NOAA Buoy Data

June 2016

Introduction

The National Oceanic and Atmospheric Administration (NOAA) is the American federal agency in charge of collecting information and making decisions related to the oceans and the atmosphere. Throughout North America, they supply weather stations which are located both along the coast as well as in the middle of the ocean (on buoys). Among other variables, the weather stations collect information on wind, humidity, temperature, visibility, and atmospheric pressure. The data is all publicly available on NOAA's website.

Data information & loading data

All the buoys are listed at http://www.ndbc.noaa.gov/to_station.shtml. The Santa Monica buoy information is at http://www.ndbc.noaa.gov/station_page.php?station=46025. The historical data is given at http://www.ndbc.noaa.gov/station_history.php?station=46025.

Always a good idea to look at the data! One thing to notice is that there are some variables coded as 99/999/9999. From user experience, we surmize that those values should be NA. Additionally, if we want to consider only the 2014 data, we should remove any previous data.

summary(buoy_data)

##	#VV	ММ	חח	hh
## ##	#II Mim • 0012	MM Longth:9611	DD Longth:9611	IIII Longth, 9611
## ##	Min. :2013	Class share the		Length:8011
##	Ist Qu.:2014	Class :character	Class : characte	r Class :character
##	Median :2014	Mode :character	r Mode :characte	er Mode :character
##	Mean :2014			
##	3rd Qu.:2014			
##	Max. :2014			
##	mm	WDIR	WSPD	GST
##	Min. :50	Min. : 1.0 M:	in. :0.000 Min.	:0.000
##	1st Qu.:50	1st Qu.:165.0 1:	st Qu.:1.900 1st	Qu.:2.600
##	Median :50	Median :266.0 Me	edian :3.100 Medi	an :3.900
##	Mean :50	Mean :231.3 Me	ean :3.408 Mean	:4.106
##	3rd Qu.:50	3rd Qu.:298.0 31	rd Qu.:4.600 3rd	Qu.:5.400
##	Max. :50	Max. :360.0 Ma	ax. :9.900 Max.	:9.900
##	WVHT	DPD	APD	MWD
##	Min. : 0.36	0 Min. : 2.74	Min. : 3.620	Min. : 1.0
##	1st Qu.: 0.81	0 1st Qu.:10.00	1st Qu.: 5.420	1st Qu.:204.0
##	Median : 0.99	0 Median :12.90	Median : 6.090	Median :253.0
##	Mean : 1.27	3 Mean :12.25	Mean : 6.612	Mean :236.5
##	3rd Qu.: 1.28	0 3rd Qu.:14.81	3rd Qu.: 7.220	3rd Qu.:268.0
##	Max. :99.00	0 Max. :99.00	Max. :99.000	Max. :999.0
##	PRES	АТМР	WTMP	DEWP
##	Min. :1003	Min. :10.10	Min. :12.90 Mi	n. :-8.70
##	1st Qu :1012	1st Qu.: 15.20	1st Qu.: 15.80 1s	st. Qu. : 11.50
##	Median :1014	Median :17 30	Median :18 60 Me	dian : 13.50
##	Mean :1016	Mean :17.25	Mean :18 52 Me	$an \cdot 13.22$
 ##	3rd Qu :1017	$3rd 0u \cdot 19 30$	3rd 0u ·21 00 3r	rd_{01} :15.70
ππ	014 441011	014 Qu. 10.00	014 WH 21.00 01	a ga

Max. :9999 Max. :24.50 Max. :24.50 Max. :99.00 VIS ## TIDE ## Min. :99 Min. :99 ## 1st Qu.:99 1st Qu.:99 ## Median :99 Median :99 ## Mean :99 Mean :99 ## 3rd Qu.:99 3rd Qu.:99 ## Max. :99 Max. :99 buoy_data <- buoy_data %>% mutate(WVHT = ifelse(WVHT==99, NA, WVHT)) %>% mutate(DPD = ifelse(DPD==99, NA, DPD)) %>% mutate(APD = ifelse(APD==99, NA, APD)) %>% mutate(MWD = ifelse(MWD==999, NA, MWD)) %>% mutate(PRES = ifelse(PRES==9999, NA, PRES)) %>% mutate(DEWP = ifelse(DEWP==99, NA, DEWP)) %>% select(-VIS, -TIDE) %>% filter(`#YY`==2014)

dim(buoy_data)

[1] 8610 16

summary(buoy_data)

##	#YY	MM	DD	hh
##	Min. :2014	Length:8610	Length:8610	Length:8610
##	1st Qu.:2014	Class :characte	er Class :chara	cter Class :character
##	Median :2014	Mode :characte	er Mode :chara	cter Mode :character
##	Mean :2014			
##	3rd Qu.:2014			
##	Max. :2014			
##				
##	mm	WDIR	WSPD	GST
##	Min. :50	Min. : 1.0 N	Min. :0.000 M	in. :0.000
##	1st Qu.:50	1st Qu.:165.0	1st Qu.:1.900 1	st Qu.:2.600
##	Median :50	Median :266.0	Median :3.100 M	edian :3.900
##	Mean :50	Mean :231.3 1	Mean :3.408 M	ean :4.106
##	3rd Qu.:50	3rd Qu.:298.0	3rd Qu.:4.600 3	rd Qu.:5.400
##	Max. :50	Max. :360.0 1	Max. :9.900 M	ax. :9.900
##				
##	WVHT	DPD	APD	MWD
##	Min. :0.36	O Min. : 2.74	Min. : 3.62	Min. : 1.0
##	1st Qu.:0.81	0 1st Qu.:10.00	1st Qu.: 5.42	1st Qu.:204.0
##	Median :0.99	0 Median :12.90	Median : 6.09	Median :253.0
##	Mean :1.09	1 Mean :12.09	Mean : 6.44	Mean :235.1
##	3rd Qu.:1.28) 3rd Qu.:14.81	3rd Qu.: 7.21	3rd Qu.:268.0
##	Max. :4.80	0 Max. :23.53	Max. :13.52	Max. :359.0
##	NA's :16	NA's :16	NA's :16	NA's :16
##	PRES	ATMP	WTMP	DEWP
##	Min. :1003	Min. :10.10	Min. :12.90	Min. :-8.7
##	1st Qu.:1012	1st Qu.:15.20	1st Qu.:15.80	1st Qu.:11.5
##	Median :1014	Median :17.30	Median :18.60	Median :13.5
##	Mean :1015	Mean :17.25	Mean :18.52	Mean :13.2
##	3rd Qu.:1017	3rd Qu.:19.30	3rd Qu.:21.00	3rd Qu.:15.7
##	Max. :1029	Max. :24.50	Max. :24.50	Max. :21.0

NA's :1

Using dynamic data within a typical classroom

One might be interested in the difference between the wind temperature and the air temperature. Generally, the air temperature is cooler than the wind temperature, but confidence intervals and prediction intervals allow us to quantify the difference. Note that the data lend themselves nicely to ideas of paired observations acting as a univariate sample. As expected, a 95% confidence interval for the true difference in temperatures gives us a value of between 1.25 and 1.31 degrees. However, 95% of the individual observations have a difference in wind and air temperature between -1.5 degrees (air is warmer) and 4.06 degrees (wind is warmer).

buoy_data\$TempDiff <- buoy_data\$WTMP - buoy_data\$ATMP
densityplot(~TempDiff, data=buoy_data)</pre>

Thinking outside the box

The data are nicely set up to think about analyses is the time domain. Indeed, looking at the autocorrelation function shows clear 24-hour trends for the wind speed variable.

acf(buoy_data\$WSPD, main="Series: Wind Speed", xlab="Lag (hours)")

Series: Wind Speed

Although a full analysis of the data would warrant multiple years of data (so as to understand yearly trends), we can estimate the spectral density of the time series using a smoothed periodogram.

Wind Speed, Smoothed Periodogram

In the smoothed periodogram, the x-axis is the frequency (one over the period) and y-axis represents the correlation (normalized) between the cosine wave at that frequency and the time series. We can see that wind speed has strong correlation at period 12 hours and period 24 hours.

Additional ideas for analysis:

A more sophisticated analysis or longer project could include collecting data from multiple buoys, extended years, and/or additional information on storms https://www.ncdc.noaa.gov/stormevents/.