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Summary

1.

 

Correlations between phenotypic traits are important in a number of contexts in
physiological ecology, evolutionary physiology, and behaviour. Correlations can reflect
functional connections or trade-offs among performance traits (e.g. bite force, jumping
distance) and can reveal causal relationships between whole-organism traits and
lower-level biochemical or morphological traits.

 

2.

 

However, when one or both traits exhibit intraindividual variability (i.e. repeatability
< 1), conventional estimates of Pearson product-moment correlation coefficients are
biased towards zero (

 

=

 

 attenuated). The magnitude of this bias decreases with increases
in the number of measurements used to calculate the mean value of the trait for each
individual. The bias varies inversely with the repeatability of each trait.

 

3.

 

We present an estimator for the correlation coefficient that eliminates this bias. This
estimator is based on an equation originally presented in 1904 by Spearman, and
applied by researchers in psychological testing and nutritional epidemiology. The
estimator is a simple function of  the within- and among-individual components of
variance for each of the two traits.

 

4.

 

Simulations show that optimal sampling effort usually involves a small number of
trials per individual and a large sample of individuals (for a fixed total sample size),
although correlations between traits with low repeatabilities may be more precisely
estimated with a larger number of  trials per individual and a smaller number of
individuals.

 

5.

 

In addition to reducing the accuracy of  the estimate, attenuation also reduces
statistical power for detecting significant correlations. However, we do not recommend
using the unbiased estimator for testing whether correlations differ from zero, because
this inflates Type I error rates. Instead, the uncorrected (conventional) estimator
should be used for hypothesis testing.

 

6.

 

The unbiased estimator is not appropriate for correlations involving maximum or
minimum values for each individual (e.g. maximum sprint speed) because sampling
distributions of  these extreme values typically have different properties than the
sampling distributions of individual mean values.
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Introduction

 

Correlations between phenotypic traits are important
in diverse contexts in animal behaviour, evolution
and integrative biology. For example, phenotypic

correlations are used to assess functional relationships
between biochemical, morphological and whole-
organism traits (Garland 1984; Bennett, Garland &
Else 1989; Steyermark 

 

et al

 

. 2005), and to identify
behavioural syndromes (Huntingford 1976; Sih, Bell &
Johnson 2004a; Sih 

 

et al

 

. 2004b).
Here, we alert researchers to a statistical problem

that is not usually recognized in integrative biology:
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conventional estimates of Pearson product-moment
correlations are biased towards zero whenever there is
intraindividual variation in one or both of the traits
involved (Fuller 1987). Virtually all behavioural and
physiological traits show some degree of intraindividual
variability (i.e. repeatability < 1·0, e.g. Bennett 1987;
Huey & Dunham 1987; Boake 1989; Hayes & Jenkins
1997; Brodie & Russell 1999; Dohm 2002). Therefore,
the values of phenotypic correlations reported in the
biological literature are likely to underestimate the
true correlations, on average.

We present an estimator that gives a theoretically
unbiased estimate of the correlation coefficient be-
tween individual trait means. In addition, we use
simulations to evaluate the performance of corrected
vs. uncorrected estimates of correlation coefficients and
to explore the allocation of sampling effort between the
number of individuals vs. the number of measurements
per individual.

 

Bias in estimating correlation coefficients

 

Intraindividual variability is statistically equivalent to
measurement error. Statisticians have long recognized
that estimates of Pearson product-moment correlation
coefficients are biased when there is measurement
error in either the 

 

X

 

 or the 

 

Y

 

 variable (Spearman 1904;
Thouless 1939; Fuller 1987). This bias is called
‘attenuation’ (Spearman 1904) because on average an
estimate of a correlation coefficient is biased towards
zero. Attenuation of correlation coefficients is well-
known in some fields, particularly in psychological and
educational testing (Gulliksen 1950) and nutritional
epidemiology (Willett 1998). However, researchers rarely
acknowledge or correct for attenuation in many fields
of biology, including physiological ecology, evolution-
ary physiology, and animal behaviour. A related
phenomenon, the attenuation of regression slopes due
to measurement error in the 

 

x

 

 variable, has been addressed
by several papers in these fields (e.g. McArdle 2003).

Spearman (1904) showed that the expected value of
a sample correlation coefficient between two traits 

 

X

 

and 

 

Y

 

 is given by

eqn 1

where 

 

ρ

 

 

 

=

 

 the true correlation coefficient between the
mean values of Traits 

 

X

 

 and 

 

Y

 

 for each individual,
 

 

=

 

 the among-individual variance in Trait 

 

X

 

 and
 

 

=

 

 the within-individual variance in Trait 

 

X

 

, with
corresponding notation for Trait 

 

Y

 

. Now suppose that
we make 

 

n

 

X

 

 measurements per individual for Trait 

 

X

 

,
and 

 

n

 

Y

 

 measurements for Trait 

 

Y

 

, and use the mean
value of each individual’s trials as our 

 

x

 

,

 

y

 

 pairs. The
individual mean values have error variances 
and , so that the expected value of  a sample
correlation coefficient is

eqn 2

This formula or its equivalent has been presented
previously by several authors in other fields (Liu 

 

et al

 

.
1978; Beaton 

 

et al

 

. 1979; Rosner & Willett 1988). Note
that the magnitude of the multiplicative bias (the
square root term) is independent of 

 

ρ

 

 and of the
number of individuals sampled.

Equations 1 and 2 show that if  within-individual
variance is present the estimated correlation coefficient
will be biased towards zero. The magnitude of  the
bias decreases as the ratio  decreases (i.e. as re-
peatability increases) and as the per-individual sample
sizes 

 

n

 

X

 

 and 

 

n

 

Y

 

 increase (Fig. 1).
Equation 2 can be used to derive an unbiased

estimator for the correlation coefficient:

eqn 3

where 

 

r

 

 is the uncorrected correlation coefficient
calculated using the sample mean values of each trait
for each individual (

 

x

 

 and 

 

¥

 

). We have replaced the
parametric variance terms (

 

σ

 

2

 

) with sample variance
terms (

 

s

 

2

 

) in eqn 3 because these variances will almost
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Fig. 1. Multiplicative bias of the estimated correlation
coefficient between two traits when each trait exhibits
intraindividual variation. Each curve shows the expected
value of the correlation coefficient (eqn 2) that would be
obtained from a sample, shown as a percentage of its true
value, when the score for each individual is the mean of a
given number of trials (= measurements). Curves are shown
for four representative values of repeatability (intraclass cor-
relation coefficient, ri); for these examples, the repeatability is
the same for traits X and Y, and the number of trials per
individual are the same for both traits (nX = nY).
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always be estimated from data. It is possible for a given
sample to yield a value of  

 

®

 

corrected

 

 that exceeds 1·0 (or

 

−

 

1·0); in this case, the estimate should be rounded to
1·0 (or 

 

−

 

1·0).
Because the repeatability (

 

=

 

 intraclass correlation
coefficient; Sokal & Rohlf 1994) for Trait 

 

X

 

 is given by
, eqn 3 can be rewritten in

terms of the repeatabilities of the two traits:

eqn 4

Equation 4 can be used to obtain unbiased estimates
of correlations from previously published work if  the
repeatabilities are known, and also demonstrates that
using the mean of several measurements is comparable
with increasing repeatability (Falconer 1981; Arnold
1994; Hayes & Jenkins 1997).

We ran computer simulations to evaluate the per-
formance of the unbiased estimator (eqn 3). We drew
samples from a bivariate normal distribution with a
known true correlation coefficient (

 

ρ

 

 

 

=

 

 0·4 and 0·8)
and examined the effects of number of individuals
(

 

N

 

subjects

 

 

 

=

 

 20, 40 and 80), the number of measurements
per individual (

 

n

 

trials

 

 

 

=

 

 2, 5 and 10), and repeatability
(

 

r

 

i

 

 

 

=

 

 0·2, 0·5 and 0·8). We used the same values of 

 

n

 

trials

 

and 

 

r

 

i

 

 for Traits 

 

X

 

 and 

 

Y

 

. We added to each variate
a random, normally distributed error term adjusted to
yield the desired repeatability. For each parameter
combination we drew 5000 independent samples,
and from each sample we calculated four different
estimates of the correlation coefficient.

 

1

 

Uncorrected for bias, but without adding error
terms (i.e. ), as a check on the simulation
procedure. This should yield an unbiased estimate, on
average.

 

2

 

Uncorrected for bias. On average, this should yield
a biased estimate (eqn 2).

 

3

 

Corrected for bias using eqn 3, using the known
parametric variance components. This should yield an
unbiased estimate.

 

4

 

Corrected for bias using eqn 3, with variance
components estimated from the sample. This should
yield an unbiased estimate.

Simulations were run in the statistical computing
language R (R Development Core Team 2005) and
yielded several noteworthy results. First, the un-
corrected (conventional) correlation coefficients were
biased towards zero as predicted by theory, whereas
the corrected correlation coefficients on average
were unbiased (Figs 2 and 3). In each case the mean
correlations were essentially identical to the analytical
predictions from eqns 2 and 3. Second, the sampling
distributions differed in variance (Fig. 2). The variance
of the distribution with  was entirely due to
sampling of individuals from the population. The

other three distributions exhibited variance due to
both sampling of individuals and sampling of values
within individuals. The greater sampling variance of
the unbiased estimators compared with the conven-
tional estimator is due to the fact that the unbiased
estimate involves multiplication by a scalar (the
correction factor); recall that Var(

 

a X

 

) 

 

=

 

 

 

a

 

2

 

 Var(

 

X

 

) for
any random variable 

 

X

 

 and scalar 

 

a

 

. The distributions
of the unbiased estimators were virtually identical,
indicating that estimating the variance components
in eqn 3 added little variance to the total sampling
variance.

Overall, the simulations confirmed that the un-
corrected estimator is biased, and that the corrected
estimator eliminated this bias (Fig. 3). The simulations
also illustrated the effects of sample size and repeat-
ability on bias: the bias was greatest for the smallest
number of samples per individual (

 

n

 

trials

 

 

 

=

 

 2) and for
the lowest repeatabilities (

 

r

 

i

 

 

 

=

 

 0·2). In these cases,
almost the entire distribution of sample correlation
coefficients fell below the true value of 

 

ρ

 

, clearly an
undesirable property for an estimator. Another key
result is that using a larger sample size of individuals
(

 

N

 

subjects

 

) did not reduce bias, although it did reduce the
sampling variances of both the unbiased and biased
estimators; recall that 

 

N

 

subjects

 

 does not appear in eqn 2.
The sampling variance of the unbiased estimator was
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Fig. 2. Sampling distributions of Pearson product-moment
correlation coefficients obtained via simulation. Ten thousand
independent samples of N = 40 observations were drawn from
a bivariate normal distribution with ρ = 0·4 (indicated by
the vertical line) and repeatabilities ri,X = ri,Y = 0·5. Correla-
tions were calculated using the mean values of two trials per
individual for each trait (ntrials,X = ntrials,Y = 2). Dashed line:
conventional correlation coefficient, uncorrected for bias. Dotted
line: unbiased correlation coefficient (eqn 4), calculated using
the known parametric values of the variance components.
Solid line: unbiased correlation coefficient (eqn 4), with vari-
ance components estimated from the sample. Dashes and
dots: correlation coefficients calculated for observations with
zero intraindividual variability (ri,X = ri,Y = 1·0); the variance
of  this distribution reflects only the sampling variation due
to the finite number of individuals.
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greater than that of the biased (uncorrected) estimator,
as discussed above for Fig. 2. However, this difference
decreased with increases in repeatability and the
number of trials per individual. Our results are consistent

with the conclusions of Fan (2003), who conducted a
similar study to address the issue of  measurement
reliability and its effect on correlations between test
scores in educational and psychological assessment.

Fig. 3. Sampling distributions of Pearson product-moment correlation coefficients obtained via computer simulation, for
selected sample sizes and repeatabilities. Each panel shows the median (heavy line) and central 90% of sample correlation
coefficients from 5000 independent samples, using three different estimators: dark grey is the conventional estimator; light grey
is the unbiased estimator with variance components estimated from the sample, and white is the unbiased estimator using known
variance components. Each panel includes results for three different values of repeatability (ri,X = ri,Y = 0·2, 0·5 or 0·8). The
horizontal line in each panel indicates the true value of ρ (either 0·4 or 0·8). Three different sample sizes of individuals are used
(Nsubjects = 20, 40 or 80), and three different numbers of trials for each individual (ntrials = 2, 5 or 10).
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Hypothesis testing: which estimator to use?

At first glance it might seem preferable to use the more
accurate unbiased estimator (eqn 3) for testing the null
hypothesis ρ = 0. Instead, it is actually more appropriate
to use the uncorrected (conventional) estimate for this
hypothesis test, for the following reason: if  ρ = 0, then
there is no bias, and therefore no need to correct the

estimate. The tables of critical values for the correlation
coefficient were established for the uncorrected esti-
mator; different tables would need to be constructed
for the unbiased estimator. Using an unbiased estimate
of  ρ for hypothesis testing with the conventional
critical values would inflate the Type I error rate beyond
the desired rate, because the estimate would exceed
the critical value more frequently. We verified this
effect by running simulations in which ρ = 0 (results
not shown). This suggests that researchers should first
use the conventional estimator for testing for whether
ρ = 0. Then, if  H0 is rejected (i.e. ρ ≠ 0), eqn 3 should be
used for an unbiased estimate of ρ.

Much less frequently, researchers wish to test null
hypotheses involving nonzero values of  ρ. In this case
it seems reasonable to use the unbiased estimator.
Rosner & Willet (1988) and Charles (2005) give
formulas for the standard error and confidence inter-
vals of  ®corrected, which could be adapted for hypothesis
testing.

Allocation of research effort: number of trials vs. 
number of individuals

The unbiased estimator for the correlation coefficient
(eqns 3 and 4) requires at least two measurements per
individual so that  and  can be estimated.
Clearly, measuring more than two values per individual
has several benefits: it decreases the bias (see eqn 3),
thereby increasing statistical power, and it also should
give a better estimate of the variance components 
and . However, for a fixed total sample size
(Nsubjects × ntrials) there is a trade-off  between Nsubjects and
ntrials. This trade-off  would be particularly important to
consider when nontrivial effort is required for each
phenotypic measurement (e.g. in studies of exercise
metabolism).

We ran simulations to explore how this trade-off
between Nsubjects and ntrials influences the precision of
estimating ρ. We assumed that a researcher could make
160 total measurements, and chose combinations of
Nsubjects (from 4 to 80) and ntrials (from 2 to 40) that
would yield this total. We then obtained 5000 random
samples for each allocation and for each possible
combination of  repeatabilities (ri = 0·2, 0·5, 0·8)
and true correlations (ρ = 0·4, 0·8), using the same
repeatabilities and sample sizes for Traits X and Y.

In the intermediate- and high-repeatability cases,
the sampling variance of the correlation coefficient
decreased with higher values of Nsubjects and lower values
of ntrials (Fig. 4). This decrease in sampling variance
was most consistent in the high-repeatability case.
In the low-repeatability simulation, the sampling
variance was lowest at intermediate values of Nsubjects

and ntrials. These findings were essentially the same
for high (ρ = 0·8) and low (ρ = 0·4) true correlations.
These results suggest that the optimal allocation of
sampling effort, using the criterion of minimizing the
sampling variance of the correlation coefficient (i.e.

σwithin
2 σamong

2

σwithin
2

σamong
2

Fig. 4. Effect of trading off  the number of trials per individual (ntrials) vs. number of
individuals (Nsubjects) on the sampling variance of unbiased correlation coefficients
obtained via simulation. Each bar shows the median and central 90% of sample
correlation coefficients (eqn 2) from 5000 samples drawn from a bivariate normal
distribution. The total number of observations (ntrials × Nsubjects) was fixed at 160; the
combination of ntrials and Nsubjects corresponding to each bar is indicated. Top three
panels: ρ = 0·4; bottom three panels: ρ = 0·8; horizontal line indicates true value of ρ.
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increasing the precision of the estimate), depends on
repeatability. For traits with high repeatability, the best
design appears to involve making two measurements
on as many individuals as possible. For traits with
intermediate repeatabilities, sampling variance was
relatively insensitive to allocation as long as Nsubjects >
ntrials. For traits with low repeatabilities, choosing a
higher ntrials at the expense of  a lower Nsubjects appears
to yield slightly more precise estimates of ρ. When
repeatabilities are unknown prior to beginning an
experiment, Fig. 4 suggests that choosing a small value
of ntrials (i.e. 2, 3 or 4), along with the highest feasible
value of Nsubjects, would probably yield the most precise
estimate of ρ.

The trade-off  between ntrials and Nsubjects has impli-
cations for statistical power as well as for the precision
of the estimate. Increasing either ntrials or Nsubjects will
increase statistical power for detecting nonzero
correlation coefficients, but for different reasons.
Using a larger Nsubjects increases the degrees of freedom
for the hypothesis test, and also decreases the sampling
variance of the estimated correlation coefficient (see
Fig. 3). Using a larger ntrials decreases bias (eqn 2),
which could be a substantial benefit when repeatability
is low. Given a limited total sample size, increasing
Nsubjects is probably a more effective way to increase
power than increasing ntrials.

Correlations involving maximum rather than mean 
values

In many studies of organismal performance, such as
burst speed (Bennett 1980; Wilson 2005), jumping
distance (Watkins 1997), and bite force (Huyghe et al.
2005), researchers use maximum rather than mean
values because maxima are likely to be more relevant
measures of performance in ecological and evolutionary
contexts. Like mean values, maximum values are
estimated with error due to intraindividual variability;
individuals do not always perform at their physiological
maximum. Therefore, when a correlation is calculated
between individual maximum values for two traits, it
will be closer to zero on average than the true correlation.

Unfortunately, the unbiased estimator presented in
eqn 3 is not appropriate for correlations between max-
imum values, because the sampling distribution of a
maximum is different than the sampling distribution
of a mean value. Sampling distributions of maximum
values are more complicated than those of  mean
values (Gumbel 1958); for example, they depend on the
underlying distribution of individual performances,
whereas the distribution of sample means is approxi-
mately normal for a variety of underlying distributions
(hence the Central Limit Theorem). Also, the expected
value of a maximum increases with ntrials (Losos, Creer
& Schulte 2002; S.C. Adolph & T. Pickering, un-
published MS), whereas the expected value of a mean
is independent of ntrials. Because of these complications,
new statistical procedures need to be devised to correct

for bias in correlations between maximum performances.
We suggest that empirical studies report correlations
between performance traits using individual mean
values in addition to correlations using individual
maxima, particularly when the goal is to identify
physiological and morphological traits that affect
whole-organism performance.
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