevertheless, we present
the example.

In the foregoing analysis we estimate AR parameters and
the variance function simultaneously by minimizing the Whittle
likelihood. More precisely, we define our parameter space as

� × U = {
φ = (φ1, . . . , φp) ∈ �,σ 2(·) unimodal on [0,1]},

where � denotes the set

� =
{

φ = (φ1, φ2) ∈ R
2 :

2∑

i=1

φiz
i �= 0 ∀ z ∈ C,0 < |z| ≤ 1

}

.
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Figure 3. The Ratio of Between Sums of Squares versus Within
Sums of Squares as a Function of q for Simulated Data Using the Quan-
tile Method.

Note that if in addition σ 2(·) is bounded (which we assume; see
Assumption 1), then this choice of � corresponds to our model
being locally stationary in the sense of Dahlhaus and Polonik
(2004). This in turn implies that the estimator φ̂L, defined in the
following, is

√
T-consistent, and hence our assumptions apply

to this case.
Let

WT(φ, σ 2) =
T∑

t=1

{

logσ 2
(

t

T

)

+ (xt,T − φ1xt−1,T − · · · − φpxt−p,T)2

σ 2( t
T )

}

,

and define

(φ̂L,m̂, σ̂ 2
L,m̂) = argmin

(φ,σ 2)∈�×U(m̂)

WT(φ, σ 2). (21)

Note that this can also be viewed as a profile likelihood method.
This is, we have σ̂ 2

L,m̂ = argminσ 2∈U(m̂) WT(σ 2, φ̂(σ 2)), where

WT(σ 2, φ̂(σ 2)) = argminφ∈� WT(φ, σ 2). Thus the foregoing
fits into the framework described in Section 3. The estimator φ̂

has the desired convergence rate. In fact, as shown by Dahlhaus
and Polonik (2005), it is of 1/

√
T-rate.

The final estimate of σ 2(·) that we use in the numerical work
is the “smoothed” version of σ̂ 2

L,m̂ as described earlier. Here the
estimate m̂ is the global mode of a kernel-smoothed squared
observations based on a Gaussian kernel with bandwidth of
50 time points. This bandwidth was chosen based on a visual
inspection of the data. This (rough) estimate was chosen by
computational convenience, and other estimates that we tried
worked similarly well.

The Algorithm. To find the minimizers in (21), we use an
iterative procedure described by Dahlhaus and Polonik (2005).
Note that finding the AR parameters for a given σ 2(t) is just
a weighted least squares problem. And given the values for the

AR parameters we use the algorithm for estimating the variance
function described earlier. These two steps are iterated to find
the global minimizers.

5.2 Simulations

In this section we present simulation results comparing our
method with the spectral, distance-based method of Sakiyama
and Taniguchi (2001). This spectral-based method essentially
assigns an observation to the category with spectra closest to
an estimate of the spectral density of the observed processes
with respect to an approximation of the Gaussian likelihood.
The simulated time series detailed herein were generated so that
alignment of the observations in time is not necessary, thus aid-
ing the distance-based procedure.

We emulate the original dataset by simulating observations
from each of two categories [meaning two different AR(2)

models]. We then try to reclassify each observation using the
remainder as a training set. The goal of this simulation study
is to show how the two proposed measures compare with the
spectral-based method under the proposed model. We mimic
the data of the numerical study in that we generate eight obser-
vations from each of two categories, and show that when the as-
sumptions regarding identically distributed random variables is
satisfied, the quadratic discrimination rule performs quite well,
in many cases outperforming the spectral-based classification
rule.

For an observation from group i, we simulate from a second-
order AR process of the form:

xt,T = 1.58xt−1,T − .64xt−2,T + εtσi(t/T). (22)

The values for the AR parameter are similar to the estimated pa-
rameters for the data in the numeric example and can be shown
to satisfy the requirement for causality.

The two different variance functions that we use for the two
categories in the following tables are of the form

σ1(u) = 300
(
ua1(u < .5) + (1 − u)b1(u > .5)

)
,

(23)
σ2(u) = 300

(
uc1(u < .5) + (1 − u)d1(u > .5)

)
,

where a and b are adjusted to illustrate how the discrimina-
tion measures behave at different levels of similarity between
the two categories. Let Xi denote the number of misclassifica-
tions in one run of the simulation; thus Xi ∈ (0,1, . . . ,16). In
Tables 1 and 2, X̄ denotes the misclassification rate and sX es-
timates the standard deviation of the number of misclassifica-
tions. “Spec” denotes the spectral-based methods of Sakiyama

Table 1. Misclassification Rate, X̄ , and Estimated Standard
Deviation, sX , of the Number of Misclassifications Based

on 100 Simulation Runs Under Model (23)

ÎE λ̂ Spec

a X̄ sX X̄ sX X̄ sX

2.6 .07 .26 .01 .11 .59 .77
2.5 .2 .42 .03 .17 .7 .67
2.4 .49 .70 .06 .24 .84 .84
2.25 2.52 1.61 .4 .62 1.45 1.14
2.2 3.2 1.22 .86 .98 1.3 1.25
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Table 2. Misclassification Rate, X̄ , and Estimated Standard
Deviation, sX , of the Number of Misclassifications Based

on 100 Simulation Runs Under Model (24)

ÎE λ̂ Spec

a b X̄ sX X̄ sX X̄ sX

3.6 3.0 .07 .25 .08 .31 1.44 1.12
3.5 2.9 .29 .55 .14 .34 1.72 1.16
3.4 2.75 .62 .84 .38 .60 1.84 1.24
3.3 2.6 1.50 1.23 .91 1.00 1.94 1.27

and Taniguchi (2001). The tables are based on 100 simula-
tion runs. In all cases examined, the quantile method outper-
forms the spectral-based methods, and in several cases the
integrated excess mass approach is better as well. Table 1 ex-
amines the case in which the varaince function is continuous,
setting c = d = 2 and a = b. Table 2 considers a variance func-
tion that contains jumps, thus not satisfying local stationarity in
the sense of Dahlhaus (1997), but still covered by the definition
given by Dahlhaus and Polonik (2004). This is accomplished
by choosing c = 2 and d = 3, so that the jump occurs at u = .5
and is as large as half of the maximum of the variance function:

σ1(u) = 300
(
u31(u < .5) + (1 − u)21(u > .5)

)
,

(24)
σ2(u) = 300

(
ua1(u < .5) + (1 − u)b1(u > .5)

)
.

It is interesting to note that even when both methods make mis-
classifications for a particular dataset, the misclassified obser-
vations often are not the same across methods. It seems that
discrimination is based on different information in the data.
Thus it seems possible to define a discrimination rule, that is
a combination of spectral-based and time-based methods that
would outperform each method individually.

6. PROOFS

To ease notation, we write Xt instead of Xt,T through-
out this section. For the proofs, we assume that X−[bT]+1 =
X−[bT]+2 = · · · , X0 = 0 = XT+1 = XT+2 = · · · = XT+[bT]. Let

̂(α) and 
̂∗(α) denote the partial sum processes for the ordi-
nary and the smoothed residuals, that is,


̂(α) = 1

T

[αT]∑

t=1

e2
t and 
̂∗(α) = 1

T

[αT]∑

t=1

e∗2
t . (25)

Recall that e∗2
t = ∑t+[bT]

s=t−[bT](K( t−s
bT )/A)e2

s , where A =
∑s+[bT]

t=s−[bT] K( s−t
[bT] ). Hence, by rearranging sums, we can write


̂∗(α) = 1

T

[αT]+[bT]∑

t=1

ωt(α)e2
t , (26)

where the nonrandom weights ωt(α) are normalized sums of
kernel weights. The specific form of the weights plays no role in
our proofs, and hence no precise formula is provided. However,
what is important is that most of the weights equal 1—namely,
if α > 2b, then ωt(α) = 1 for all [bT] ≤ t ≤ [αT] − [bT]; other-
wise, 0 < ωt(α) < 1.

First, we prove a lemma that allows us to disregard estimation
of the nuisance parameters.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then

√
T sup

0≤α≤1

∣
∣
∣
∣
∣

̂(α) − 1

T

[αT]∑

t=1

σ 2(t/T)ε2
t

∣
∣
∣
∣
∣
= oP(1)

and

√
T sup

0≤α≤1

∣
∣
∣
∣
∣

̂∗(α) − 1

T

[αT]+[bT]∑

t=1

ωt(α)σ 2(t/T)ε2
t

∣
∣
∣
∣
∣
= oP(1).

Proof. For ease of notation, we present the proof for the
case where p = 2. The case of a general order p ≥ 1 follows
similarly. To simplify the proof, we also assume that the para-
meter functions φ1, φ2, and σ are defined on the whole real
line with φ1(u) = φ2(u) = σ(u) = 0 for u /∈ [0,1]. We first
prove the assertion for the ordinary residual partial sum process

̂(α) = 1/T

∑[αT]
t=1 e2

t .

First, we consider the effect of estimating µ(·). With ẽt =
Xc

t −φ̂1(t/T)Xc
t−1 −φ̂2(t/T)Xc

t−2 and �T(t) = µ(t/T)−µ̂(t/T),

we can write the difference 1
T

∑[αT]
t=1 e2

t − 1
T

∑[αT]
t=1 ẽ2

t as

2

T

[αT]∑

t=1

ẽt

(

�T(t) − φ̂1

(
t

T

)

�T(t − 1)

− φ̂2

(
t

T

)

�T(t − 2)

)

(27)

+ 1

T

[αT]∑

t=1

(

�T(t) − φ̂1

(
t

T

)

�T(t − 1)

− φ̂2

(
t

T

)

�T(t − 2)

)2

. (28)

Using the Cauchy–Schwarz inequality, (27) can be bounded
from above by

2α

[
1

αT

[αT]∑

t=1

ẽ2
t

][
1

αT

[αT]∑

t=1

(

�T(t) − φ̂1

(
t

T

)

�T(t − 1)

− φ̂2

(
t

T

)

�T(t − 2)

)2
]

≤ 2

[

1 + sup
t

∣
∣
∣
∣φ̂1

(
t

T

)∣
∣
∣
∣ + sup

t

∣
∣
∣
∣φ̂2

(
t

T

)∣
∣
∣
∣

]2

× sup
t

|�T(t)|2 1

T

[αT]∑

t=1

ẽ2
t

= oP(1/
√

T )
1

T

[αT]∑

t=1

ẽ2
t . (29)

The last equality follows from the fact that by assumption,
the φ̂i are uniformly consistent estimates of φi, the φi are
bounded, and supt |�T(t)|2 = oP(1/

√
T ). Later we show that

sup0≤α≤1
1
T

∑[αT]
t=1 ẽ2

t ≤ 1
T

∑T
t=1 ẽ2

t = OP(1). This, together

with the foregoing, then implies that sup0<α≤1 | 1
T

∑[αT]
t=1 e2

t −
1
T

∑[αT]
t=1 ẽ2

t | = oP(1/
√

T ). The fact that (28) is also oP(1/
√

T )

follows similarly, but is somewhat easier. Details are omitted.
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We now show that sup0<α≤1 | 1
T

∑[αT]
t=1 ẽ2

t − 1
T

∑[αT]
t=1 σ 2( t

T )×
ε2

t | = oP(1/
√

T ). This then completes the proof, because
1
T

∑[αT]
t=1 σ 2( t

T )ε2
t ≤ 1

T

∑T
t=1 σ 2( t

T )ε2
t = OP(1). We can write

1

T

[αT]∑

t=1

ẽ2
t − 1

T

[αT]∑

t=1

σ 2
(

t

T

)

ε2
t

= 1

T

[αT]∑

t=1

[

−2

(

Xc
t − φ1

(
t

T

)

Xc
t−1 − φ2

(
t

T

)

Xc
t−2

)

Xc
t−1

]

×
(

φ̂1

(
t

T

)

− φ1

(
t

T

))

+ 1

T

[αT]∑

t=1

[

−2

(

Xc
t − φ1

(
t

T

)

Xc
t−1 − φ2

(
t

T

)

Xc
t−2

)

Xc
t−2

]

×
(

φ̂2

(
t

T

)

− φ2

(
t

T

))

+ 1

T

[αT]∑

t=1

(

φ̂

(
t

T

)

− φ

(
t

T

))′
Ct

(

φ̂

(
t

T

)

− φ

(
t

T

))

= − 2

T

2∑

j=1

[αT]∑

t=1

σ

(
t

T

)

εtX
c
t−j

(

φ̂j

(
t

T

)

− φj

(
t

T

))

+ 1

T

[αT]∑

t=1

(

φ̂

(
t

T

)

− φ

(
t

T

))′
Ct

(

φ̂

(
t

T

)

− φ

(
t

T

))

,

(30)

where Ct = ((Xc
t−iX

c
t−j)i,j), i, j = 1,2 and φ(t/T) = (φ1(t/T),

φ2(t/T))′. We now show that both sums in (30) are oP(1/
√

T )

uniformly in α ∈ [0,1]. As for the second of these two sums,
note that

P

(

sup
α∈[0,1]

∣
∣
∣
∣
∣

1

T

[αT]∑

t=1

Xc
t−iX

c
t−j

∣
∣
∣
∣
∣
> C

)

≤ P

(
1

T

T∑

t=1

|Xc
t−iX

c
t−j| > C

)

≤ supt var(Xt)

C
= O

(
1

C

)

.

Hence sup0<α≤1
1
T

∑[αT]
t=1 |Xc

t−iX
c
t−j| = OP(1), i, j = 1,2, and

because, by assumption, ‖φ̂j − φj‖∞ = oP(T−1/4) for j = 1,2,
the second sum in (30) is of order oP(1/

√
T ) (uniformly in α).

Now we concentrate on the first sum in (30). For a function h
on [0,1], let

MT,j(h) = 1√
T

T∑

t=1

σ

(
t

T

)

εtX
c
t−jh

(
t

T

)

, j = 1,2. (31)

Note that the first sum in (30) can be written as − 2√
T

×
∑2

j=1 MT,j((φ̂j −φj)1[0,α]). Hence defining HT,j = {h : h = (g−
φj)1[0,α];g ∈ G, α ∈ [0,1],‖g − φj‖∞ ≤ T−1/4}, and recalling
that, by assumption, φ̂j ∈ G, j = 1,2, and ‖T1/4(φ̂j − φj)‖∞ =
oP(1), we see that T1/4(φ̂j −φj) ∈ HT,j with probability tending
to 1 as T → ∞. Hence the first sum in (30) being oP(1/

√
T )

uniformly in α follows from

sup
h∈HT,j

|MT,j(h)| = oP(1) for j = 1,2. (32)

For ease of notation, let H = HT,j. Suppose that for each δ > 0,
there exists a finite partition of H into sets Hk, k = 1, . . . ,N(δ)

(and we construct an appropriate partition later). Then we have,
for η, δ > 0,

P
(

sup
h∈H

|MT,j(h)| > η
)

≤ P
(

max
k=1,...,N(δ)

|MT,j(hk,∗)| > η/2
)

+ P
(

max
k=1,...,N(δ)

sup
g,h∈Hk

|MT,j(g − h)| > η/2
)
. (33)

Note that MT,j(h) for each fixed h is a sum of martingale dif-
ferences with respect to the filtration {Ft}, where Ft is the
σ -algebra generated by εt, εt−1, . . . . Our assumptions imply
that var(MT,j(h)) = O(‖h‖∞) = o(1) for any h ∈ H. This im-
plies that the first term on the right side of (33) tends to 0 as
T → ∞. The fact that the second term on the right side of (33)
also becomes small follows from lemma 3.3 of Nishiyama
(2000) as applied to a martingale process in discrete time as
considered here (cf. Nishiyama 2000, sec. 4). To apply this
lemma, we need to verify two conditions, called [PE′] and [L1′]
in Nishiyama’s article. We do this next.

First, we construct the needed (nested) partition of H. Let
δ > 0. Recall that, by assumption, G has a finite bracketing
integral. Without loss of generality, the corresponding parti-
tions can be assumed to be nested (see, e.g., van der Vaart
and Wellner 1996; Nishiyama 1996). Let Gk,1 ≤ k ≤ NB(δ),
be the corresponding brackets, that is, Gk = {g ∈ G : gk,∗ ≤
g ≤ g∗

k} with functions g∗
k and g∗,k satisfying ρ(g∗

k ,g∗,k) < δ.
Divide [0,1] into small intervals [bk−1,bk] with 0 = b0 <

b1 < · · · < bM(δ2)−1 < bM(δ2) = 1 and |bk − bk−1| < δ2 for
1 ≤ k ≤ M(δ2) with M(δ2) = O(1/δ2). Then let the partition
of H consist of the sets Hk,� = {h = (g − φj)1[0,α] ∈ H :
g ∈ Gk, α ∈ [b� − b�−1]}, k = 1, . . . ,NB(δ), � = 1, . . . ,M(δ2).
By construction

∫ 1
0

√
log N(η)dη ≤ ∫ 1

0

√
log NB(η)dη +

∫ 1
0

√
log M(η2)dη < ∞, and the partition can without loss of

generality be chosen to be decreasing in δ.
We need some more notation. Let Et denote conditional

expectation given Ft. Write MT(h) = ∑T
t=1 ξt(h), where

ξt(h) = 1/
√

Tσ(t/T)εtXc
t−jh(t/T). With ξ̄t = suph∈H |ξt(h)|, let

VT(η) = ∑T
t=1 Et−1(ξ̄tI(ξ̄t > η)). In this notation, Nishiyama’s

condition [L1′] reads as VT(η) = oP(1) for every η > 0. Note
that there exists a constant C > 0 such that ξ̄t ≤ C 1√

T
|εtXc

t−j|
and hence VT(η) ≤ C2

T

∑T
t=1(X

c
t−j)

2P(|εtXc
t−j| > η

√
T/C|Xc

t−j).

Now, note that on the set AT = {maxt=1,...,T |Xc
t | <

√
T/ log T},

we have P(|εtXc
t−j| > η

√
T/C|Xc

t−j) ≤ P(|εt| > η log T/C) → 0
for each η > 0. Hence on the set AT , we have VT(η) = oP(1)

for every η > 0. Because, by assumption, Xt, t = 1, . . . ,T , have
uniformly bounded fourth moments, we also have P(AT) → 1
as T → ∞.

Next, we turn our attention to Nishiyama’s condition
[PE′]. For this, we need an estimate of Et−1(Hk,�) :=
Et−1| supφ,ψ∈Hk,� (ξt(φ) − ξt(ψ))2|. Note that for φ,ψ ∈Hk,�,
we have φ = (h − φj)I[0,α] and ψ = (g − φj)I[0,β], with
‖g − h‖∞ ≤ η and |α − β| ≤ η2. Hence, writing φ − ψ =
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(h − g)I[0,α] + (g − φj)(I[0,α] − I[0,β]) and using the fact that,
by assumption, σ 2(·) < M < ∞, we get

Et−1(Hk,l)

≤
2M

(
η2 var(εt)(Xc

t−1)
2 + 1√

T
var(εt)(Xc

t−1)
2I[α,β]( t

T )
)

T
,

and hence

sup
η∈(0,1)

max
1≤k≤NB(η),1≤�≤M(η2)

√∑T
t=1 Et−1(Hk,l)

η

≤ M
√

var(εt)

√
√
√
√ 1

T

T∑

t=1

(Xc
t−1)

2

+ M
1

η

√
1√
T

var(εt)
∑T

t=1(X
c
t )

2I[α,β]( t
T )

T
.

Condition [PE′] requires that the expression on the left
side of the last inequality be stochastically bounded. We have
|α−β| ≤ η2, 1/T

∑T
t=1(X

c
t−1)

2 = OP(1) and max1≤t≤T(Xc
t )

2 =
OP(

√
T ), where for the latter we use Assumption 1(b). Hence

we see that the right side is stochastically bounded, and [PE′]
follows.

This completes the proof for 
̂(α) the partial sum process
based on the regular residuals. The proof for 
̂∗(α) is similar
by using the representation (26) and observing that |ωt(α)| ≤ 1.

We now show the fact that 
̂(α) and 
̂∗(α) are very close
uniformly in α. This implies that the empirical excess mass
functionals based on the smoothed and ordinary squared resid-
uals have the same limiting behavior.

Lemma 3. Under Assumptions 1 and 2, we have√
T sup

α∈[0,1]
|
̂(α) − 
̂∗(α)| = oP(1).

Proof. Using Lemma 2, we can write


̂(α) = 1

T

[αT]∑

t=1

σ 2(t/T)ε2
t + oP(1/

√
T ), (34)

and similarly, for the smoothed version we have


̂∗(α) = 1

T

[αT]+[bT]∑

t=1

σ 2(t/T)ε2
t ωt(α) + oP(1/

√
T ), (35)

where the oP(1/
√

T )-terms are uniform in α ∈ [0,1]. Because
ωt(α) �= 1 only for values t close to 1 and [αT], we can write√

T
(

̂(α) − 
̂∗(α)

)

=
{

QT(α) + BT(α) + CT(0) + oP(1) for α > 2b

CT(α) + oP(1) for α ≤ 2b,
(36)

where

QT(α) = 1√
T

[αT]+[bT]∑

t=[αT]−[bT]+1

σ 2(t/T)
(
1{1 ≤ t ≤ [αT]} − ωt(α)

)

× (ε2
t − 1),

BT(α) = 1√
T

[αT]+[bT]∑

t=[αT]−[bT]+1

σ 2(t/T)
(
1{1 ≤ t ≤ [αT]} − ωt(α)

)
,

and

CT(α) = 1√
T

[αT]+[bT]∑

t=1

σ 2(t/T)
(
1{1 ≤ t ≤ [αT]} − ωt(α)

)
ε2

t .

The oP(1) terms in (36) (which are uniform in α ∈ [0,1]) are
the sum of the two oP terms from (34) and (35). First, we con-
sider CT(α). With Wt = σ 2( t

T )(1{1 ≤ t ≤ [αT]} − ωt(α))ε2
t ,

we have

sup
[αT]≤2[bT]

|CT(α)| ≤ 1√
T

3[bt]∑

t=1

|Wt|

= √
Tb · 1

bT

3[bt]∑

t=1

|Wt| = o(1)OP(1).

The last equality follows because by assumption,
√

Tb = o(1)

and 1
bT

∑3[bt]
t=1 |Wt| = OP(1), because the random variables |Wt|

have (uniformly) finite expected values.
Next, we show supα∈[0,1] |QT(α)| = oP(1), where, to sim-

plify notation, we have extended the definition of QT(α) to all
α ∈ [0,1] to

QT(α) = 1√
T

[αT]+[bT]∑

t=max([αT]−[bT]+1,1)

vt(α)Zt,

where vt(α) = σ 2(t/T)(1{1 ≤ t ≤ [αT]} − ωt(α)) and
Zt = ε2

t − 1. Note that QT(α) is a sum of at most 2[bT] in-
dependent random variables that are not necessarily bounded.
Therefore, we use a truncation argument. By assumption,
E(Z2

t log |Zt|) < ∞, we can truncate the variables |Zt| at√
KT/log T for some appropriate K > 0, to be determined later.

For any K > 0, the difference is negligible, as the following
argument shows:

Dn(α)

:=
∣
∣
∣
∣
∣

1√
T

[αT]+[bT]∑

t=max([αT]−[bT]+1,1)

vt(α)Zt

− 1√
T

[αT]+[bT]∑

t=max([αT]−[bT]+1,1)

vt(α)Zt1

(

|Zt| ≤
√

KT

log T

)∣
∣
∣
∣
∣

≤ 1√
T

[αT]+[bT]∑

t=max([αT]−[bT]+1,1)

M|Zt|1
(

|Zt| >
√

KT

log T

)

≤ 1√
T

T+[bT]∑

t=1

M|Zt|1
(

|Zt| >
√

KT

log T

)

,

and hence for any η > 0,

P
(

sup
α∈[0,1]

Dn(α) > η
)

≤ P

(

∃ t ∈ {1, . . . ,T + [bT]} : |Zt| >
√

KT

log T

)

≤ (T + [bT]) · P

(

|Zt| >
√

KT

log T

)

→ 0 as T → ∞,
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where the convergence to 0 follows from the moment assump-
tion on εt. Hence we need only show that the sum of the trun-
cated random variables tends to 0 uniformly over α ∈ [0,1].
This is done by exploiting Bernstein’s inequality. Toward this
end, we center the truncated variables. Let µT = EZt1(|Zt| ≤√

T/(K log T)). First, we show that centering is negligible.
Because EZt = 0, we have µT → 0 as T → ∞. Because, by
assumption b

√
T → 0, it follows that

sup
α∈[0,1]

∣
∣
∣
∣
∣

1√
T

[αT]+[bT]∑

t=[αT]−[bT]+1

vt(α)µT

∣
∣
∣
∣
∣
≤ M

2[bT] + 1√
T

µT = o(1).

Further, with µ4 = var(Zt), we have var(vt(α)Zt1(|Zt| ≤√
T

K log T )) ≤ M2µ4. Hence, for every fixed ε > 0, we have

P

(

sup
α∈[0,1]

∣
∣
∣
∣
∣

1√
T

[αT]+[bT]∑

t=[αT]−[bT]+1

vt(α)

×
(

Zt1

(

|Zt| ≤
√

T

K log T

)

− µT

)∣
∣
∣
∣
∣
> ε

)

≤ 2T · P

(∣
∣
∣
∣
∣

1√
bT

[αT]+[bT]∑

t=[αT]−[bT]+1

vt(α)

×
(

Zt1

(

|Zt| ≤
√

T

K log T

)

− µT

)∣
∣
∣
∣
∣
>

ε√
b

)

≤ 2T · exp

{

−1

2

ε2/b

2M2µ4 + 1
3

ε√
b

2M
√

T
K log T /

√
2[bT]

}

≤ 2T · exp

{

−1

2

ε2/b

2M2µ4 +
√

2Mε
3bK log T

}

≤ 2T · exp{−c1εK log T},
for an appropriate constant c1 > 0 and T large enough. For
K > 0 large enough, the last expression in the foregoing series
of inequalities tends to 0 as T → ∞.

It remains to show that supα∈[2b,1] |BT(α)| = o(1). Writing

BT(α) = √
Tb

(
1

bT

[αT]+[bT]∑

t=[αT]−[bT]+1

σ 2
(

t

T

)

× (
1{1 ≤ t ≤ [αT]} − wt(α)

)
)

,

we observe that the summands are positive and bounded.
Because there are (at most) 2[bT] + 1 many such summands,
the term in parentheses is bounded uniformly in α. Because√

Tb → 0, by assumption, it follows that supα∈[2b,1] |BT(α)| =
o(1).

Proof of Lemma 1

We mention that the some elements of the proof are similar
to those of Polonik (1995). We consider only the case Êm̂. The
case of the regular empirical excess mass Ê follows similarly
but is simpler, and hence we omit the proof.

Our target here is the empirical excess mass of the (standard-
ized) variance function ¯̂σ 2

s,m̂(·), based on the smoothed residu-
als and the estimated mode. We present the proof for the excess
mass process based on the regular residuals. However, a closer
inspection of the proof reveals that everything depends only on
properties of the process {√T(
̂ − 
)(α),α ∈ [0,1]}, where

(α) = ∫ α

0 σ 2(u)du. In case of the smoothed residuals, this
process would be replaced by {√T(
̂∗ − 
)(α),α ∈ [0,1]},
and Lemma 3 shows that these two processes have the same
limiting behavior.

We first prove the assertion for the excess mass of σ̂ 2
m̂(·), in-

stead of the standardized function ¯̂σ 2
m̂(·). The behavior of the

latter follows from the former by an easy argument.
Recall the characterization of σ̂ 2

m̂(·) as consisting of two
isotonic regressions. To the left of the estimated mode m̂,
it is the (right continuous) slope of the greatest convex mi-
norant to the cumulative sum diagram given by the points
(k/T,

∑k
t=1 e2

t ), k = 1, . . . ,T (cf. Robertson et al. 1988), and
to the left of m̂, it is the (left-continuous) slope of the least
concave majorant to the same cumulative sum diagram. It fol-
lows that σ̂ 2

m̂(·) is a piecewise constant function with level sets
{α ∈ [0,1] : σ̂ 2

m̂(α)} = [̂aλ, b̂λ] being an interval and
∫ b̂λ

0 σ̂ 2
m̂(α)dα = ∑[̂bλT]

t=1 e2
t . Hence, letting


̂(a,b) = 1

T

[bT]∑

t=[aT]+1

e2
t ,

for the excess mass Eσ̂ 2,m̂(λ) of σ̂ 2
m̂(·), we have that

Eσ̂ 2,m̂(λ) =
∫ 1

0

(
σ̂ 2

m̂(u) − λ
)+

du =
∫ b̂λ

âλ

(
σ̂ 2

m̂(u) − λ
)

du

=: Ĥλ(̂aλ, b̂λ),

where Ĥλ(a,b) = 
̂(a,b) − λ(b − a). We also have, by def-
inition of Ĥλ, that Ĥλ(̂aλ, b̂λ) = sup0≤a<b≤1 Ĥλ(a,b). We can
expect this empirical excess mass to be close to

Eσ 2,m̂(λ) = sup
0≤a≤m̂≤b≤1

(

(a,b) − λ(b − a)

)

= sup
0≤a≤m̂≤b≤1

Hλ(a,b) = H(ãλ, b̃λ), (37)

where ãλ and b̃λ are defined through the last equality, 
(a,b) =
∫ b

a σ 2(u)du, and Hλ(a,b) = 
(a,b) − λ(b − a). It is straight-
forward to see that Eσ 2,m̂(λ) = 
(aλ,bλ) − λ(bλ − aλ), where
for λ ≤ σ 2(m̂), we have [aλ,bλ] = cl{u ∈ [0,1] :σ 2(u) ≥ λ}.
[Here cl(A) denotes the closure of a set A.] For λ > σ 2(m̂),
the mode m̂ becomes one of the limits of the interval [ãλ, b̃λ]
from (37). If m̂ ≤ m, then ãλ = m̂, and without loss of gener-
ality, we assume this to be the case. It is also not difficult to
see that b̃λ = bλ as long as Eσ 2,m̂(λ) > 0, and there is level
λ̃max < σ 2(m) with Eσ 2,m̂(λ) = 0 for all λ > λ̃max. Note also
that the supremum in the definition of Eσ 2,m̂ is extended over
a smaller set than in the definition of Eσ 2 . Hence we have
Eσ 2,m̂(λ) ≤ Eσ 2(λ), with equality for λ ≤ σ 2(m̂). Because ex-
cess mass functionals are positive and monotonically decreas-
ing, we obtain the “approximation error,” supλ≥0 |(Eσ 2,m̂(λ) −
Eσ 2(λ))| ≤ Eσ 2(σ 2(m̂)). The latter is, in fact, the quantity from
Assumption 3, and hence is of the order oP(1/

√
T ).
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We obtain
√

T
(
Eσ̂ 2,m̂(λ) − Eσ 2(λ)

)

= √
T
(
Eσ̂ 2m̂(λ) − Eσ 2,m̂(λ)

) + √
T
(
Eσ 2,m̂(λ) − Eσ 2(λ)

)

= √
T
(
Eσ̂ 2m̂(λ) − Eσ 2,m̂(λ)

) + oP(1).

Hence it remains to consider the process
√

T(Eσ̂ 2m̂(λ) −
Eσ 2,m̂(λ)). We write

√
T
(
Eσ̂ 2(λ) − Eσ 2,m̂(λ)

) = √
T
(
Ĥλ(̂aλ, b̂λ) − Hλ(aλ,bλ)

)

= √
T(Ĥλ − Hλ)(̂aλ, b̂λ) + R1(λ)

= √
T(Ĥλ − Hλ)(aλ,bλ) + R1(λ) + R2(λ), (38)

where R1(λ) = √
T[Hλ(̂aλ, b̂λ) − Hλ(aλ,bλ)] and R2(λ) =√

T[(Ĥλ − Hλ)(̂aλ, b̂λ) − (Ĥλ − Hλ)(aλ,bλ)].
Observe that by using the definitions of aλ,bλ and âλ, b̂λ as

maximizers of Hλ and Ĥλ, we have

0 ≤ Hλ(aλ,bλ) − Hλ(̂aλ, b̂λ)

= (Hλ − Ĥλ)(aλ,bλ) − (Hλ − Ĥλ)(̂aλ, b̂λ)

+ (
Ĥλ(aλ,bλ) − Ĥλ(̂aλ, b̂λ)

)

≤ (Hλ − Ĥλ)(aλ,bλ) − (Hλ − Ĥλ)(̂aλ, b̂λ). (39)

Hence we obtain that

|R1(λ) + R2(λ)|
≤ 2

∣
∣
√

T
(
(Ĥλ − Hλ)(̂aλ, b̂λ) − (Ĥλ − Hλ)(aλ,bλ)

)∣
∣. (40)

The key observation now is that (40), and also the main term
in (38), can be controlled if we have a hand on the process√

T(Ĥλ − Hλ)(a,b). We show that this process converges
weakly to a tight Gaussian process. This, together with (39),
implies that âλ and b̂λ are consistent estimators for aλ and bλ

(see Lemma 4). A combination of these two results immedi-
ately implies [because of (40)] that |R1(λ) + R2(λ)| = oP(1),
and this in turn entails asymptotic normality of our target quan-
tity

√
T(Eσ̂ 2(λ) − Eσ 2,m̂(λ)) [cf. (38)].

Lemma 4. If sup0≤a≤b≤1 |(Ĥλ − Hλ)(a,b)| = oP(1) then
supλ>0 |̂aλ − aλ| = oP(1) and supλ>0 |̂bλ − bλ| = oP(1).

The proof of this lemma follows the proof of theorem 3.5 of
Polonik (1995). Details are omitted here. Note also that the re-
sults that follow imply the assumed uniform consistency of Ĥλ.

It remains to prove weak convergence of the process√
T(Ĥλ − Hλ)(a,b),a,b ∈ [0,1], to a tight limit. Observe that

because σ 2(·) is assumed to be totally bounded, we can write

(a,b) = 1

T

∑[bT]
t=[aT]+1 σ 2(t/T) + O(1/T), and hence we have

√
T(Ĥλ − Hλ)(a,b)

= √
T

(
1

T

[bT]∑

t=[aT]+1

σ 2(t/T)(ε2
t − 1)

)

+ O(1/
√

T ),

= ZT(b) − ZT(a) + O(1/
√

T ),

where ZT(α) = 1/
√

T
∑[αT]

t=1 σ 2(t/T)(ε2
t − 1). We now prove

that the partial sum process {ZT(α),α ∈ [0,1]} as a process in
D[0,1] converges in distribution to a Gaussian process. This

then completes the proof, because it entails asymptotic stochas-
tic equicontinuity, as well as asymptotically normality of the
process ZT(b) − ZT(a). These are the two properties that we
need to prove. The asserted covariance function of the excess
mass process then follows straightforwardly from Lemma 5.

Lemma 5. Under the assumptions of Lemma 1, we have as
T → ∞ that

ZT(α) → G(α) in distribution in D[0,1],
where G(α) is a mean-0 Gaussian process with cov(G(α),

G(β)) = (µ4 − 1)
∫ min(α,β)

0 σ 4(u)du.

Proof. We first prove convergence of the finite-dimensional
distributions. Let Yt,T = σ 2(t/T)(ε2

t − 1), and define

B2
T(α) = var(

√
TZT(α)) = (µ4 − 1)

[αT]∑

t=1

σ 4(t/T), (41)

where µ4 denotes the fourth moment of εt.
We use the Lindeberg–Feller central limit theorem. Hence

we need to show that

1

B2
T(α)

[αT]∑

t=1

E
{
Y2

t,TI
(|Yt,T | ≥ εBT(α)

)} → 0 (42)

as T → ∞. We have

1

B2
T(α)

[αT]∑

t=1

E
[
Y2

t,TI
(|Yt,T | ≥ εBT(α)

)]

= 1

B2
T(α)

[αT]∑

t=1

E

[

σ 4
(

t

T

)

(ε2
t − 1)2I

(

|ε2
t − 1| ≥ εBT(α)

σ 2( t
T )

)]

≤ 1

B2
T(α)

[αT]∑

t=1

σ 4
(

t

T

)

E

[

(ε2
t − 1)2I

(

|ε2
t − 1| ≥ εBT(α)

M

)]

[since σ 2(u) ≤ M]

= 1

µ4 − 1
E

[

(ε2
t − 1)2I

(

|ε2
t − 1| ≥ εBT(α)

M

)]

(because the εt are iid),

which converges to 0 because BT(α) → ∞. Hence we have that
for every α ∈ (0,1), ZT(α)/BT (α) →d N (0,1), so that by the
Cramer–Wold device and the univariate central limit theorem,
for every (α1, . . . , αm) ∈ [0,1]m, ZT(α) →d N (0,�), where
� is the m × m variance–covariance matrix (�(i, j)) with

�(i, j) = (µ4 − 1)

∫ min(αi,αj)

0
σ 4(u)du. (43)

It remains to show asymptotic equicontinuity of ZT(α); that is,
we have to show that for every ε > 0,

lim
δ↓0

lim sup
T→∞

P
(

sup
|α−β|<δ

|ZT(α − β)| > ε
)

= 0. (44)

To prove this, we show that

E
[|ZT(s) − ZT(r)|2|ZT(t) − ZT(s)|2] ≤ [F(t) − F(r)]2 (45)



252 Journal of the American Statistical Association, March 2006

for r ≤ s ≤ t, where F is a nondecreasing continuous func-
tion on [0,1]. Asymptotic equicontinuity then follows (see
Billingsley 1999). We have

E
[|ZT(s) − ZT(r)|2|ZT(t) − ZT(s)|2]

= E

(√
T

[sT]∑

j=[rT]+1

σ 2(
j
T )

T
(ε2

j − 1)

)2

× E

(√
T

[tT]∑

j=[sT]+1

σ 2(
j
T )

T
(ε2

j − 1)

)2

=
(

1

T

[sT]∑

j=[rT]+1

σ 4
(

j

T

)

var(ε2
j )

)

×
(

1

T

[tT]∑

j=[sT]+1

σ 4
(

j

T

)

var(ε2
j )

)

= (µ4 − 1)

(
1

T

[sT]∑

j=[rT]+1

σ 4
(

j

T

))(
1

T

[tT]∑

j=[sT]+1

σ 4
(

j

T

))

≤
(

(µ4 − 1)

∫ t

r
σ 4(u)du

)2

+ O(1/T)

= C
(
F(t) − F(r)

)2
,

where F(α) = (µ4 − 1)
∫ α

0 σ 4(u)du. It is obvious that the last
equality holds (for an appropriate C) for all |t − r| > 1/T .
It also holds for |t − r| ≤ 1/T , because in this case the left side
equals 0.

Proof of Lemma 4, Continued. We have studied the ex-
cess mass of the estimated variance function without standard-
ization. What we are really interested in is the behavior of
Ê(λ) = E ¯̂σ (λ), which is the excess mass functional of the stan-
dardized variance function. Using the foregoing notation, we
can write the normalizing factor

∫ 1
0 σ̂ 2(u)du = 
̂(0,1), and,

similarly, we have
∫ 1

0 σ 2(u)du = 
(0,1). It follows that

Ê(λ) = sup
0≤a≤b≤1

(

̂(a,b)


̂(0,1)
− λ(b − a)

)

.

Compared with Eσ̂ 2 , which was treated earlier, the quantity

̂(a,b) is now replaced by 
̂(a,b)/
̂(0,1). We have seen that√

T(Eσ̂ 2 −Eσ 2)(λ) ≈ √
T(
̂ −
)(aλ,bλ), where aλ and bλ are

the maximizers of 
(a,b) − λ(b − a). Very similar arguments
show that, uniformly in λ > 0,
∣
∣
∣
∣
√

T(Ê − Eσ̄ 2)(λ) − √
T

(

̂(a∗

λ,b∗
λ)


̂(0,1)
− 
(a∗

λ,b∗
λ)


(0,1)

)∣
∣
∣
∣ = oP(1),

(46)

where a∗
λ and b∗

λ are the maximizers of the standardized excess
mass 
(a,b)/
(0,1) − λ(b − a), which means that (a∗

λ,b∗
λ) =

(aλ
(0,1),bλ
(0,1)). All of this holds provided that the process

√
T

(

̂(a,b)


̂(0,1)
− 
(a,b)


(0,1)

)

(47)

converges to a tight Gaussian limit process. But this is an im-
mediate consequence of the weak convergence of the process√

T(
̂(a,b) − 
(a,b)), as can be seen from rewriting (47) as

√
T

(
1


̂(0,1)

(

̂(a,b) − 
(a,b)

)

− 
(a,b)


̂(0,1)
(0,1)

(

̂(0,1) − 
(0,1)

)
)

= 1


̂(0,1)

(
ZT(b) − ZT(a)

)

− 
(a,b)


̂(0,1)
(0,1)

(
ZT(1) − ZT(0)

) + oP(1),

where the last equality follows using Lemma 2. [Note that
the oP(1)-term is uniform in λ.] The covariance function of
the limit follows through straightforward computation by us-
ing the fact that for any two intervals (a1,b1), (a2,b2) ⊂ [0,1],
we have

cov
(
ZT(a1) − ZT(b1),ZT(a2) − ZT(b2)

)

= (µ4 − 1)

∫

(a1,b1)∩(a2,b2)

σ 4(u)du,

which follows from Lemma 5.

Proof of Theorem 1

Lemma 1, in conjunction with the continuous mapping theo-
rem, yields the assertion.

Proof of Theorem 2

It is sufficient to present only the proof for λ̂(q); the proof
for λ̂m̂(q) follows similarly. We first prove consistency of λ̂(q).
In fact, we prove a stronger result; namely, we show that for
each ε > 0, we have

√
T sup

q∈[ε,1]
|̂λ(q) − λ(q)| = OP(1). (48)

Let q−
T = max(0,q − supλ>0 |(Ê − E)(λ)|). Then we can write

λ̂(q) = inf{λ ≥ 0 : Ê(λ) > q}
= inf

{
λ ≥ 0 : E(λ) > q + [E(λ) − Ê(λ)]}

≤ inf
{
λ ≥ 0 : E(λ) > max

(
0,q − sup

λ>0
|(Ê − E)(λ)|

)}

= λ(q−
T ).

Similarly, we have, with q+
T = min(1,q+ supλ>0 |(Ê −E)(λ)|),

that λ̂(q) ≥ λ(q+
T ) such that

λ(q+
T ) ≤ λ̂(q) ≤ λ(q−

T ). (49)

Our assumptions ensure that λ(·) is differentiable, and it is
straightforward to see that λ′(q) = −1/(bλ(q) − aλ(q)). Because
in addition σ 2(·) is unimodal and has no flat parts (Assump-
tion 1), it follows that λ′(q) is continuous. Lemma 1 together
with (46) shows that

√
T supλ>0 |̂E(λ)− E(λ)| = OP(1). Hence

a one-term Taylor expansion applied to λ(q+
T ) − λ(q) and to

λ(q−
T ) − λ(q) implies (48).
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Asymptotic normality follows by a refinement of the fore-
going arguments. Let q0 ∈ [0,1) be fixed. We show that√

T (̂λ(q0) − λ(q0)) has the asserted asymptotic normal distrib-
ution. Further let δT = o(1) such that

√
TδT → ∞, and define

AT = {supq∈[q0/2,1] |̂λ(q) − λ(q)| < δT}. The foregoing shows
that P(AT) → 1 as T → ∞. On AT , we have, with q±

T,∗ =
q0 + (E − Ê)(λ(q0)) ± sup|λ−µ|<δT

|(Ê − E)(λ) − (Ê − E)(µ)|,
that for T large enough,

λ̂(q0) = inf{λ : Ê(λ) > q0}
= inf

{
λ : E(λ) > q0 + [E(λ) − Ê(λ)]}

≥ inf
{
λ : E(λ) > max

[
0,q0 + (E − Ê)(λ(q0))

+ sup
|λ−µ|<δT

|(Ê − E)(λ) − (Ê − E)(µ)|
]}

= λ(q+
T,∗).

Thus on AT , we can write√
T
(
λ̂(q0) − λ(q0)

)

≥ √
T
(
λ(q+

T,∗) − λ(q0)
) = √

Tλ′(ξ+
T )(q+

T,∗ − q0)

= λ′(ξ+
T )

√
T(E − Ê)(λ(q0))

+ √
Tλ′(ξ+

T ) sup
|λ−µ|<δT

|(Ê − E)(λ) − (Ê − E)(µ)|

= λ′(ξ+
T )

√
T(E − Ê)(λ(q0)) + oP(1), (50)

where the last equality follows from asymptotic stochastic
equicontinuity of the process

√
T(Ê − E)(λ) (see Lemma 1).

A similar argument using λ(q−
T,∗) instead of λ(q+

T,∗) shows that
also√

T
(
λ̂(q0) − λ(q0)

) ≤ λ′(ξ−
T )

√
T(E − Ê)(λ(q0)) + oP(1).

(51)

Because the ξ±
T stochastically converge to q, and λ′ is continu-

ous, the asserted asymptotic normality follows from the asymp-
totic normality of

√
T(E − Ê)(λ(q)) and (50) and (51).

[Received May 2004. Revised June 2005.]
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