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Microarray technology allows for the expression levels of thousands of genes in a cell to be mea-
sured simultaneously. The technology provides great potential in the fields of biology and medicine
as the analysis of data obtained from microarray experiments gives insight into the roles of specific
genes and the associated changes across experimental conditions (e.g., aging, mutation, radiation
therapy, drug dosage, ...). The application of statistical tools to microarray data can help make
sense of the experiment and thereby advance genetic, biological, and medical research. Likewise,
microarrays provide an exciting means through which to explore different statistical techniques.

Our paper focuses on the analysis of data from a yeast DNA microarray experiment. The
biological question that motivates our research is “What genetic changes in yeast happen over
time?” In order to explore the research question of interest we first standardize the data to correct
for errors that arise in the data due to biases from the complex microarray procedure.

Once we have data that accurately depicts the natural variability in the genes and arrays (as
opposed to variability due to technical aspects of the microarray chip), we can focus on our pri-
mary interest: the analysis of yeast gene expression to further uncover the quantitative relationship
between the gene expression levels and the generation (age) of the yeast cell. We use a statistical
tool called predication analysis for microarrays (PAM) [3]; PAM is a classification tool that provides
insight into different groupings of the generations of yeast. PAM isolates and identifies specific genes
using a threshold value and creates a model to predict the generation for an independent sample
array. We also attempt to improve the results obtained from PAM by using t-tests to pre-filter genes
before introducing them into the PAM model.

Background Biology and Data

The yeast data were collected by Professor Hoopes of the biology department at Pomona College.
Yeast are single cellular organisms, so for a given yeast sample all the genetic information is isolated
to one cell. To study the genetic effects of aging, yeast were obtained from generations (g) 1.5g, 12g,
and 18g. The genes from the experimental cells were then analyzed through 21 array experiments
(see Table 1). Generation 1.5 is a mixture of cells from the first and second generation yeast cells,
which is a consequence of the challenge for biologists to isolate cells that are strictly one generation
old.

For each of the microarray experiments, ‘spotted arrays’ were used. On each glass slide (array)
there is a single spot which measures the expression levels for a specific gene. The gene expression

1



Figure 1: Segment of a typical microarray chip after being scanned. The colors reflect the amount
of fluorescence or gene activity. Each spot represents a different gene.

levels for 7392 ‘spots’ were measured for each of the 21 arrays. Of the ‘spots’, 6420 spots contained
genetic information of interest, the remaining spots were either control genes or spots on the array
that were empty of genetic information. Throughout the paper, we’ll refer to 6420 spots of interest,
though in some situations we analyzed fewer than 6420 values due to missing data. To measure the
expression level of the genes, two mRNA samples are reverse transcribed into cDNA samples for a
specific cell and compared on a single slide. The first cDNA sample is from the generation of interest
(1.5g, 12g, 18g) and is labeled using a fluorescent dye of one color (typically red); the second sample
is always from the base generation (1.5g) and is labeled using a different fluorescent dye (typically
green). Note that, due to the characteristics of the dyes, the red and the green dyes will emit slightly
different levels of intensities for the same gene expression level. To control for biases in dye intensity
due to the differences in the dye color, for certain arrays the labels for the red and the green dyes
were switched (see Table 1). Throughout our paper, when we refer to the red (R) and the green (G)
dye intensities, we mean the dyes representing the interest and base generation respectively.

On each of the 21 arrays, for each of the 6420 spots of interest, the intensity ratio between
the generation of interest and the base generation is measured; the ratio reflects the change in the
gene activity between the two generations. For example, consider array 10 in which the genetic
information from 1.5g was labeled with green dye and the genetic information from 12g was labeled
with red dye. For a given spot, the measurement of red dye intensity reflects the amount of that gene
present in 12g yeast cells; the measurement of the green dye intensity reflects the amount of that
gene in 1.5g yeast cells. For a particular spot, if the red dye intensity is greater than the green dye
intensity, the expression level for the 12g is greater than the 1.5g; the ratio of the red to the green
dye (or 12g to 1.5g) is greater than one and so the gene measured at the spot of interest has become
more active as the yeast has aged to its 12g. Along with removing control and empty spots, we also
preprocessed the data by removing data from spots that were flagged as unacceptable or that had
almost no observable signal. See figure 1 for an example of a section of a typical microarray.

Normalization

Before we can begin to compare and analyze the data from the different arrays, the values are
adjusted to remove biases. The microarray procedure is subject to biases both within arrays, for
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Array Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Generation 1.5 1.5 1.5 1.5 1.5 1.5 1.5 12 12 12 12 12 12 12 18 18 18 18 18 18 18
Base Dye Color R G R R R R R R R G R G R G R G R G R G R

Table 1: The generation and base dye color of each of the 21 arrays. If the base dye color is red (R), then

the expression level of the generation of interest was measured by the green(G) dye intensity.

example, the location of the gene on the array and the overall dye intensity on each spot, and between
the arrays, for example, the specific slide a cell is on. We can apply a normalization technique that
uses loess smoothing [2] and scaling to minimize systematic location variations in the gene expression
levels. Once the spatial location and dye biases have been accounted for, expression levels across
the slides and the biological differences between the genes and samples can be better analyzed.

MA-plots [4] are a helpful way to observe the biases described previously and assist in the
normalization of the data. To create the plot, we first transform the data into values representing
dye intensity ratios (M ) and overall dye intensity (A). We want to modify our data so that our
ratios of interest (M ) are not dependent on overall intensity (A). The adjustment will also help
remove the effects of the differences between the red and green dye. For each of the 21 arrays, the
red (R) and the green (G) intensity values have been measured for each gene (i.e., at each spot.)
Therefore, for each gene on each array we set:

Mij = log2(
Rij

Gij
) and Aij =

1
2
log2(Rij · Gij) (1)

where i = 1, 2, . . . , 21 is the array and j = 1, 2, . . . , 6420 is the gene. Note that for samples with dye
swaps, Mij = log2(

Gij

Rij
). Hence, Mij represents the log of the ratio of the dye intensities of interest

while Aij represents the average log intensity (overall brightness) for a specific gene on a specific
array. Because Mij is the log ratio, Mij = 0 reflects no change in gene intensity over the generation.
In the calculation of Aij, the (1

2 ) term is used so that Aij will have the same range as log2(Rij)
and log2(Gij), while log-base two is used because it is convenient to express ratios in powers of two
(twice as big, four time as big,. . .). After transforming the yeast data, for each array i a scatter plot
of the 6420 Mij values is plotted against the corresponding Aij values. In total there are 21 plots
with 6420 spots, assuming that no data points are missing. See figure 2(a) for an example MA-plot
of array 19.

Box plots of the unscaled M values for each of the 21 arrays, as shown in figure 3(a), reveal the
bias that exists. Note how the spreads within a given generation vary. Also, the arrays for which
the red dye was used to measure the generation of interest have lower centers than arrays for which
the green dye was used. The difference in center for the dye-swapped arrays results from the greater
intensity of the green dye, so that even if a gene’s ratio should be zero due to no change, if the green
measured the base generation, the dye ratio will be less than zero. Such a bias will be corrected.

The normalization technique applied to the data expressed in the MA-plots requires multiple
steps [1]. The first step applied was within-print tip group normalization. When our cDNA array
was printed, the spots were broken up into 16 groups based on their location. Each group contains
1/16th of the genes and uses a different print tip for printing the spots onto the array. Because the 16
print tips give spatial information about the chip layout, we can compare print-tip groups in order
to reduce variability. For example, a print-tip group located on the edge of the chip might be slightly
drier than an internal print-tip group causing the external group to have a lower overall signal. By
normalizing the chip within print-tip groups, we reduce spatial variability. Within-print-tip group
normalization removes the intensity dependence of M and the unwanted variability within each
print-tip group that results from the location of the print-tip group on the array and the amount
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of dye the group received by assuming that the genes should be centered at M = 0. If the data
values were all without the potential errors caused by the aforementioned sources of variability, or
“true”, then the intensity log ratios M in an MA-plot should be symmetrically distributed around
the horizontal line at zero, indicating no ratio dependence on intensity. The line should be centered
at M = 0 as we assume that most genes do not change from generation to generation, so the R to G
ratio is 1 for most genes. Figure 2(b) shows the box plot for each of the 16 print-tip groups of array
19. The non-zero centers and varying spreads show the effects of bias and need for normalization.

Within print-tip group normalization uses a loess smoothing technique. The specific smoother
used on our data was derived by Cleveland and is often referred to as a locally weighted running-line
smoother [2]. The idea behind the loess smoother is that a regression line will not accurately fit
the data over the entire range of the explanatory variable (here, A) because the data are not linear;
however, over small intervals of A the data model can be approximated with a linear regression line.
The regression lines for each print-tip group on each array are calculated by locally weighting that
print-tip group’s data at given points, creating a local linear regression line, and then connecting the
local regression lines to create a smoothing spline. Due to the local weighting, the loess smoother is
robust as it will not be greatly affected by a small percentage of differentially expressed genes that
appear as outliers in the MA-plot. Figure 2(a)shows the 16 smoothing splines for array 19.

The adjusted data values are calculated to be the difference between a spot’s initial M value and
the M value from the corresponding smoothing spline at A, thus normalizing each gene within its
print-tip group. The results of the normalization are shown for array 19 in figure 2(c). As can be
observed from comparing the box plots of the print-tip groups in figure 2(c) to those in figure 2(b),
the print-tip normalization centers the data around zero. The within print-tip group normalization
removed the print-tip and some of the spatial bias as well as the dye intensity bias. However, we
still note that there are some differences in the spread of the print-tip groups.

To more thoroughly remove the spatial bias we scale across each of the print-tip groups. Scaling
data that has undergone within print-tip group normalization is called scaled print-tip normalization.
The scaling method assumes that the unscaled log ratios from each print-tip group k, k = 1, 2, . . . , 16,
follow a distribution with mean zero and variance s2

ik. Furthermore, as mentioned before, we assume
that the print-tip groups should have the same variability across a given array. If we let s2

ik = a2
ikσ2

i ,
where σ2

i is the variance of the log ratios if there is constant scale within the ith array and a2
ik is the

scale factor for the kth print-tip group, then to scale the data we want to find a2
ik so that s2

ik/a2
ik

is constant, and all print-tip groups on array i have the same variance, σ2
i . To estimate aik, the

median absolute deviation (MAD) is used. MAD is a robust alternative method to the maximum
likelihood estimate for aij, which is affected by outliers. For each print-tip group on each array the
MAD is calculated as the median of the absolute deviation between each M value within a print-tip
group and the median M value over the entire print-tip group.

Once all the âik have been calculated, the print-tip groups on all of the arrays can be scaled.
Figure 2(d) displays the results of the scaled print-tip normalization for array 19. We can see how
normalization remedied the varying spread as seen in 2(c). Furthermore, as depicted in figure 3(b) as
compared to figure 3(a), the loess smoothing technique combined with scaled print-tip normalization
consistently normalizes the data within each of the arrays. (Note: we did not try to create constant
scale across arrays as that would not be meaningful for data of different generations.) Through the
methods described and illustrated by the figures, it can be seen that within a given array, the average
log ratio values, M , are no longer dependent on the log intensity values, A. We have also removed
unwanted data biases due to differences in location on array, dye type, and print-tip group. We can
also see how spreads for the arrays within a given generation are now more similar. Generation 1.5
arrays have very low spreads around zero as would be expected given that the red and green dye
are both measuring 1.5g. However, that there is a spread at all (and not simply a ratio of 1 for each
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(a) Array 19: pre−normalization MA− plot
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(b) Yeast Array 19 print−tip groups: pre−normalization
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(c) Yeast Array 19 print−tip groups: within print−tip group location normalization
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(d) Yeast Array 19 print−tip groups: scaled print−tip normalization
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Figure 2: Plots of array 19 and the 16 print-tip groups. a) The MA-plot of array 19 before nor-
malization with all 16 print-tip group smoothing splines shown. b) Box plots of the 16 print-tip
groups of array 19 before normalization. c)Box plots of the 16 print-tip groups after within-print-tip
normalization. d)Box plots of the 16 print-tip groups of after scaled print-tip normalization.

spot) shows that not all of the variability due to the microarray procedure can be removed. The
normalization technique has improved the quality of the data and allows for the natural variability
of the data to be better observed.

PAM

Prediction analysis for microarrays (PAM) is a classification technique used for class prediction [3].
For example, a PAM model can predict class membership (i.e., 1.5g, 12g, or 18g) for a new obser-
vation given the data on the 21 arrays. For each gene, PAM uses gene expression data to calculate
a shrunken centroid for each class and for all classes overall. PAM performs soft-thresholding to
shrink the class centroids toward the overall centroids. For example, consider gene # 47; PAM
calculates cen1.5, cen12, cen18, and cenov (centroids for classes 1.5g, 12g, 18g, and overall, respec-
tively.) If cen12 and cen18 are close to cenov , but cen1.5 is sufficiently far from cenov ,then the values
in groups 12g and 18g are replaced with the value of cenov while the values in group 1.5 are left
alone, thus “shrinking” groups 12g and 18g toward the overall centroid. Determining “close to the

5



Array 1 Array 4 Array 7 Array 11 Array 15 Array 19

−6
−4

−2
0

2
4

6
Yeast Arrays: pre−normalization

M

Array 1 Array 4 Array 7 Array 11 Array 15 Array 19

−8
−6

−4
−2

0
2

4
6

(b) Yeast Arrays: scaled normalization

M

Figure 3: Box plots of M for all 21 arrays. a) Before normalization. b) After scaled print-tip
normalization. Notice both the centering and the spread of the box plots.

overall centroid” is done through a threshold parameter which is adjusted in the model building
process. Sometimes all values are close to the overall centroid and PAM substitutes values in all
groups with cenov which eliminates all information given by that gene. The soft-thresholding tech-
nique will reduce the number of genes used in the class prediction as well as ignore the insubstantial
deviations of a class from the overall centroid. Hence, we eliminate excess noise from genes that do
not vary (or vary less relative to other genes) across the classes. For each threshold, the class of a
new observation is predicted by the closest shrunken centroid. PAM also identifies the specific genes
that most determine the centroid (genes that had group centroids far from cenov .

As we are interested in studying the genetic differences in the generations of yeast, our data will
be broken into three classes, one for each generation. We applied PAM class prediction 21 times, each
time setting aside a single array from the sample set to be our “new observation”, and then using the
remaining 20 samples to predict the generation of the “new observation” (leaving out one observation
at a time to determine misclassification rates is a standard application of cross validation.) We can
illustrate the results we obtained from PAM with a misclassification plot, see figure 4. The figure
shows three lines, one for each generation. The Y -axis represents the misclassification error, or the
proportion of times that the model misclassified the test samples from a generation. The X-axis
shows how the misclassification error of each generation changes as the threshold is raised and the
number of genes which remain in the model decreases. We can see that for 1.5g and 18g, until the
threshold becomes quite large, the PAM model predicts each of the samples accurately. However,
for 12g, for most threshold values, the majority of samples were misclassified. To observe the actual
classifications for each generation, we can look at the misclassification error at a single threshold
(we use a threshold of 4.75) through the use of a confusion matrix (see table 4) which shows that
12g is misclassified as both 1.5g and 18g.

One technique we employed in an attempt to improve the classification of 12g was incorporating
t-tests into the PAM model. For each of the 21 test runs, before the prediction and the threshold was
applied, a series of t-test (comparing each group to every other group) was run for each gene using
generation as the response variable thereby measuring the effect of generation on the intensity of a
gene. Genes for which generation had a significant effect (p < 0.01) in at least one t-test comparison
advanced into the PAM cycle. We thought that the additional t-test criteria would help to further
reduce the noise and help isolate genes that contribute to a more accurate PAM model.

The results of the second set of runs are shown in figure 5 which looks similar to the misclas-
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Figure 4: Misclassification error over various thresholds which induce different numbers of genes used in

predicting the generation of each yeast sample.

generation predicted class
observed 1.5 12 18 error rate

1.5 7 0 0 0
12 2 2 3 0.714
18 0 0 7 0

Overall error rate = 0.238

Table 2: The confusion matrix for the data at a threshold of 4.75. Fewer than 200 genes made the threshold

cut for each of the 21 iterations of the PAM classification models. The values represent the expected

generation on the top, and the observed generation on the left. The overall error rate is 0.238.
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Figure 5: Plots of the misclassification error over the various thresholds which correspond to different

numbers of genes used in predicting the generation of each yeast sample after the t-tests were applied.

sification plot in figure 4. The addition of the t-tests into the procedure does not seem to have
improved the quality of the output as can be seen from the misclassification of 12g in both models.
One reason the t-tests may have failed to improve the PAM model is that if there are much larger
differences across 1.5g and 18g (than across either compared with 12g), the genes that differentiate
those groups will be chosen in the PAM model. Furthermore, in both examples it may be the case
that with such a small sample size of only 20 arrays at a time, it is difficult to accurately describe
the differences across all 3 generations.

Discussion

This paper has pointed out several issues concerned with the analysis of microarray with an emphasis
on normalization and class prediction. The normalization and PAM techniques provide useful tools
for preparing and performing statistical analysis on microarray data. PAM was very effective at
predicting 1.5g and 18g. However, arrays from 12g do not provide very promising results. The
addition of t-tests into the PAM procedure did not seem to improve the classification outcomes.
Possibly another microarray experiment could show whether t-tests could, in practice, be used as
an additional noise filter.

The true test will be for genes which passed the higher thresholds to be further studied in the lab
to provide stronger evidence of true genetic changes across time. Statistical analyses on microarrays
will enable the biologists to focus on a few of the yeast genes, a much less time consuming task than
studying thousands of genes individually.
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