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IMahalan chis-type distances in which the shape matrix i derived from a con-
sietent high-breakdown robust multivariate location and scale estimator can be
used to find cutlying points. Hardin and Focke (2002) developed a new method
for identifying cutliers in & cne-cluster setting uesing an F distribution. We ax-
tend the method to the multiple cluster case which gives a robust clustering
method in conjunetion with an outlier identification method. We provide re
gulte of the F dietribution method for multiple clustere which hawve different
gizes and ehapes.
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1. Introduction

izood methods for identifyving clusters of well-ssparated uncontaminated
eroups of data haswe been available for many years. The process of cluster-
ing becomes mors difficult, howewer, when the data include pointe which
do not belong to any cluster. (Evertt, 1993) Outlying points can skew
the shape estimates of the clusters or distort optimization eriterion which
in turn can mask separation between clusters. A group of diabolically
placed points can completaly change the cluster arrangement under many
elustering algorithms.

Robust clustering methods often give an accurate depiction of the un-
derlying data format, but even so, they do not usually identify particular
outlying points which may be of interest or importance in their own right.
Along with robust clustering methods, it 12 important to have a compli-
mentary outlier identification method.

Variousg method for detecting outliers in the one cluster multiple di-
menzional setting have been studied (Atkinson, 1994, Barnett and Lewis,
1994 Grnanadesikan and Kettenring, 1972 Hadi, 199% Hawkins, 1980
Maronna and Yohai, 1995; Penny, 1995 Rockeand Woodmiff, 1996; Roussseuw
and VanZomeren, 1990} One way to identify possible multivariate out-
liers is to caleulate a distance from each point to a “center” of the data.
An outlier would then be a point with a distance lareer than zome prede-
termined wvalue. A conventional measurement of quadratic distance from

a point X to a losation Y given a shape 3, in the multivarate sstting i

ds(X,¥) = (X - V)" (X - Y]

Thiz quadratic form iz often called the Mahalanobiaz Squared Distance

(MSD).

In the clustering context, an outlier can be thought of az a point with






a large MSD from the center of each and every one of the clusters. After
a robust clustering aleorithm iz applied to the data, each of the clua-
ters can be thought of az ¢oming from a unique population, and outlier
identification methods can be used individually on each cluster.

For data that come from one population, the distribution of the MSD
with both the true location and shape parameters and the conventional
location and shape parameters iz well known (Gnanadesikan and Ket-
tenring, 1972} Howewver, the conwentional location and shape parameters
are not robust to outlisrs, and the distributional fit breaks down when
robust measures of location and shape are used in the M3D (Roussesuw
and VanZomeren, 1990). Hardin and Rocke (2001} developed a distribu-
tional fit to Mahalanobiz distancss which uses a robust shape and location
estimate, namely the Minimum Covariance Determinant (MMCD).

(ziven w data pointz, the MCZD of those data iz the mean and covarn-
ance matrix bazed on the sample of size A (A = n) that minimizes the

determinant of the covariance matrix (Roussesuw, 1984},
MCD = (X;,57)
where J = { set of b pointa:| 87| = |5%| Veste H st #|H| = A}

where #|w| defines the number of elements in zet w

— 1
X, = —Za:f;
7 h’ﬁéJ
1 = =
57 = EZ(% — XJ}(:I‘"E - X.,r]'*
ie

The walue A can be thought of az the minimum number of pointz which
must not be outlying. The MCD has ite highest possible breakdown at
h = Lﬁ;illj where || iz the greatest interer function [Roussesuw and
Leroy, 1987; Lopuhaa and Rouszeeuw, 1991}, We will use b = |_£”—+£¢11J in
our caleulations and refer to a sample of size A az a half sample. The LD

iz computed from the “closest™ half sample, and thersfore, the outlying
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points will not akew the MCD location or shape estimates. The concept
of the MCD can be modified easily to fit the multiple cluster setting
With a good initialization and a known number of clusters, g, the WMCD
can be found separately for each of the clusters. The size of sach cluster
ia determined by the number of pointe which are closer to that cluster’s
centar than to any other cluster centar. The sizas of the clusters and the
MCD samples will be n; and Ay = Lm“gillj i =1, .., g, reapectively.

Jaing the MZD estimates in the MSD leads to robust distances from
gach of the cluster centeras for each of the data pointa. A datum which 1a
outlying will hawve a larse robust distance from each of the clustear centars.
Howrenmr, not every data set will give ree toan obwious ssparation between
extreme pointz which belong to the data set (e are not outliers) and
those which do not (ie. are outliers.) In order to distinguish betwsan
these two types of extrema, outliars can be identified uzing the quantiles
of an F distribution (Hardin and Rocke, 2002) on a cluster by cluster
baziz. An outlying peint will be labeled az such only if it iz outlying with
rezpact to all of the clusters.

Mote that throughout this paper, the number of groups iz assumed
to be fixed and known. This assumption iz malleable in that additional
gmall clusters will be ignored in the robust analysiz, 2o they will not hawve
an impact on estimating the g principal clusters. If an analyst s unsure
of the number of populations present in the data, it iz wize to try the
analysiz on a varnety of values for the number of clusters,

We will apply cutoff waluess to multi-cluster, multivariate normal data
given different walues of g, n, p, and different arransements and percent-

aFes of outlying pointa.






2. Clustering Methods

MMany algorithms exast for clustering various types of data. These algo-
nthms use data, multivarate or univarate, az input, and as output the
algorithm gives each datum a classification into a particular group. Some
algorith ma require that the number of clusters be pre-specified, and somse
aleorithms allow for an unknown number of clusters. Those algorith mes
that do require az input a number of groups can be run multiple times with
different values for the number of groups. The user can then choose the
result that malkes the most sense according to the problem or according
to some statistical eriterion. Finding an appropriate criterion may prove
to be a hard problem. For the method we use, finding the correct num-
ber of groups for a particular data set iz beyvond the scope of this worlk
iJur methods are applicable to data with no known structure or a prion
metric, 80 we restrct out work to partitioning clustering methods, and
we disregard hisrarchical clustering methods for the time being. Thess
methods can be used to find a best fit to a problem with a given number

of groups.

21 Robust Optimization Clustering

The clustering method we used assumes only that the clusters are ellip-
tical. (The outlier identification methods, however, are calibrated at the
multivariate normal ) Since the cluster shape iz estimated from assigned
points, it is required that p+1 pointa be assiened to each of the main clus-
ters. Howewer, this method allows for unassicned pointe, so there could
sazily be allowsed a cluster of pointz which iz smaller than p41 included in
the group of cutlying points. A proeram, called CLUSTER, implementing
thiz method iz described in (Reiners and Woodruff, 2001).






3. Robust Estimators in a Cluster Setting

Estimating cluster location and shape, even when the cluster member-
ghip is known, iz a difficult problem if outliers are present [(Rocke and
Woodruff, 1996). Since clustering methodz need alzo to assign pointa to
clugters as well az simultaneously estimate the cluster location and shap e,

the problem of cluster analyziz in the presence of outliers iz ewven more

difficult.

3.1 Affine Equivariant Estimators

We are particularly interested in affine equivanant estimators of the data.
A location estimator ¥, € RF iz affine equivarant if and only if for any

vactor v € R¥ and any nonsingular p % p matox M,

YnliI\"Iﬂ? + Vj' = M}’n(ﬂ?} + v

A shape estimator 8, € PDS(p) (the st of p ® p positive definite sym-
metric matrices) iz affine equivariant if and only if for any vector v € RP

and any nongingular p x g matrx W,
S, (M + v) = I'VISﬁ(a:}NIT

Stretehing or rotating the data will not change an affine estimate of the
data. If the location and shape estimates are affine aquisvarant, the IMa-
halanobis Squared Distances are affine invarant, which means the shape
of the data determines the distances betwesn the pointz. The only other
real alternative to affine estimates 1z to make a pror assumption about
the correct distance measure It iz important to hawve afine equivarant
egtimators 2o that the measurement scals, location, and orentation can
be ignored. Since MSD's are afline invariant, the propertise and proce-

dures that use the MID can be caleulated without loss of generality for






standardized diztributions. For the properties under normality, we can

uze N(0.I).

3.2 Minimum Covariance Determinant

The Minimum Covariance Determinant (MCD) location and shape es-
timates are used as robust estimates of the location and shape of the
clugters. Fointe that are outliers with respect to a particular eluster will
not be involved in the location and shape calculations of that cluster, and
pointa that are outliers with respect to all clusters will not be inwolved in
the caleulations of any c¢lusters. The difference betwesn the zingls popula-
tion case and the multiple cluster case iz that, in the latter, MCD samples
need to be computed for each cluster This important difference leads to

a need for a good robust starting point in the clustering situation.

3.3 Estimating the MCD

The exact MCD iz impoesible to find except in small samples or trvial
cazeg. S0, the algorithm used to estimate the MCD will be the sstimator
The algorithm used in the multiple cluster case will be similar to the
gingle population algorithm (Hawking, 1999 Roussesuw and VanDriessen,
1999} with the exception that the starting point of the algorithm will
no longer be a random sub-zample of the data. The reason that it i
important tohawve a non-random starting point for robust clustering ia that
random starts often give rae to shapes that are more representative of the
entire data metric than the individual eluster metrics. Ewen with random
gamples of only g % (p+1) pointe (where g iz the number of clusters and p
1z the dimension}, it iz highly unlikely that a random starting point would
partition the pointz into their g clusters respectively  Prom a starting

point which reflects the entire data metre, it iz difficult to separate the






points into the correct g clusters.

For a robust start, we used the method of Reiners and Woodmff (2001}
dizgeuszed previously The outlier detection methods described in this
paper are not dependent on the particular robust clustering algonthm
CLUSTER. Any robust initialization would presumably give similar results.
Random startz could be used if a condition was added to prewvent the
clugters from converging to the large datasst shape.

The core of the MCD estimation algorithm iz as follows:

+ Lat A, be a subset of b pointa

e Find X, and Sz (If det(S5) =0 then add points to the subset
until det(Sg ) = 0]

e Compute the distances df_;_.Hl (s, X2) = dis(4) and sort them for

gome permutation 7 guch that,
dy, (T(1)) £ dip (n(2)) = . = di (w(m)).

o Hy = {w(l),x(2),.  wlh)}
For gach dataset, the complete procedure for caleulating the MZDe for
sach cluster iz as follows,

1. Drecide from how many populations the data came.

2. Use the program CLUSTER (or similar clustering alporithm) to find

an initial robuat clustering of the data.

3. From theinitial ¢lustering, caleulate the mean and covarance of sach
of the clusters. (Each point belongs to at most one cluster, use the
pointe belonging to a particular cluster to caleulate ite mean and

covariance in the usual way. )

4. Caleulate the MED to each cluster, bazed on the moet recently cal-

culated mean and cowvariance, for each point in the dataset.






5. Assign each point to the cluster for which it has the amallest MSD,
thereby determining a cluster size (n,;) for each cluster based on the

number of pointe that are closest to that cluster.

6. For each cluster, chooge a “half sampld” (hy = [(n; +p+1}/2]) of
those points with the amallest MSDa from step 4.

7. Por each cluster, compute the mean and covariance of the current

half zgample.
% Repeat steps 4-7 until the half sample no longer changes.
8. Report estimates.

For each cluster, the MCD sample will then be the final half sample
(step 6). For sach cluster (5), a robuat distance like d2. (x;, X}, where 57
and f: are the MCD shape and location estimates fo;: cluster 7, iz likely
to detect outliers becanse outlyving points will not affect the MZD shape
and location estimates. For points x; that are extreme, df:_.,f:mﬁ,?j} will
be large for all 4, and for points x; that are not extrems, dg}(mi,ﬂ} will
not be largs for a particular 4.

We note that thiz aleorithm may not ¢converge for clusters with signif-
icant owverlap. In thiz case, a model bagzed likelihood algorithm should be
uzed with the identified outlisrs classified as noize {or removed) and an

iteration step that includes the modsl baszed alesorithm each time instead

of gimply the partitioning given by the distances.

4. Distance Distnbutions

4.1 Single Population Distance Distributions

Mahalanobiz squared distances give a one-dimenszional measure of how far

a point iz from a location with respect to a shape Uzing WMSDe we can






find points that are unusually far away from a location and call thoss
points outlying Unfortunately, using robust estimates gives MSDa with
unknown distributional propertiss.

In Hardin and Rocke (2001}, an approximate distributional result for
IMESDa bazed on location and shape derived from an MCD sample is given.
Although the robust distances are asymptotically Ig, an B distribution
fita the extreme points much more accurately across all sample sizes but
eapecially in amall samples. The distances based on the MCD metric can
be expressed as,

r =Pl g (X, K) By (1)
b * ’
where X and &% are the location and shape estimates of the MDD zam-
ple, ¢ 12 the dimension of the sample, and m and ¢ are both parameters
bazed on the size and shape of the MCD sample. The unknown parame-
ters, 72 and ¢, can be estimated in three wasys: using simulations, using an
agymptotic result, or using an adjustment to the asymptotic result. The
gimulation regulte are the most aceurate but alzo the most time consum-
ing.

The parameter ¢ can be estimated by,

F (ng-g = I%p,n,.fn}]'
£ = -

T

where ¥¥ iz a Chi-Squars random variable with » degrees of freedom, and
;(L is the £ quantile for a 2 random vardable (Croux and Haesbroeck,
1999). We treat the extreme points as sffectively independent of the MCD
estimates, since they hawe little or no effect on the estimates themaslves
(Hardin and Rocke, 2002).

For wm there exdste an asymptotic expression that iz good in laree sam-
plez and only moderately accurate in small samples (Croux and Haes-

brosck, 1999} For small samples, an adjustment to the parameter iz
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provided using a linear equation to estimate e mors accurately. The fol-
lowing interpolation formula is used to modify the theorstical parameter

value of the degrees of freedom (Hardin and Rocke, 2002},

Mlored = Masy - o (0.725—0.00888p—0. 07 80 Infn ) (4.2)
where Mpe.q 18 the predicted degrees of freedom from adjusting the asymp-
totic degrees of freedom, ma.y, given by Croux and Haesbrosck (1999
Zroux and Hassbroeck used influence functions to determine an asymp-
totic expression for the varance elements of the MCD sample. Details
are given in Appendix A In thiz paper we uze cnly the theoretical and
adjusted parameter estimates in the intersst of computing time. The em-
pircal resultz for sm hold for cluster sample sizes in the hundreds. For
clugter sample sizes in the thousands, the asymptotic salue of e should

be uzed.

4 72 Multiple Population Distance Distributions

Ueing the same arsuments from thesingle population setting in the cluster
getting, an P distribution can be unsed to appromimate distances which are
laree with respect toa cluster location and shape Howesser, in this setting
there are new factors to consider such az how many pointe are in each
cluster and whether extreme pointas simply belong to another cluater.

In the #ingle cluster caze, the zample zize of the datasst iz uzed in
the F' cutoff caleulation. Therefors, in the multiple cluster caze, a sample
gize et be known or estimated for each cluster The sample size also
determines the “A” parameter used in the MTD caleulation. The sizes
from the final MCD iteration (step b in section 3.3) will be used az the
gizes of each of the clusters. The last MCD iteration also prowvides a robuat

location and shape for sach cluster, these estimates are used to compute
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distances from each cluster BFora particular point, the distance from each
cluater center will be found, and a point will be counted in the cluster for
which itz distance iz the amalleat.

#in cluster j =n; = Y F(d%(X%, X}) £, (X, X;) V=1, ,ggroups)

i=1

where f and & are the location and shape estimates of the MCD sam-
ple, and my; and c; are both parameters baged on the size and shape of
the MCD sample from the 4% cluster. With these constructs in mind, the
distances of intersat are those associated with the cluster to which a point
ig closeat. Let &; be the distance from point ; to the closest cluster. An
outlying point, x;, will be one with cE; greater than some cutoff walue.
Zonsider ¢ groups of multivanate normal data in dimension @, and
let. Xy o~ Np(n,, 5;) where ¢ =observation and j =cluster. Lat S; be
an estimate of I; such that, myS; ~ Wishart, (%, m,;). For the multipls

cluster caze,

_ P(I;FE = x;,hjfﬁ.j}

. Ry

and

5lm —p+1) ™
ey diy (Xe, X5) ~ Fpmjp1.

Distrbutional cutoff results for distances based on the abowve type of clua-
tered data with four different types of outlier arrangements: none, clustear,

radial, and diffuze are given.

5 Results

Cmtliers can beidentified az pointe with robust distances that exceed zome

eutoff value. The cutoffs are computed from distributional quantiles of v*

12



