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Abstract

Motivation:

Novel techniques for analyzing microarray data are constantly being devel-
oped. Though many of the methods contribute to biological discoveries,
inability to properly evaluate the novel techniques limits their ability to
advance science. Because the underlying structure, or distribution, of
microarray data is unknown, novel methods are typically tested against
the assumed structure of normally distributed data. However, microarray
data are not, in fact, normally distributed, and testing against such data
can have misleading consequences.

Results:

Using an Affymetrix technical replicate Spike-In data set, we showed that
oligonucleotide expression values are not universally normally distributed
under any of the standard methods for extracting expression values. The
resulting data tend to have a large proportion of skew and heavy tailed
values. Using data simulated under three models (normal, heavy tailed,
and skewed), additionally, we showed that standard methodologies (for
differential expression and gene similarity) can give unexpected and mis-
leading results when the data are not normally distributed. Robust meth-
ods should be used when analyzing microarray data. Additionally, when
evaluating new techniques, skewed and/or heavy tailed data distributions
should be considered in simulations.
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1 Introduction

Microarray data may be viewed as having two sources of variability; one is
due to technology, and one is due to biology. The first is error which would
preferably be removed (“noise”), while the second is the truth which is sought
(“signal”). In order to develop and recommend statistical methods for working
with microarray data (and incidentally many other types of data), it is standard
statistical protocol to understand the distribution of the data. For example, if
it is known, then parametric methods may be applied; if it is unknown, then
non-parametric methods should be applied. The purpose of this paper is to
distinguish and study the technical variation/error of Affymetrix microarrays.
Three conclusions will be drawn: (1) It is possible to separate and study the
technical variability. (2) The technical variability is not normal, it exhibits
heavy tail and skew right behavior. Therefore, (3) methods appropriate for non-
normality should be used when analyzing Affymetrix, and presumably other,
arrays.

Throughout this paper, the word transformation, and its cognates, will be
used to refer to any published statistical method which calculates a single gene
expression value from the entire probe set, for each gene, on an oligonucleotide
chip. The “transformation” process includes background correction, adjust-
ment for PM/MM values, normalization, summarization across probes, loga-
rithmic scale change, and other possible calculations. The idea is that one
probe set from an oligonucleotide microarray is “transformed” into one gene
expression value. The unconventional use of this term was chosen due to the
awkwardness of such expressions as “gene expression measurement method.”
Five popular transformations will be employed in this study (RMA, GCRMA,
MAS 5.0, PLIER, and dChip, see Section 2).

In view of the numerous microarray studies conducted over the past decade,
attention to the technical/biological variation distinction deserves focus (Giles
and Kipling, 2003; Chen et al., 2007). Nevertheless, in order to clarify our
contribution to the literature, we offer further distinctions from previous work.
In microarray experiments, the sources of technical variation are numerous, in-
cluding variability due to lab technicians, equipment, protocol, and reagents.
In addition to technical and biological variation, study results also differ due
to particular choices of microarray platform and transformation method. Plat-
form differences are due to chip design (particularly oligonucleotide selection)
and manufacturing. Transformation differences are due to statistical transfor-
mation methods. The recent massive MicroArray Quality Control consortium
(MAQQC), consisting of 137 researchers from 51 institutions, conducted a 1, 300"
chip study, addressed all of the above issues and stands as a benchmark for mi-
croarray studies in the near future (MAQC Consortium, 2006a). The MAQC
consortium amply documented the reality of divergent study results (p. 1151)
as justification for their goal to address the consistency, reliability, and repro-
ducibility of current microarray research across technical, biological, platform,
and transformation differences.

In our study, we analyze the distribution of technical variation on the Affymetrix



platform for five competing transformations. It is well known that different
transformations give different results (Millenaar et al., 2006), which delays
establishing a consensus transformation (for example, see the competition at
http://affycomp.biostat.jhsph.edu/). However, it has been argued that
technical variation is negligible relative to biological and is therefore not worth
study (Klebanov and Yakovlev, 2007). The relevant MAQC report disagrees
with the idea of technical variation being negligible. Table 1 of the MAQC
report (p. 1126) summarizes the numbers of genes selected under different con-
ditions and using different transformations. Selection sizes vary by hundreds of
genes. The report concludes that, “the variations seen in Figure 2 and Table
1 can also result from differences ... [in] levels of noise in each measurement”
(MAQC Consortium, 2006b). Additionally, the Klebanov and Yakovlev (2007)
paper, which argues technical error is negligible, suffers from several serious crit-
icisms by reviewers, including the citation of instances where they believe tech-
nical error does effect results in practice, directly contradicting the conclusion of
the paper (Mushegian, 2007; Koonin, 2007). Furthermore, since Klebanov and
Yakovlev (2007) make claims about the relationship between the technical noise,
which was present in their data, to biological signal, which was not present in
their data, they have made an assertion which could not even in principle be
substantiated by their data. In conclusion, technical error is real. Although it
is usually small enough to obtain valid results in microarray studies, it is not
negligible and therefore it is worthy of further investigation.

The distribution of technical variation affects the distribution of the biolog-
ical variation, and the sum of the two are commonly assumed to be normal.
The assumption of whether transformed oligonucleotide data are normal or not
is important for several reasons. One is that new statistical techniques are
constantly being developed for analyzing microarray data and are often tested
using normally distributed data. For example, in a recent issue of Bioinformat-
ics, six papers dealt with microarray data. Four simulated Gaussian data for
the purposes of validation and comparison (Nicolau et al., 2007; Wang and Zhu,
2007; Goeman and Biithlmann, 2007; Wong et al., 2007), one sampled parts of
microarray images from real data (Song et al., 2007), and one did no simulations
(Royce et al., 2007). Another reason the normality assumption is important is
that conventional methods for analyzing oligonucleotide data produce differing
results when data are truly normal or not. Improper use of statistical applica-
tions can lead to invalid biological conclusions. Understanding the distribution
of microarray data will lead to more appropriate analyses and more accurate
results.

In what follows, we attempt to show that the technical variability of trans-
formed Affymetrix data is not normal and that this fact can have a non-trivial
effect on subsequent analysis. Data from other microarray platforms were not
included in this study, but it seems reasonable to suspect similar results for
them in the absence of evidence to the contrary. The next three sections of
this paper correspond to the three conclusions of the opening paragraph. Sec-
tion 2 describes the work of Giles and Kipling (2003) where they adapted a
published spike-in data set to study the technical variation using five transfor-



mations, and concluded that the technical variation was normal. We replicate
their study, show an error in their analysis, and conclude that the technical vari-
ation is, in fact, not normal. Section 3 investigates skew coefficients, kurtosis,
and Hogg’s Q2 (Hogg et. al. 1975) under the five transformations. Further evi-
dence of non-normality is established and the kind of non-normality is shown to
be primarily tail heaviness and right-skewness. Section 4 investigates the con-
sistency and the accuracy of conventional Affymetrix data analysis methods.
The methods studied are two-sample t-tests and Wilcoxon Rank-Sum tests for
differential expression and Pearson’s and Spearman’s correlation coefficients for
clustering. Lastly, Section 5 concludes with a discussion of the results.

2 Establishing Non-normality

In a 2003 Bioinformatics paper, Giles and Kipling (GK) concluded there is
“strong support for the normality of the data produced by four different algo-
rithms commonly used for extracting expression values” (pp. 2258-9). They be-
gan by correctly identifying that the biology and technology contribute two dif-
ferent sources of variability, of which only the biological is of interest. They next
argued that although non-parametric methods are powerful enough for large
scale experiments (exceeding 50 chips), well-designed small-scale exploratory
experiments (under 10 chips) tend to be analyzed using parametric techniques.
“There is, therefore, a requirement to address the nature of the data distri-
butions obtained from the underlying microarray technology” (p. 2255). The
remainder of their paper examined the distribution induced by technology using
an Affymetrix 59 chip spike-in (SI) dataset. The SI dataset was chosen because
of the large number of technical replicates available for distribution assessment
(not even the MAQC datasets provide as many technical replicates of a single
sample). We replicate the work of GK and find an error in their interpreta-
tion/method. In correcting the error we are led to the opposite conclusion,
namely that transformed oligonucleotide data are not normally distributed.
The SI data set was designed by Affymetrix to investigate the expression lev-
els of known concentrations of various transcripts. However, after removing the
spiked-in genes, there are 59 technical replicates of each gene. It is available at
http://www.affymetrix.com/support/technical/ sample_data/datasets.
affx and through R’s Bioconductor software at http://bioconductor.org/
packages/2.0/data/experiment/html/SpikeIn.html. We used the data found
in Bioconductor and removed the genes corresponding to the 16 spiked-in tran-
scripts documented. GK report removing only 14 spiked-in genes (p. 2255),
the difference being genes 33818_at and 546_at (see (Cope et al., 2003) for expla-
nation). As GK, the 67 control genes (with AFFX prefix) were removed. Our
analysis and the GK analysis used 12,543 and 12,545 genes, respectively. Five
transformation algorithms were applied to the SI data: dChip PM-only (Li and
Wong, 2001), Affymetrix MicroArray Suite 5.0 (MAS5) (Affymetrix, 2002), Ro-
bust Multi-Array Analysis (RMA) (Irizarry et al., 2003), GCRMA (Wu et al.,
2004), and Probe Logarithmic Intensity ERror (PLIER) (Affymetrix, 2005). All



Transformation Shap-Wilk JB  Both

RMA 24.5% 26.0% 21.7%
GCRMA 46.8% 47.2% 42.7%
MAS5 46.2% 33.6% 32.3%
dChip 29.5% 25.9% 22.9%
PLIER 20.1% 15.2% 14.2%
ts 39.3% 43.7% 36.6%
2 99.6% 92.5% 92.5%
Normal(0,1) 50%  3.7%  2.3%

Table 1: Normal tests of hypotheses. Each entry represents the percentage
of genes whose distribution was significantly different from normality (p < 0.05).

the algorithms are available in Bioconductor and may have minor differences
from the Affymetrix transformation techniques (whose algorithms are propri-
etary). Our choices of transformations differ slightly from GK, who used MAS4
and dChip PM-MM, but did not use RMA, GCRMA, or PLIER. Our selection
was made to reflect current transformation methods. All work done here and
in other sections was in R (R Development Core Team, 2007).

In order to test for normality, GK applied the Shapiro-Wilk (Shapiro and
Wilk, 1965) test to every gene (n = 59). If the data were independently and
normally distributed, there would be approximately 5% of the genes failing
significance tests at a 0.05 level. In fact, for the normally simulated data,
there were approximately 5% of the genes failing the tests of normality (Table
1). However, for each of the transformations of the SI data, there was a much
higher percentage (see Table 1) than expected of genes that were not normally
distributed. Our numbers are similar to GK.

In addition, we applied the Jarque-Bera (Jarque and Bera, 1980) test of
normality, with similar results. For comparison, Table 1 also gives the empir-
ical percentages of samples (10,000 simulations, each of size n = 59) that are
rejected under three known distributions: Normal(0,1), 5, and x3. The normal
distribution has a reasonable empirical significance level while the other two
distributions correctly reject many of the simulated samples. Since the percent-
ages are so high, GK reasoned that the Shapiro-Wilk test was very powerful
with n = 59 and so perhaps the “magnitude of deviation from normality” of the
rejected genes was small (p. 2256). We pass over the lack of attention to the
inherent multiple testing problem the analysis, which is treated in Chen, et. al.
(2006).

To investigate the “magnitude of deviation from normality,” GK pursued
a global QQ-plot approach. QQ-plots give an indication of the strength of
normality of a sample. A plot of each gene’s quantiles against the quantiles
of the normal distribution will give evidence of normality if the points fall on
a line. Since it was infeasible to visually examine all 12,545 QQ-plots, they



Transformation % < 0.971 % < 0.984

RMA 17.9% 35.1%
GCRMA 36.8% 58.5%
MAS5 35.3% 52.0%
dChip 19.7% 38.3%
PLIER 12.3% 24.3%
ts 30.5% 57.3%
2 95.8% 99.8%
Normal(0,1) 1.0% 10.0%

Table 2: Correlation quantiles. Each entry represents the percent of genes
whose sample correlation coefficient between the ordered gene expression values
and normal quantiles is less than the given column. If the data were normally
distributed, we would expect 1% in the first column and 10% in the second
column, as seen in the last row which gives the empirical percentages from
Looney & Gulledge (1985).

calculated correlation coefficients between the 59 expression values and stan-
dard normal quantiles. To make their assessment, GK made histograms of the
correlation coefficients (Figure 1, p. 2257), visually inspected the histograms,
and concluded that “the vast majority” of MAS4, dChip PM, and dChip PM-
MM genes are sufficiently close to normal to conclude that technical error was
normal. The fundamental error in their analysis was to ignore the fact that QQ-
plots have inherently high positive correlations. Using the tables of Looney and
Gulledge (1985), for normally distributed data, only 10% of the QQ-plots will
give a correlation coefficient less than 0.984, and only 1% of the QQ-plots will
give a correlation coefficient less than 0.971 (n = 59 samples). From Table 2
there were many genes less than the given cutoff for each of the transformation
techniques. That is, the data were substantially less correlated with normal
quantiles than they would be if the data were in fact taken from a normal pop-
ulation. For comparison, Table 2 gives the empirical percentages of samples
(10,000 simulations, each of size n = 59) that are rejected under simulated ¢5
and x3 distributions. Again we see that the t5 and x3 distributions correctly
show their departure from normality by having many QQ-plot correlations that
are much smaller than would be expected for normal data.

The reason for the error in GK’s analysis was that they used no objective
measure to determine “magnitude of deviation from normality.” The table of
Looney and Gulledge (1985) provides this measure. By the results shown in
Table 2, the technical error values all exhibit severe non-normality, the amount
of which depends upon the transformation method used.

We recognize that the above arguments assume the independence of the
genes, and that the structure of gene dependencies is unknown. With indepen-
dent normally distributed genes, we would expect to reject only 5% of the genes



using the hypothesis tests, and we would expect only 1% and 10% of the genes
to have correlations less than 0.971 and 0.984, respectively. We attribute our
much higher than expected percentages to the non-normality of the data. In
an extreme case, if all the genes were perfectly correlated, we would see either
0% rejection or 100% rejection. That is, the rejection level would be based on
the variability of only one gene (i.e., all the genes). For both the normality
and the higher than expected percentages to hold, around 19.5% of the RMA
data would have to be quite strongly dependent on the 5% of the data which
naturally rejects normality (due simply to variability). Though there is no
doubt some dependence among the genes, we do not believe that dependence
alone can account for, say, 24.5% of the RMA data rejecting the null hypothesis
of normality.

3 Characterizing the Non-normality

Having reasoned that oligonucleotide technical error is not normally distributed,
it is important to characterizing the non-normality. It is well known that raw
microarray data (across all platforms) are highly skewed (usually skewed right)
with many extreme values (Li and Wong, 2001). Often the log transformation
is used to offset the skewness. However, as previously mentioned, the result-
ing distribution has been almost universally designated as normal. Hoyle et.
al. (2002) have observed that the bulk of microarray data have a log-normal
distribution (corresponding to Winsor’s principle, “All observed distributions
are Gaussian in the middle” (Tukey, 1960)) while the tails are better described
using a power law distribution (Hoyle et al., 2002). Because, typically, interest
is in the tails of the data, understanding the tails of the microarray distribution
is generally more important than understanding the bulk of the data. To this
end, we explore the skewness, peakedness, and tail heaviness of the data using
the skew coefficient, kurtosis coefficient, and Hogg’s Q2 (Hogg et al., 1975),
respectively. Additionally, the technical error data will be compared to known
Normal(0,1), heavy-tailed (¢5), and skew-right (x2) distributions.

The SI data was standardized so that each gene was centered at zero (sub-
tracted a 10% trimmed mean) and scaled (divided by the Median Absolute
Deviation, MAD). However, neither of the tests of normality nor the correla-
tion coefficient is sensitive to changes in shift or scale. The skewness coefficient,
kurtosis coefficient, and Hogg’s Q2 are all also shift and scale invariant.

3.1 Skewness, Peakedness, and Tail-heaviness

Normal data are not skewed; that is, they have a skewness coefficient of zero.
Skewness is typically measured as the third central moment divided by the cube
of the standard deviation, £3.

In Figure 1, the technical error is more skewed than expected if normal. The
numbers above (below) each plot represent the percentage of sample skewness

coefficients for the particular transformation which lie above the 99¢th (below the



Skewness Coefficient
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Figure 1: Skewness boxplots. The percentage of genes greater than (smaller
than) the 99% (1%) of the empirical normal is written above (below) each non-
normal boxplot. PLIER is skewed left while the other transformations seem
more skewed right.



1st) percentile of the normal sample skewness coefficient. The ¢5 distribution,
which is known to be symmetric, and the x3 distribution, which is known to
be skewed, were included as references. The t;, with heavy tails, has about
a quarter of its samples with higher skewness than expected under normality.
RMA is not substantially different, indicating that the difference from normality
might be due to heavy tails or to skewness. GCRMA and MAS5, however, have
many genes that are skewed right. The PLIER transformation seems to address
the right skewness but has a trade-off of being left skewed.

Another way to observe a departure from normality is through the peaked-
ness of the mound or the heaviness of the tails of the distribution. We measured
kurtosis (peakedness) using the fourth central moment divided by the square of
the second central moment, ﬁ—% The kurtosis of a normal random variable is
3. We measured tail heaviness using Hogg’s Q2, % (Hogg et al., 1975),
where U, is the average of the upper p*100% of the data; and L, is the average
of the lower p * 100% of the data. For normal data, Q2 is about 2.6.

In Figures 2 and 3 the kurtosis and tail heaviness are much higher for the
technical error than for the normal data. In particular, log scales were applied to
display outliers on the boxplots in a visually reasonable manner. The numbers
above each plot represent the percentage of sample kurtosis and Q2 coefficients
for the particular transformation which lie above the 99th percentile of the
normal sample kurtosis and Q2 coeflicients, respectively.

To characterize the sources of non-normality, the skewness, kurtosis, and
tail heaviness for the genes rejected under the Shapiro-Wilk test are tabulated
in Table 3. A gene was considered to have high skew, kurtosis, or Q2 if the
relevant statistic for that gene fell above the 99" percentile for the simulated
Gaussian data. As such, inclusion in Table 3 represents extreme deviation from
normality. The specific values used were: high skew, 0.74 (low skew, -0.73); high
kurtosis, 4.78; and high Q2, 3.38. Under each of the transformations, about two
thirds of the rejected genes had skewed data (either positive or negative); large
proportions of the rejected genes had high kurtosis; lower, but still substan-
tial, proportions had heavy tails (peakedness and tail heaviness often coincide
and we hereafter group them). Any combination of skewness, kurtosis, and tail
heaviness is possible for a gene whose technical error distribution deviates from
normality. Further study would be required to discriminate all these categories.
If such a study were conducted, it should be repeated on a variety of representa-
tive technical replicate data sets for validation. From Table 3, we believe it can
be reasonably inferred that skewness and tail heaviness are major contributors
to the non-normality of the technical error.

3.2 Comparison with Known Distributions

In order to obtain some fixed references for the nature of the tail heaviness and
skewness detected, we considered the t5 and x3 distributions in Tables 1, 2, and
3. The t5 distribution represents a heavy tailed distribution whereas the x3
represents a skew right distribution.



Kurtosis Coefficient
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Figure 2: Kurtosis boxplots. All transformation methods have a large num-
ber of genes with higher kurtosis than expected under normality; the percent of
genes with a kurtosis larger than the 99% for the normal is given above each of
the boxplots. Note that the y-axis is on a log-scale.
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Hogg's Q2, Tail Heaviness
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Figure 3: Tail heaviness boxplots. All methods have genes with much
heavier tails than normal; the percent of genes with a Q2 value larger than the
99% for the normal is given above each of the boxplots. Note that the y-axis is
on a log-scale.
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Transf. Shap-Wilk | Pos Skew Neg Skew Any Skew High Kurt High Q2
RMA 24.5% 43.9% 33.1% 77.0% 72.5% 50.2%
GCRMA 46.8% 74.4% 3.5% 77.9% 67.5% 51.4%
MAS5 46.2% 67.8% 1.0% 68.8% 33.9% 19.0%
dChip 29.5% 58.1% 11.4% 69.5% 60.3% 43.0%
PLIER 20.1% 0.8% 66.6% 67.4% 45.5% 31.8%
ts 39.3% 12.4% 12.4% 24.8% 32.1% 31.1%
X3 99.6% 93.5% 0.0% 93.5% 46.2% 10.9%

Table 3: Characterization of non-normal genes. The first column repre-
sents the percentage of genes that rejected normality according to the Shapiro-
Wilk test for each of the transformations (and the two simulation distributions).
The remaining five columns represent the proportion of the rejected genes that
were different from what would be expected for Gaussian data.

In Table 1, the simulations of known t5 and % data give a sense of the
power of the Shapiro-Wilk and Jarque-Bera tests. It is apparent that it is not
feasible to reject all samples of size n = 59 taken from non-null distributions.
Accordingly, the data in Table 2 indicate that the transformations may have
some of the same characteristics as the t5 and x3 distributions.

Table 3 characterizes the skewness and tail behavior of genes whose data
rejected normality. It seems that skewness is a larger component to normality
rejection than tail heaviness. Nevertheless, tail heaviness is still a relevant factor.
The comparatively large proportion of 3 samples who rejected normality due
to skewness indicates that it is unlikely that skewness is the only component of
non-normality contributing to the error deviations we see with the transformed
microarray data.

4 Effects of Non-normality

From the characterization of the non-normal genes being caused partly by skew-
ness and partly by tail heaviness it becomes important to understand the effects
of these attributes on methods typically applied to microarray data. We have
referenced papers (in the introduction) which simulated normal data to test
novel techniques. The effects non-normality will have on novel techniques is
unclear. However, the typical practitioner is probably interested in the effects
of non-normality on basic differential expression and gene clustering procedures.

4.1 Differential Expression

In order to test the effects of non-normality, we simulated the same three types
of data as before: Normal(0,1), ¢5, and x3. To be consistent with the Spike-
In data, which contained 59 samples, there were 30 samples (arrays) in one
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group and 29 samples in the other. For each simulation, we repeated the trial
10,000 times. We simulated genes that were not differentially expressed (no
shift) and genes that were differentially expressed (shift of 0.5, 1, or 2). In
a typical microarray experiment, we expect to see a combination of genes of
both types. The simulated data sets were used to evaluate basic procedures for
testing differential expression and computing similarity measures.

4.1.1 Consistency

If microarray data are normally distributed, different methods for evaluating
differential expression (e.g., t-tests and Wilcoxon rank sum tests) will give sim-
ilar results (that is, the ordering of the most differentially expressed genes will
be conserved across various methods). However, if the data are not normally
distributed, methods for evaluating differential expression will give a different
ordering of most significantly differentially expressed.

To investigate the consistency of techniques which discover differentially ex-
pressed genes, we compared two standard methods: the t-test and the Wilcoxon
rank sum (WRS) test. Both methods test for a difference in shift across two
samples. If a group of samples is truly differentially expressed, both tests should
produce significance. In each of the first set of simulations (Figure 4 and Table
4), we have created two groups which are centered at the same value; that is,
there is no differential expression. In this null setting, the p-values should be
uniformly distributed from zero to one, and about 5% of the tests should reject
the null hypothesis of no differential expression. For each of the distributions
and each of the tests, there is a correct amount of error at about 5% (see Ta-
bles 4 and 5). There is also a nice spread of p-values across the range of zero
to one along each axis. However, the significance of each of the two methods
(t-test and WRS test) for a particular simulated dataset (i.e., for a dot on the
scatterplot) is not consistent (i.e., do not lie near a 45° line in Figure 4). The
normal data were the most consistent of the three (Table 4 and Figure 4(a)).
The p-values for the t-test seemed to be correlated (0.90) with the p-values for
the WRS test. For the heavy tailed and skew data, there was weaker correlation
(0.789 and 0.712, respectively) between the p-values of tests that were assumed
to be measuring the same thing (Table 4 and Figures 4(b) & (c)).

4.1.2 Power

In the previous subsection, two different methods for testing differential expres-
sion were shown to give somewhat inconsistent results in the presence of no
differential expression for non-normal data. In order to help determine which
method to use, it is important to evaluate the methods under no differential
expression (as above) and also under the condition of differential expression.
Using the same setup as in Section 4.1.1, we shifted one of the populations (by
0.5, 1, and 2). Given a distribution (e.g., normality), we generated a sample
of size 30 from the default distribution and generated a sample of size 29 from
the shifted distribution (default + shift). Because there is differential expres-

13



Normal(0,1) ts X3

> .05t <.05¢ > .05t <.05¢ > .05t <.05¢t

> .05 WRS 93.6 1.1 94.1 1.4 93.6 1.4
< .05 WRS 1.0 4.3 1.2 3.3 1.6 3.4
correlation 0.900 0.789 0.712

Table 4: Quadrant % and correlations. The top of the table represents the
percent of points which fall above and below a significance level of 0.05 for each
of the t-test and WRS test. Both tests should reject (p-value < 0.05) the null
hypothesis 5% of the time. The last row represents the Pearson correlation for
the scatterplot (Figure 4) of p-values for each of the t-test and WRS test.

sion, we will recommend the technique that is able to capture the differential
expression most often.

Here, the MAS5 data were not scaled to have a center of zero and standard
deviation of one, so the shifts (of 0, 0.5, 1, and 2) were not appropriate for
the MAS5 data. Accordingly, for each gene, we multiplied the shift by its
median absolute deviation (MAD). The modified shift value was then added
to a randomly selected 29 arrays (with a different random selection for each
gene). Because the 29 shifted arrays were randomly selected, there should be
no underlying differential expression except for the imposed shift value. Other
transformation methods (results not shown) produce similar results to MASS.

For the normal data, the results are consistent for either statistical method
(see Table 5). In particular, the t-test is slightly more powerful than WRS, as
expected. The t-test should therefore be favored when the data are known to
be normal. However, because the gain in power is small, WRS may still be
preferable unless the normality assumption can be verified.

When the data are not normally distributed, the two methods for detecting
differential expression are much less consistent. For both skewed and heavy
tailed data, the WRS test always identified more differentially expressed genes
than the t-test. Given that all of the genes were, in fact, differentially expressed,
the WRS test was more powerful for the non-normal simulated distributions.
Additionally, from tracking the genes which were identified as differentially ex-
pressed, the WRS test identified practically all the genes that the t-test identified
(see Table 5). Because the t-test genes were almost a subset of the WRS test
genes, we conclude the WRS test is a better choice for identifying differentially
expressed genes when the data are not normal.

Nonparametric tests tend to be more powerful for data that have heavier
tails than the normal distribution. Because the WRS test does not make any
assumptions about the underlying error distribution it can be used for any error
distribution, and when the data are normal it does almost as well as the t-test.
In Section 2 we have argued that, in general, technical error is not normally
distributed. It is therefore our recommendation to use robust methods, when
possible, to discover differentially expressed genes. When this is not possible,
non-robustness of methods should be made explicit.
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MAS5 Data Normal(0,1) data

Shift t-test % WRS % tNWRS % t-test % WRS % tNWRS %

0 0.046 0.049 0.035 0.054 0.053 0.043
0.5 0.400 0.447 0.366 0.466 0.446 0.422
1 0.867 0.938 0.860 0.968 0.959 0.955
2 0.984 0.999 0.984 1.000 1.000 1.000
5 data X3 data
Shift t-test % WRS % tNWRS % t-test % WRS % tNWRS %
0 0.047 0.045 0.033 0.048 0.050 0.034
0.5 0.327 0.369 0.295 0.125 0.177 0.108
1 0.838 0.892 0.827 0.355 0.506 0.341
2 0.999 1.000 0.999 0.873 0.958 0.870

Table 5: t-test and WRS test for shifted data. Two-sample t-tests and
Wilcoxon rank sum tests were performed on 10,000 samples where shifts of
{0,0.5,1.0,2.0} were added to half of the sample. The percentage of rejections
for each test at a = 0.05, as well as the percentage rejected by both tests are
shown.

The conclusions of Section 2 are supported by the behavior of the trans-
formed data to be more consistent with the tail heavy (t5) and skew (x3) data
than with normally distributed data when testing for differential expression
(Table 5).

4.2 Similarity measures

As with differential expression, different measures of similarity (e.g., Pearson
correlation or Spearman correlation) will be consistent for normal data. With
non-normal data, however, different measures of similarity will often give incon-
sistent results (i.e., one high and one low correlation), and will sometimes give
opposite results (i.e., one positive and one negative correlation).

To evaluate the degree of inconsistency of different similarity metrics when
using relevant non-normal data, we simulated 10, 000 pairs of correlated samples
(n = 59 arrays in each sample) of Normal(0,1), t5, and x% data (Figure 5). For
each type of data distribution, we simulated 10,000 pairs of genes which were
correlated at p = 0.0 and another 10,000 pairs correlated at p = 0.8. Pearson
correlation is a statistically consistent estimator of the population correlation
though Spearman correlation is not. However, Spearman correlation was devised
for ranked or noisy data and is often used as a similarity measure in clustering
applications.

Figures 5a. and 5d. show the strong consistency (high correlation) of Pear-
son correlation and Spearman correlation for normally distributed data. The
x-axis is the estimated Pearson correlation, the y-axis is the estimated Spear-
man correlation. If a pair of genes was identified as similar (high correlation)
from one measure, the other measure also identified it as similar (also true for
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gene pairs identified as not similar).

However, if the data were not normally distributed, the methods became
much less consistent. For both heavy tailed data and skewed data (Figures 5b.
& e. and 5c. & f.) the two measures of similarity were less correlated than
the previous normal plots. Particularly with the heavy tailed data, sometimes
one measure identified a pair as similar while the other measure did not (see
outlying points in Figure 5e). Simulations were repeated for a true population
correlation of 0.3 with similar results. Also, Pearson correlation is highly affected
by outliers (prevalent in the data, see Figure 1 and (Wang et al., 2007)), so the
Pearson correlation estimate of similarity is likely to be inaccurate with heavy
tailed data or any data with outliers.

For the Spike-In data, Figure 6 gives both Pearson and Spearman correla-
tions for a random subset of 10,000 pairs from each of the transformed data
sets. That there is a large range of correlations (as to be expected with actual
data). For comparison, Normal(0,1) (p = 0) data were plotted in the lower right
corner. The range of the differences (between Spearman and Pearson correla-
tions) is closer to the heavy tailed and skewed data than to that of the normal
data. This supports the conclusion of Section 2 that the technical error is not
universally normal and it demonstrates that Pearson and Spearman correlation
give significantly divergent results on it.

As with tests of differential expression, with microarray data we recommend
using robust measures of similarity as input to clustering algorithms. A robust
measure of correlation that is consistent for the population correlation, like the
translated biweight correlation (Hardin et al., 2007), may give optimal results.

5 Discussion

We have demonstrated that transformed microarray data are not, as a rule,
normally distributed. Using the 59 technical replicates in the Affymetrix Spike-
In data set we showed that none of the standard transformation techniques
result in universally normal data. The particular data set is regarded highly
enough by the Affymetrix company and academia that it has been used for the
development of transformation methods (Cope et al., 2003). For validation, we
repeated our methods on another technical replicate data set, the Affymetrix
Spike-In 133 data set, with similar results (not shown here). Given the nature
of microarray technologies, we presume that our conclusions will hold for other
kinds of microarrays, although further study would be required to confirm this.
In practice, our work on consulting projects using other microarray data sets is
consistent with our conclusion that microarray data are not, in general, normally
distributed.

Additionally, our evidence suggests that the main factor leading to non-
normality is skewness, and that tail heaviness (presumably in conjunction with
peakedness) is also a very substantial factor. Combinations of these factors, as
well as other factors require further study.

Finally, not having normal data can yield misleading results for both stan-
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dard (as shown) and novel methods. We advocate that when testing a novel
method, heavier tailed and/or skewed distributions should be used regularly in
simulations. It is unclear how newer techniques designed specifically for mi-
croarrays (e.g., bagging, boosting, PCA, PLS) will be affected by distributional
assumptions, but we hope our results will encourage future researchers to be
more realistic in simulating data to test novel methods.

A major goal of this study was to stimulate dialogue about the dangers
of assuming the normality of oligonucleotide data. There is ample room for
further research, including more precise non-normality characterization, more
thorough study of gene dependence, incorporating multiple testing (see Chen,
et. al. 2006), and offering a viable alternative distribution to normality for gene
expression modeling. The final item is an area of our current investigation.
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(a) N(0,1) Data, no shift (b) t(5) data, no shift (c) Chisq(3) data, no shift
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Figure 4: Scatterplots. p-values for two tests of differential expression based
on data simulated from normal, ¢5, and x3 distributions are displayed. Data are
simulated so that both groups are centered at zero (no differential expression).
Correlations of scatterplots are given in Table 4.
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a. N(0,1) data, rho = 0.0 b. t(5) data, rho = 0.0 c. Chisq(3) data, rho = 0.0

o o o
— 7 — 7 — 7
S @ S @ S @
;‘._‘. o ;‘._‘. o ;‘._‘. o
° ° °
8 o 8 o 8 o
c o c o c o
© © ©
13 13 13
g w g w g w
joX o joX o joX o
[0 a7 [
o o o
— - — - — -
! T T T T ! T T T T ! T T T T
-1.0 0.0 05 10 -1.0 0.0 05 10 -1.0 0.0 05 10
Pearson correlation Pearson correlation Pearson correlation
d. N(0,1) data, rho = 0.8 e. t(5) data, rho=0.8 f. Chisq(3) data, rho=0.8
o
—
0
s © S S
© © ©
T o ° °
s © IS IS
o o o
c c c
5] < < [} <
E S £ E S
© © ©
2 2 2
o g %) o 3 A
= o ]
e © T T
0.0 0.4 0.8
Pearson correlation Pearson correlation Pearson correlation

Figure 5: Correlation Plots. p = 0.0 (first row) and p = 0.8 (second row).
Each point represents a pair of genes simulated from a bivariate distribution
(Normal(0,1) in first column; t5 in second column; x3 in third column) with
a sample size of n = 59. The Pearson correlation and the Spearman correla-
tion give less consistent similarity estimates for the skewed and heavy tailed
distributions.
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Figure 6: Correlation Plots for Transformed Data. Using a random subset
of 10,000 pairs of the Spike-In transformed data, all pairwise correlations are
shown (both Pearson and Spearman).
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