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Statistics

Abstract

Mahalanobis-type distances in which the shape matrix is derived from the Mini-

mum Covariance Determinant estimator, a consistent, high-breakdown robust mul-

tivariate location and scale estimator, have an asymptotic chi-squared distribution

as is the case with those derived from the ordinary covariance matrix. However,

even in quite large samples, the chi-squared approximation is poor. We provide an

improved F approximation that gives accurate outlier rejection points for various

sample sizes.

The robust distances are also used for classifying data into di�erent clusters

and identifying outlying points in a mixture population. This work is innovative

as it allows an unspeci�ed number of points to be unclassi�ed in the estimation

process. Since the outlying points are not used in the estimation, the method is

both a robust clustering method and an outlier identi�cation method which uses

an F approximation to determine cuto� points. We provide results on both type I

and type II errors of the method and a comparable chi-squared method.

The translated biweight S-estimator is also used in the robust Mahalanobis-

type distances to identify outliers using an F approximation in the one cluster

case and to both cluster and identify outliers using an F approximation in the

multiple cluster case. The distances which use the S-estimator metric also have an

asymptotic chi-squared distribution, but the F approximation is superior especially

in small data sets and datasetwise rejection.
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Chapter 1

Introduction

1.1. Importance of Outlier Detection

Statisticians have been interested in �nding \outlying", \unusual", or \unrepre-

sentative" observations for many years. Data that have been incorrectly entered

or that do not belong to the population from which the rest of the data came can

bias estimates and give misleading results. Methods have been devised to identify

and/or accommodate outlying observations in a variety of situations. With recent

advances in technology, scientists are collecting larger data sets, and the analyst is

getting further and further from the data (in the sense that she no longer writes

or even sees every data point.) So, it is important to have good methodology for

dealing with rogue observations that might not be noticed in a typical data anal-

ysis. Before discussing any speci�c statistical methodology that would be applied

to data, we will ask (and answer) the following questions:

1. What is an outlier?

2. What are the reasons to keep outliers in mind?

3. How do outliers arise?

4. What are the hypotheses for the model?



2

5. What consequences arise if the outliers are ignored?

1.1.1. What is an outlier?

The basic de�nition of an outlying observation is a data point or points that do

not �t the model of the rest of the data. Speci�c de�nitions are given by Barnett

and Lewis (1994), Grubbs (1969) and Hawkins (1980):

An outlier is a point such that \in observing a set of observations in
some practical situation one (or more) of the observations 'jars' stands
out in contrast to other observations, as extreme value." (Barnett and
Lewis, 1994) (pg 32)

An outlying observation, or 'outlier', is one that appears to deviate
markedly from other members of the sample in which it occurs. (Grubbs,
1969)

An outlier is \an observation which deviates so much from other ob-
servations as to arouse suspicions that it was generated by a di�erent
mechanism." (Hawkins, 1980) (pg 1)

These de�nitions all refer to a point (or points) that is surprisingly di�erent

from the rest of the data. However, the words \stands out", \appears to deviate",

and \arouse suspicions" imply some kind of subjectivity or preconceived ideas

about what the data should look like. Though formal methods also often rely

on distributional assumptions, formal methods will cut down on the amount of

subjectivity used in data analyses that employ outlier detection methods.

1.1.2. What are the reasons to keep outliers in mind?

There are two basic reasons to search for outliers: 1. Because there is interest in

the outliers for their own sake, and 2. Because the outliers could in
uence the

results from the rest of the data.
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In 1949 in England, the case of Hadlum vs. Hadlum gives a good example of

interest in outliers for their own sake. Mr. Hadlum appealed the rejection of an

earlier petition for divorce on grounds of adultery. Mrs. Hadlum had given birth

to a child (who she claimed was fathered by her husband) on August 12, 1945, 349

days after Mr. Hadlum had left the country. The average gestation period for a

human female is 280 days, and so the question arose: Is 349 days simply a large

observation or does that data point belong to another population, namely one of

women who conceived much later than August 28, 1944? (Barnett and Lewis,

1994) (pg 4)

Conversely, imagine a scientist studying a certain type of mosquito. If there

were other types of mosquitos in his data collection, he would not be interested in

their characteristics, he would simply want to remove the observations or ensure

that the observations do not in
uence the statistical estimates of the original pop-

ulation. In such a situation, the techniques should accommodate the outliers but

need not detect and reject them. Accommodation will be used in the sense that

estimates will not be seriously a�ected or distorted by outlying observations and

so will \accommodate" them in the estimation. Techniques that accommodate

outliers are called robust.

The word `robust' is loaded with many - sometimes inconsistent - con-
notations. We use it in a relatively narrow sense: for our purposes,
robustness signi�es insensitivity to small deviations from the assump-
tions (Huber, 1981) (pg 1).

Robust methods guard against unique \bad" points, but they also give \pro-

tection against various types of uncertainty of knowledge of the data generating

mechanism." (Barnett and Lewis, 1994) (pg 35) Two quantities that are related

to robustness are resistance and breakdown. \A resistant method produces results

that change only slightly when a small part of the data is replaced by new num-

bers, possibly very di�erent from the original ones" (Hoaglin et al., 1983) (pg 2).

The slight distinction in robustness and resistance is that \robustness generally

implies insensitivity to departures from assumptions surrounding an underlying
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probability model" (Hoaglin et al., 1983) (pg 2). We will use the two terms

interchangeably.

The breakdown of an estimator on n points is the fraction m=n, where m is

the smallest number of points that can be replaced by arbitrary values to make

the estimator unbounded. The breakdown will be discussed in detail in chapter 4.

1.1.3. How do outliers arise?

Along with identifying or accommodating outliers, we should have some idea of

why or how the outliers arose. Barnett and Lewis (1994) (pgs 33-34) classify the

types of variation into three groups.

� Inherent Variability { This is the natural variability in any data set.

� Measurement Error { This includes the limitation of the measuring device

as well as any recording error done by the scientist.

� Execution Error { This includes situations with observations which are not

in the population of interest or situations when a biased or misjudged sample

is used.

When the analyst is deciding whether or not to reject an extreme observation,

she should consider these types of variability. If the variability is due to mea-

surement error or execution error, the point should probably be removed from the

sample. However, if the variability is due to inherent variation, the point should

remain. The interesting questions occur when the source of variation is unknown.

1.1.4. What are the hypotheses for the model?

In order to understand the source of variation, the analyst should de�ne both

the null and alternative hypotheses that will be applied to the model. The null
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hypothesis is that the data all come from a speci�ed population, and the unspeci�ed

alternative hypothesis is that some of the observations do not conform to the

structure of that population.

If outliers arise because our initial model does not re
ect the appro-
priate degree of inherent variation (we really need, say, a fatter-tailed
distribution than the ubiquitous normal distribution initially adopted)
then omission of extreme values to 'protect against outliers' is hardly a
robust policy for estimating some measure of dispersion, say the vari-
ance. (Barnett and Lewis, 1994) (pg 36)

Obviously, in this case, rejecting extreme points would cause an underestima-

tion of the variability. (Rocke, 1992)

The alternative hypothesis can come in di�erent forms depending on the struc-

ture of the data and the research questions. Some alternative hypothesis possibil-

ities are: (Barnett and Lewis, 1994) (pgs 45-52)

� Deterministic { some observations are erroneous due to measurement, record-

ing, or transcribing.

� Inherent { some observations are large due to larger inherent variation in

the model than was originally thought.

� Mixture { some observations come from a di�erent population that has

`contaminated' the original population.

1.1.5. What consequences arise if the outliers are ignored?

With these questions in mind, it bears importance to ask, what if the outliers are

ignored and the data analysis is done using conventional non-robust methods?

Masking and swamping refer to e�ects on the data procedure due to one or

more outlying observations. Masking
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arises when a sample contains more than one outlier. These outliers so
increase the spread of the sample that the removal of a single outlier
makes little improvement in the appearance of the sample. ... The
practical consequences of the masking e�ect is that any attempt to
remove these outliers one at a time will prove fruitless, and so there
is a need for more sophisticated methods that will detect all outliers
(Hawkins, 1980). (pg 12)

Swamping \may a�ect a block discordancy test of a group of 2 or more outliers."

(Barnett and Lewis, 1994) (pg 109) In e�ect, an outlying observation can swamp

one or more non-outlying observations to appear discordant.

As most analysts have come to realize, when using such sensitive procedures

such as the sample mean and covariance, it is important to use outlier identi�cation

techniques prior to the data analysis. It may, however, be more eÆcient and

logical to use robust techniques that can accommodate (and may identify) outlying

observations.

1.2. Historical Background on Multivariate Outliers

\The study of outliers is as important for multivariate data as it is for univariate

samples." (Barnett and Lewis, 1994) (pg 269) It can be argued that the study of

outliers is, in fact, more important for multivariate data because unusual observa-

tions are diÆcult to detect when they do not \stick out the end" of a dataset. The

diÆculty increases as the dimension increases because the outliers can be extreme

in any of a growing number of directions.

Because there is no natural ordering to multivariate data, to �nd discordant

points an ordering must be imposed. Distance measures can be used to give an

ordering of the data. Let

d
2(X; �;
) = (X � �)0
�1(X � �)

be a squared distance for some vector � and positive de�nite symmetric matrix 
.

Robust estimates of � and 
 give procedures that accommodate outliers, but little
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work has been done with robust estimates to identify outliers formally.

Given multivariate normal data, N(�;�), it is well known that d2(X;�;�) has

a �2
p
distribution where p is the dimension. Healy proposes that d2(X;X;S) can

be approximated by a �2
p
distribution (Healy, 1968). Another possible distance,

d
2(Xi;X

(i)
; S

(i)) (where X
(i)

and S
(i) are the mean and covariance of the data

without data point i), slightly reduces the risk of masking and has an asymptotic

�
2
p
distribution.

Another technique for identifying outliers is based on the ratio of scatter ma-

trices with and without discordant points. Let S =
P
n

j=1(Xj �X)(Xj �X)0 and

S
(i) =

P
j 6=i(Xj �X)(Xj �X)0.

Ri =
jS(i)j
jSj

is the scatter ratio, and Wilks (Wilks, 1963) shows that the Ri are identically

distributed Beta((n� p� 1)=2; p=2) variables if the data come from a multivariate

normal sample.

Because X and S are not robust to outlying points, the above techniques are

successful only when there is at most one outlying point. Wilks modi�es his ratio

test to test for 2, 3, or 4 outlying points.

Ri1;i2;:::;is
=
jS(i1;i2;:::;is)j

jSj

where s = 2; 3; or 4 and S(i1;i2;:::;is) is the scatter when Xi1
; Xi2

; : : : ; Xis are omit-

ted from the sample. Wilks gives tables for his statistics, but the analyst must

know in advance the number of outliers, and the procedures are still limited to 4

outlying points. Also, swamping must be kept in mind when applying any outlier

identi�cation procedure that rejects 2, 3, or 4 points simultaneously. As the num-

ber of data points and the number of outliers grow, this method runs into severe

combinatorial problems.
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1.2.1. Structured Data

There has been much work done on outliers in regression, linear models, and de-

signed experiments. (For a survey see Barnett and Lewis (1994: pgs 315-394.)) In

the regression context, two types of outliers can arise. First, points can be outlying

in the Y space (the dependent variables). Second, points can be outlying in the

X space (the independent variables.) Outliers of the �rst type can be handled

using univariate outlier identi�cation techniques because the linear model reduces

the parameter space. Outliers of the second type, usually called leverage points

because they can be strong in
uences on the regression problem, can be handled

using the multivariate techniques used with unstructured data. Though our work

does not directly deal with outliers in a regression context, our methods can easily

be applied.

1.3. Overview of the Thesis

In the analysis of multivariate data we frequently need to employ statis-
tical methods which will be relatively una�ected by the possible pres-
ence of contaminants in the sample under investigation. That is, we
need methods for the accommodation of outliers. For multivariate data
such methods are less well developed than for the univariate case and
furthermore they tend to be directed to general robustness consider-
ations rather than to be designed speci�cally with outliers in mind.
(Barnett and Lewis, 1994) (pg 273)

This work will use existing robust techniques but will apply them with outliers

in mind. We will modify and enhance accommodating procedures to become outlier

identi�cation procedures. As we have seen in the case of Hadlum vs. Hadlum, it

is often important to have outlier identi�cation methods.

In Chapter 2 we will employ the use of a robust estimator, the Minimum

Covariance Determinant (Rousseeuw, 1984) to �nd location and scale estimates for

the data. In a single cluster situation, we can calculate the Mahalanobis Squared

Distances from the robust MCD estimates, and points with large distances will
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be thought of as outlying. An F distribution is applied to the distances to �nd

outliers based on percentages.

In Chapter 3 we apply the techniques developed in Chapter 2 to a multiple

cluster setting. Here we �nd the MCD for each cluster based on an initial clustering

of the data. One important idea from this chapter is that not every point is forced

into a cluster, which makes the clustering procedure robust to outlying points. The

F distribution techniques are again applied to the distances, but in this chapter

we apply the cuto�s on a cluster by cluster basis.

In Chapter 4 we use the translated-biweight S-estimator (Rocke, 1996) in place

of the MCD. The translated-biweight is a robust estimator, and we can use it to

�nd robust location and scale estimates for data in a single cluster setting or a

multiple cluster setting. Again, the F distribution is applied to identify outliers.

Finally, we conclude in Chapter 5 with some discussions on our future projects.
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Chapter 2

The Distribution of Robust

Distances

2.1. Introduction

Outlier detection is important to researchers in many �elds. For non-statisticians,

the ability to detect outlying data is often vital to the interpretation of the �nal

results of a study. For statisticians, detecting outlying points is itself a necessary

area of research. Outliers are points that di�er from the rest of the data for some

reason. Outlying points can be the result of miscalibrated equipment, wrongly

entered data, or a normal but rare environmental e�ect.

In one or two dimensions, outliers are easily identi�ed from simple plots, but

detection of outliers is more challenging in higher dimensions. In multivariate

applications, with three or more dimensions, outliers can be diÆcult or impossible

to identify from plots of observed data. Various methods for detecting outliers

have been studied (Atkinson, 1994; Barnett and Lewis, 1994; Gnanadesikan and

Kettenring, 1972; Hadi, 1992; Hawkins, 1980; Maronna and Yohai, 1995; Penny,

1995; Rocke and Woodru�, 1996; Rousseeuw and VanZomeren, 1990).

One way to identify possible multivariate outliers is to calculate a distance from

each point to a \center" of the data. An outlier would be a point with a distance
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larger than some predetermined value. A conventional measurement of quadratic

distance from a point X to a location Y given a shape S, in the multivariate setting

is:

d
2
S
(X; Y ) = (X � Y )0S�1(X � Y )

This quadratic form is often called the Mahalanobis Squared Distance (MSD). In

the normal setting, large values of d2
S
(xi; X), where X and S are the conventional

sample mean and covariance matrix, indicate that the point xi is an outlier (Bar-

nett and Lewis, 1994). The distribution of the MSD with both the true location

and shape parameters and the conventional location and shape parameters is well

known (Gnanadesikan and Kettenring, 1972). However, the conventional location

and shape parameters are not robust to outliers, and the distributional �t to the

distance breaks down when robust measures of location and shape are used in the

MSD (Rousseeuw and VanZomeren, 1991). Determining exact cuto� values for

outlying distances continues to be a diÆcult problem.

In trying to detect single outliers in a multivariate normal sample, d2
S
(xi; X)

will identify suÆciently outlying points. In data with clusters of outliers, however,

the distance measure d2
S
(xi; X) breaks down (Rocke and Woodru�, 1996). Data

sets with multiple outliers or clusters of outliers are subject to problems of masking

and swamping (Pearson and Chandra Sekar, 1936). Masking occurs when a group

of outlying points skews the mean and covariance estimates toward it, and the

resulting distance of the outlying point from the mean is small. Swamping occurs

when a group of outlying points skews the mean and covariance estimates toward

it and away from other inlying points, and the resulting distance from the inlying

points to the mean is large. As an example, consider a data set due to Hawkins,

Bradu, and Kass (Hawkins et al., 1984). These data consist of 75 points in

dimension three. We can only see one outlying point, but 14 of the points were

constructed to be outliers. By using the mean and variance of all the data, we

have masked the remaining 13 outliers. (See Figure 2.1)

Problems of masking and swamping can be resolved by using robust estimates of
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Figure 2.1: Mahalanobis squared distances for the HBK data plotted against the

�
2
3 expected order statistics using the traditional mean and covariance matrix. The

data are constructed with 14 outliers which are masked in the traditional computa-

tions.
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shape and location; robust location and shape estimates are not a�ected by outliers.

Outlying points will not enter into the calculation of the robust statistics, so they

will not be able to in
uence the parameters used in the MSD. The inlying points,

which all come from the underlying distribution, will completely determine the

estimate of the location and shape of the data. Some robust estimators of location

and shape include the minimum covariance determinant (MCD) and the minimum

volume ellipsoid (MVE) of Rousseeuw (Hampel et al., 1986; Rousseeuw, 1984;

Rousseeuw and Leroy, 1987) and M-estimators and S-estimators. (Campell, 1980;

Campell, 1982; Huber, 1981; Kent and Tyler, 1991; Lopuha�a, 1992; Maronna, 1976;

Rocke, 1996; Tyler, 1983; Tyler, 1988; Tyler, 1991). By using a robust location

and shape estimate in the MSD, outlying points will not skew the estimates and

can be identi�ed as outliers by large values of the MSD.

The MSD can take as its arguments any location and shape estimates. In this

chapter we are interested in robust location and shape estimates, which are better

suited for detecting outliers. In particular in this chapter, we are interested in the

MCD location and shape estimates. Given n data points, the MCD of those data

is the mean and covariance matrix based on that sample of size h (h � n) that

minimizes the determinant of the covariance matrix (Rocke and Woodru�, 1996;

Rousseeuw, 1984).

MCD = (X
�
J
; S

�
J
)

where J = fset of h points : jS�
J
j � jS�

K
j 8 sets K s.t. jKj = hg

X
�
J

=
1

h

X
i2J

Xi

S
�
J

=
1

h

X
i2J

(Xi �X
�
J
)(Xi �X

�
J
)t

The value h can be thought of as the minimum number of points which must

not be outlying. The MCD has its highest possible break down at h = b (n+p+1)

2
c
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Figure 2.2: Mahalanobis squared distances for the HBK data plotted against the

�
2
3 expected order statistics using the MCD mean and covariance matrix. All 14

outlying points are clearly visible as outlying.

where b�c is the greatest integer function (Rousseeuw and Leroy, 1987; Lopuha�a

and Rousseeuw, 1991). We will use h = b (n+p+1)

2
c in our calculations and refer

to a sample of size h as a half sample. The MCD is computed from the \closest"

half sample, and therefore, the outlying points will not skew the MCD location or

shape estimate. Large values of MSDs, using the MCD location (X
�
) and shape

estimate (S�), will be robust estimates of distance and will correctly identify points

as outlying. Recall the constructed data by Hawkins, Bradu, and Kass. Using the

MCD estimates, the distances give a clear identi�cation of the 14 outlying points.

(See Figure 2.2)

Not every data set will give rise to an obvious separation between the outlying

and non-outlying points. Consider the data given by Daudin, Dauby and Trecourt

and analyzed by Atkinson (Daudin et al., 1988; Atkinson, 1994). The data are
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Figure 2.3: Mahalanobis squared distances for the Milk data plotted against the �28
expected order statistics using the MCD mean and covariance matrix. One outlier

is apparent, but how many outlying points are there? One? Five? Six?

eight measurements on 85 bottles of milk. Using the robust MCD estimates, we

are not subject to masking or swamping, but we are not sure which group of points

should be considered as outlying. (See Figure 2.3)

In Figure 2.2, points were identi�ed as obvious outliers, but in many situations

(including Figure 2.3) it will be important to construct a minimum outlying dis-

tance. For some known constant c, c � d2
S�(Xi; X

�
) are asymptotically distributed

as �2
p
, but the asymptotic convergence is very slow, and the �2

p
quantiles will be

smaller than the corresponding MSD quantiles for even quite large samples. Use

of �2
p
quantiles as cuto� points will often lead to identifying too many points as

outliers (Rousseeuw and VanZomeren, 1991).

Finding a good approximation to the distribution of d2
S�(Xi; X

�
) will lead to
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cuto� values that identify minimum outlying values, even for clusters of outliers. If

fXig come from a multivariate normal sample, andmS comes from an independent

Wishart, then d2
S
(Xi; �) will have a distribution that is a multiple of an F statistic

(Mardia et al., 1979). Since the MCD shape and location estimates are calculated

using only the inlying points, X
�
and S

� can be thought of as asymptotically

independent from the extreme values in the sample. We can also approximate the

distribution of S� by matching the �rst two moments of a Wishart. Accordingly,

the d2
S�(Xi; X

�
) will be approximately distributed as a multiple of an F statistic.

This insight allows us to �nd cuto� values for outlying points is in the estimation

of the degrees of freedom associated with the F statistic. We will examine various

cuto� values for MSD with MCD shape and location estimates for multivariate

normal data given di�erent values of n and p.

2.2. Robust Estimators for Outlier Detection

The estimation of multivariate location and shape is one of the most diÆcult

problems in robust statistics (Campell, 1980; Campell, 1982; Davies, 1987; Devlin

et al., 1981; Donoho, 1982; Hampel et al., 1986; Huber, 1981; Lopuha�a, 1989;

Maronna, 1976; Rocke and Woodru�, 1993; Rousseeuw, 1985; Rousseeuw and

Leroy, 1987; Stahel, 1981; Tyler, 1983; Tyler, 1991). For some statistical proce-

dures, it is relatively straightforward to obtain estimates that are resistant to a

reasonable fraction of outliers{ for example, one dimensional location (Andrews

et al., 1972) and regression with error-free predictors (Huber, 1981). The multi-

variate location and shape problem is more diÆcult, because many known methods

will break down if the fraction of outliers is larger than 1/(p+1), where p is the

dimension of the data (Donoho, 1982; Maronna, 1976; Stahel, 1981). This means

that in high dimensions, a small amount of outliers can result in arbitrarily bad

estimates.
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2.2.1. AÆne Equivariant Estimators

We are particularly interested in aÆne equivariant estimators of the data. A

location estimator yn 2 IRp is aÆne equivariant if and only if for any vector

v 2 IRp and any nonsingular p� p matrix M,

y
n
(MX + v) =My

n
(X) + v:

A shape estimator Sn 2 PDS(p) (the set of p� p positive de�nite symmetric ma-

trices) is aÆne equivariant if and only if for any vector v 2 IRp and any nonsingular

p� p matrix M,

Sn(MX + v) =MSn(X)M0
:

Stretching or rotating the data will appropriately change an aÆne equivariant

estimate of the data. The Mahalanobis Squared Distance is an aÆne equivariant

estimator, which means the shape of the data determines the distances between

the points. It is important to have aÆne equivariant estimators so that the mea-

surement scale, location, and orientation can be ignored in the data analysis. Since

MSD's are aÆne equivariant, the properties and procedures that use the MSD can

be calculated for the purpose of simulations without loss of generality for stan-

dardized distributions. For the properties under normality, we can use N(0,I).

2.2.2. Minimum Covariance Determinant

The Minimum Covariance Determinant (MCD) location and shape estimates are

resistant to outliers because the outliers will not be involved in the location and

shape calculations. From the MCD sample, the sample mean and covariance ma-

trix, which are robust estimates of the location and shape of the underlying pop-

ulation, can be computed.

Finding the exact MCD sample can be time consuming and diÆcult. The

only known method for �nding the exact MCD is to search every half sample and
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calculate the determinant of the covariance matrix of that sample. For n=20,

the search would require computing about 184,756 determinants; for n=100, the

search would require computing about 1029 determinants. With any conceivable

computer, it is clear that �nding the exact MCD is intractable by enumeration.

2.2.3. Estimating the MCD

Since the exact MCD is often impossible to �nd, the algorithm used to estimate of

the MCD is, in some sense, the estimator. Various algorithms have been suggested

for estimating the MCD.

Hawkins proposed a method based on swapping points in and out of a sample

of size h. The basic algorithm is as follows.

� Start with a subsample of size h, H1.

� Swap points xi0 2 H1 and xj0 =2 H1 and call the new subsample H2 if:

�i = det(cov(H1))� det(cov(H2)) > 0

AND the above di�erence, �i, is maximized over swapping all possible pairs

of points xi 2 H1 and xj =2 H1

� Let H2 be the new subsample of size h

� Repeat the process until no swap lowers the det(cov(Hi)) (or equivalently,

until no swap gives �i > 0) (Hawkins, 1994; Hawkins, 1999).

A faster algorithm was found independently by Hawkins (1999) and Rousseeuw

and Van Driessen (1999). The core of the algorithm is based on what Rousseeuw

calls the C-step. Instead of swapping one pair of points in and out, the C-step

allows for many points to be interchanged at each step. Again, we start with a

subset of the data of size h, H1. We can compute XH1
; SH1

, and d2
SH1

(xi; XH1
) =
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d
2
H1
(i) for each point i = 1, : : : n based on the sample H1. We can then sort the

distances based on a permutation � so that:

d
2
H1
(�(1)) � d

2
H1
(�(2)) � : : : � d

2
H1
(�(n))

We will then assign f�(1); �(2); : : : ; �(h)g to H2. Using H2 we can calculate

XH2
; SH2

; and d2
SH2

(xi; XH2
) and repeat the process until the permutation, �, does

not change. Rouseeuw and VanDriessen (1999) showed that the process will con-

verge.

The question remains for both algorithms, where does the initialH1 come from?

Previously, Hawkins used a random subset of size h from the data. If the data have

large amounts of contamination, a random subset of size h will almost never look

like the true underlying (uncontaminated) population, so it will be hard for either

swapping algorithm to converge to the true uncontaminated shape of the data.

For contaminated data, Rousseeuw proposed starting with a random subset of size

p+1 (the minimum number of points needed to de�ne a nonsingular covariance

matrix) and adding points until a subset of h points is constructed (Rousseeuw

and VanDriessen, 1999). Points are added to the initial random subset based on

their distances to the mean of the initial subset. The algorithm is as follows.

� Let H0 be a random subset of p + 1 points

� FindXH0
and SH0

(If det(SH0
) = 0 then add random points until det(SH0

) >

0)

� Compute the distances d2
SH0

(xi; XH0
) = d

2
H0
(i) and sort them for some per-

mutation � such that,

d
2
H0
(�(1)) � d

2
H0
(�(2)) � : : : � d

2
H0
(�(n))

� H1 := f�(1); �(2); : : : ; �(h)g

A random subset of p+1 points is much more likely to be representative of

the uncontaminated data, and so H1 here will be closer to the true data than a
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random subset of h points. In this paper we are interested in �nding quantiles

for distances based on MCD estimates. Our simulations are all done with pure

multivariate normal data, and therefore, we are able to �nd quantiles using data

that were not at all contaminated. Since our data were not contaminated, it was

more e�ective to start with random subsets of size h, since diversity of starting

points is of less value when there is no contamination. This is valid only for normal

simulations and would not be used in practice.

The algorithm we used to estimate the MCD begins with a series of random

starts, each of which is a randomly chosen half sample (or sample of size h) of the

data points. We then use the algorithm referred to above as the C-step. For each

random start, the procedure for calculating the MCD sample is as follows.

1. Compute the mean and covariance of the current half sample.

2. Calculate the MSD, based on the mean and covariance from step 1, for each

point in the entire data set.

3. Choose a half sample of those points with the smallest MSDs from step 2.

4. Repeat steps 1-3 until the half sample no longer changes.

MCD sample will then be the half sample (in 3) with the minimum covariance

determinant of all the random starts. A robust estimator like d2
S�(xi; X

�
), where

S
� and X

�
are the MCD shape and location estimates, is likely to detect outliers

because outlying points will not a�ect the MCD shape and location estimates. For

points xi that are extreme, d2
S�(xi; X

�
) will be large, and for points xi that are

not extreme, d2
S�(xi; X

�
) will not be large. Here we are not subject to problems of

masking and swamping.
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2.3. Distance Distributions

Mahalanobis squared distances give a one-dimensional measure of how far a point

is from a location with respect to a shape. Using MSD we can �nd points that are

unusually far away from a location and call those points outlying. We have dis-

cussed the importance of using robust aÆne equivariant estimates for the location

and shape of the data. Unfortunately, using robust estimates gives MSDs with un-

known distributional properties. Consider n multivariate data points in dimension

p, Xi � N(�;�). Let S be an estimate of � such that, mS � Wishartp(�; m).

Below are three distributional results for distances based on the above type of

multivariate normal data.

1. The �rst distance distribution is based on the true parameters � and �.

We know that if the data are normal, these distances have an exact �2
p

distribution (Mardia et al., 1979).

d
2
�(Xi; �) � �

2
p

Which gives:

E[d2�(Xi; �)] = p

Var[d2�(Xi; �)] = 2p

2. The second distance distribution is based on the usual mean and covariance

estimates. These distances have an exact Beta distribution (Gnanadesikan

and Kettenring, 1972; Wilks, 1962). It is interesting to note that the unbiased

estimator has a smaller variance than the estimator which takes � and � as

parameters.

Given,

X =
1

n

nX
i=1

Xi
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S =
1

n� 1

nX
i=1

(Xi �X)(Xi �X)t

then,

(n� 1)2

n
d
2
S
(Xi; X) � Beta

 
p

2
;
(n� p� 1)

2

!

Which gives:

E

"
nd

2
S
(Xi; X)

(n� 1)

#
= p

Var

"
nd

2
S
(Xi; X)

(n� 1)

#
= 2p

(n� p� 1)

(n+ 1)

3. The third distance distribution is based on an estimate of S that is indepen-

dent of the Xi. These distances have an exact F distribution when � is the

location parameter (Mardia et al., 1979), and an approximate F distribu-

tion when X is the location parameter (using a Slutsky type proof (Ser
ing,

1980)). It is interesting (in contrast to 1.) to note here that the unbiased

estimator has a larger variance than the estimator which takes � and � as

its parameters.

Given S and Xi independent,

np

n� p
d
2
S
(Xi; �) � Fp;n�p

Using Slutsky's Theorem,

np

n� p
d
2
S
(Xi; X)

�� Fp;n�p

Which gives:

E

"
(n� p� 2)

n
d
2
S
(Xi; X)

#
:
= p

Var

"
(n� p� 2)

n
d
2
S
(Xi; X)

#
:
= 2p

(n� 2)

(n� p� 4)
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We will refer to the standard location and shape estimates (X and S) as within

sample estimates and the MCD location and shape estimates (X
�
and S�) as out

of sample estimates because extreme observations will not be used to calculate the

MCD (with high probability). Our interest is in the extreme points which enter

into the within sample calculations but not the out of sample calculations.

Since X and X
�
are consistent estimators for �, and S and c

�1
S
� (for some

constant c) are consistent estimators for �, we know that the within sample and out

of sample MSD are both asymptotically �2
p
statistics (Mardia et al., 1979; Ser
ing,

1980). �2
p
quantiles are often used (sometimes inappropriately) for identifying MSD

extrema (Rousseeuw and VanZomeren, 1991)

Using �2
p
quantiles to describe d2

S
(Xi; X) (instead of Beta quantiles) will erro-

neously lead to identifying too few points as extreme (Rocke and Woodru�, 1996).

The misidenti�cation happens because the �2
p
distribution is more variable than

the true Beta distribution, and because the outliers skew the location and shape

estimates.

The distribution of distances with out of sample estimates will be similar to

the independent covariance structure distribution (the F distribution in 3). The

MSD with MCD location and shape estimates will have a distribution which is

approximately a multiple of an F distribution. Using �
2
p
quantiles to identify

extrema of MSD with MCD estimates will erroneously lead to identifying too many

points as extreme. The misidenti�cation happens because the �2
p
distribution is less

variable than the F distribution. The overidenti�cation can be seen in a picture of

ordered MSD and ordered �2
p
quantiles. The \elbow" happens where data points

go from being included in the MCD sample to being outside the MCD sample

(Rousseeuw and VanZomeren, 1991). (See Figures 2.4 & 2.5) We see that the

points in the MCD sample do appear to have a �2
p
distribution, but the out of

sample points do not have a �2
p
distribution.

Theorem 2.3.1 Given n points, Xi, independently and identically distributed (iid)
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Quantiles of Chi-Square(5)
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Elbow Effect for p=5 n=100

Figure 2.4: Average Mahalanobis squared distances for simulated (n = 100; p = 5)

data plotted against the �
2
5 expected order statistics using the MCD mean and

covariance matrix. The points that are in the MCD sample appear to have a �25
distribution, but the out of sample points are de�nitely not distributed �25.
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Quantiles of Chi-Square(5)
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Figure 2.5: Average Mahalanobis squared distances for simulated (n = 500; p = 5)

data plotted against the �
2
5 expected order statistics using the MCD mean and

covariance matrix. Again, the points that are in the MCD sample appear to have

a �25 distribution, but the out of sample points, and especially the furthest outlying

points, are not distributed �25. Even in large samples, there is still an elbow e�ect.
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Np(�;�), �nd the MCD sample based on � = h

n
of the sample, and choose Æ such

that � < Æ < 1. Conditional on Xi such that (Xi � �)0��1(Xi � �) > �
2
p;Æ
, Xi will

be asymptotically independent of the MCD sample.

Proof. The proof will be given in steps.

1. We can think of the iid sample as coming from 3 truncated Normal distribu-

tions.

� Let n1; n2; n3 come from a Multinomial (n; �; Æ � �; 1� Æ) distribution.

� Let x1; x2; : : : ; xn1 come from a truncated normal distribution. The

truncated normal distribution will be Np(�;�) with a truncation so

that each of the points have (x� �)0��1(x� �) � �
2
p;�
.

� Let xn1+1; xn1+2; : : : ; xn1+n2 come from a truncated normal distribution.

The truncated normal distribution will be Np(�;�) with a truncation

so that each of the points have �2
p;�
< (x� �)0��1(x� �) � �

2
p;Æ
.

� Let xn1+n2+1; xn1+n2+2; : : : ; xn1+n2+n3=n come from a truncated normal

distribution. The truncated normal distribution will be Np(�;�) with

a truncation so that each of the points have �2
p;Æ
< (x� �)0��1(x� �).

The sample, x1; : : : ; xn1; xn1+1; : : : ; xn1+n2; xn1+n2+1; : : : ; xn1+n2+n3=n, is an iid

sample of size n from Np(�;�).

We can de�ne the ellipsoid regions R1; R2, such that

if (x� �)0��1(x� �) � �
2
p;�

) x 2 R1

if �
2
p;�
< (x� �)0��1(x� �) � �

2
p;Æ

) x 2 R2

if (x� �)0��1(x� �) > �
2
p;Æ

) x 2 R3

2. Letting the MCD location and shape matrix be denoted by X
�
and S�, we

know,

X
� ! �
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1

c
S
� ! � for some c (Tyler, 1983)

which gives,

c(X �X�)0S��1(X �X
�
)! (X � �)0��1(X � �) 8X:

Let Xi be a N(�;�) random variable. Conditional on Xi 2 R1, we have the

following.

c(Xi �X
�
)0S��1(Xi �X

�
) � �

2
p;�
+Op(n

�1=2)

Let Xi be a N(�;�) random variable. Conditional on Xi 2 R3, we have the

following.

c(Xi �X
�
)0S��1(Xi �X

�
) � �

2
p;�
�Op(n

�1=2)

3. Let R�
1 be the ellipsoid containing the MCD points, the radius of R�

1 will be

�
2
p;�
+Op(n

�1=2). We want to say that the points in R3 will almost never, for

large n, have MCD distances that will be in R�
1.

Let Xi be a N(�;�) random variable, conditional on Xi 2 R3. So,

(Xi � �)0��1(Xi � �) � �
2
p;Æ
:

Then, (Xi � �)0��1(Xi � �) = �
2
p;Æ

+ W , where W is a positive random

variable.

Also, c(Xi �X
�
)0S��1(Xi �X

�
) = �

2
p;Æ

+W +Op(n
�1=2).

P (Xi 2 MCD sample) = P (c(Xi �X
�
)0S��1(Xi �X

�
) � �

2
p;�
+Op(n

�1=2))

= P (�2
p;Æ

+W +Op(n
�1=2) � �

2
p;�
+Op(n

�1=2))

= P (�2
p;Æ
� �

2
p;�
+W � Op(n

�1=2))

� P (�2
p;Æ
� �

2
p;�
� Op(n

�1=2))

! 0:
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Quantiles of a Chi-Square(5)
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Figure 2.6: This �gure illustrates the lack of dependence of extreme points on the

MCD estimates. The distances for the dependent data set, the \o"'s, are calculated

using the MCD estimates from the \o" data. Independent data is then simulated,

the \+"'s, and the distances are calculated using the MCD estimates from the \o"

data. For both sets of data, the points are averages of the ordered distances for 1000

repetitions of dimension 5 size 100 data. It is apparent that the extreme distances

are not a�ected by whether the MCD was calculated using the same sample or a

di�erent one.

For Xi 2 R3, if the MCD never involved the point Xi, Xi would be exactly

independent of the MCD sample. Any failure of independence involves a

point Xi 2 R3 being in the MCD sample. We showed that the event of any

Xi 2 R3 being in the MCD sample becomes exceedingly improbable.

The independence of the extreme points and the MCD sample can also be seen

in Figure 2.6. The picture shows average distances of two sets of independently

simulated data sets whose distances were computed using the same MCD estimates.

The �rst set contains the MCD sample, the second set was generated completely
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independently of the �rst sample and the MCD estimates. The out of sample

estimates are approximately independent of the extreme points, and so the extrema

behave like F quantiles. If Xi is multivariate normal data, and X
�
and S�

Y
are the

MCD mean and covariance, then

1. X1; : : : ; Xn � Np(�;�),

2. the distribution of S�
X
can be approximated by,

mc
�1
S
�
X

��Wishartp(m;�); (3.1)

where m is an unknown degrees of freedom, and c is a constant satisfying

E[S�
X
] = c� (which holds for some c because S�

X
is an aÆne equivariant shape

estimator of � (Tyler, 1983)), and

3. the tail elements of Xi are approximately independent of S
�
X
. (See Theorem

3.1 and Figure 2.6)

Then, using X
� ! �,

c(m� p+ 1)

pm
d
2
S�

X

(Xi; X
�
)

�� Fp;m�p+1: (3.2)

Using the above F distribution to calculate cuto� values for distances based on

the MCD sample is a robust way of identifying outliers. The problem, then, is to

estimate c and m correctly.

2.3.1. Finding the Degrees of Freedom for the F Distribution

Using a method of moments identi�cation by the coeÆcient of variation (CV),

Welch and Satterthwaite (Welch, 1937; Welch, 1947; Satterthwaite, 1946) esti-

mated the degrees of freedom (df) for the well-known hypothesis test Ho : �1 = �2

vs. Ha : �1 6= �2 (when �1 6= �2) which has a test statistic,



30

(X1 �X2)� (�1 � �2)r
s2
1

n1
+

s2
2

n2

�� tdf

df =
(V1 + V2)

2

V 2

1

n1�1 +
V 2

2

n2�1

Where V1 =
S
2
1

n1
and V2 =

S
2
2

n2

Using a similar method of moments idea, we can estimate the degrees of freedom

associated with the F distribution of
c(m�p+1)

pm
d
2
S�

Y

(Yi; Y
�
). Assuming that, for some

m, S�
Y
has a multiple of a Wishart distribution (3.1) implies

mc
�1
s
�
ii

�� �
2
m
�ii; (3.3)

where s�
ii
are the diagonal elements of S�

Y
. Since the estimators are aÆne equiv-

ariant, we can assume the data are N(0,I), and therefore �ii = 1 and the diagonal

elements are identically distributed (Gr�ubel and Rocke, 1990). S
�
Y
is an aÆne

equivariant estimator, so the distribution of it will have the same Wishart degrees

of freedom for any �. Therefore, the estimates of c and m in the N(�;�) case will

be the same as the estimates of c and m in the N(0,I) case.

From (3.3),

E[mc�1s�
ii
] = m) E[s�

ii
] = c

and

Var[mc�1s�
ii
] = 2m) Var[s�

ii
] =

2c2

m

which gives:

CV =

q
Var[s�ii]

E[s�ii]
=
c

q
2=m

c
=

s
2

m
:
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So we can estimate m and c by

m̂ =
2

ĈV
2 ĉ =

1

h

hX
i=1

s
�
ii

where CV (ĈV) is the (estimated) coeÆcient of variation of the diagonal elements

of the MCD shape estimator. If we can estimate the distribution of the MCD

shape matrix, we could estimate c and m theoretically, and if we do not know

the distribution of the MCD shape matrix, we can estimate c and m through

simulations of the MCD shape matrix.

2.3.2. Estimating m and c

Simulation

Since multivariate normality is assumed, and the estimates are aÆne equivariant,

hundreds of Monte Carlo N(0,I) data sets for pairs of n and p are simulated, and

the MCD shape estimate is computed for each data set. Using the simulated MCD

shape estimates, c is estimated from the average of the diagonal elements of S�
Y
,

and m is estimated from the ĈV of the diagonal elements of S�
Y
.

Asymptotics

Simulation is often time consuming and tedious, so it would be preferable to have

formulas for calculating m and c. An asymptotic expression for c exists that is

good even for small samples.

c =
P (�2

p+2 < �
2
(p;h=n))

h

n

where �2
�
is a Chi-Square random variable with � degrees of freedom, and �2

�;�
is

the � cuto� point for a �2
�
random variable (Croux and Haesbroeck, 2000).

For m there exists an asymptotic expression that is good in large samples and

only moderately accurate in small samples (Croux and Haesbroeck, 2000). For
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small samples, simulation may be necessary to estimate m accurately. Croux and

Haesbroeck used in
uence functions to determine an asymptotic expression for the

variance elements of the MCD sample. Details are given in Appendix A.

2.4. Results

A common and reasonable method for identifying clusters of outliers is to �nd

robust distances and then compute distributional quantiles to determine cuto�s.

Any point with a distance larger than the cuto� point will be an outlier. Three

distributional cuto� choices have been described,

1. �2
p
(which is known to reject too few points when usual methods are used),

2. F (from (2)) with degrees of freedom calculated from the asymptotic formu-

las, and

3. F (from (2)) with degrees of freedom calculated from simulations.

We examined the performance of these methods in the null case by a Monte Carlo

study with p=5,10,20 and n=50,100,500,1000. First, simulations of the MCD shape

estimators with 1000 trials were undertaken to obtain values for m and c for each

pair of n and p. Then the cuto� values for 5%, 1%, and 0.1% rejection for each of

the three distribution choices were calculated.

Next, 1000 sets of independent data for each pair of dimension and size were

simulated, and the number of points the cuto�s identi�ed as outlying was counted.

For the 5% nominal test, the percent identi�ed for a subset of the data is shown.

(See Table 1) It is seen that the Chi-Square cuto� points are too liberal, the

asymptotic cuto� points are too conservative, and the simulated cuto� points are

correct to simulation accuracy. Though the asymptotic cuto� is not perfect, it is

superior to the Chi-Square because it is conservative and closer to the nominal
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values. In small samples, the simulated �nite sample moments more accurately

describe the data than either the asymptotic moments or the �2
p
distribution.

Results for 1% and 0.1% nominal tests are in Tables 2 and 3. Again, the Chi-

Square cuto�s are too liberal, the asymptotic cuto�s are too conservative, and the

simulated cuto�s are correct to simulation accuracy.

From the tables, we can see that the asymptotic accuracy depends primarily

on n and not on p. As expected, the asymptotic cuto� becomes more accurate as

n increases. These results lead to the following recommendations:

1. For large values of n (at least 500 observations), asymptotic formulas should

be used for cuto� values of outlying MCD distances.

2. For smaller values of n (less than 500 observations), the asymptotic formula

for c can be used, but simulation will be necessary to �nd m more accurately.

For very small values of n, the simulation cuto�s are still superior to the

currently used Chi-Square cuto� values; the simulation cuto�s are somewhat

conservative for small samples.

2.5. Conclusion

A new method for determining outlying points in a multivariate normal sample

has been derived. The methods presented here are superior to the commonly used

Chi-Square cuto�. Asymptotic values for the cuto�s work well in samples of 1000

or larger, while a somewhat more computationally intensive simulation method

can be used for smaller samples.

Because this work concerns clusters of outliers, there are implications for clus-

tering as well as outlier identi�cation. It is possible that robust distances may be

able to identify outlying points in populations that are made up of two or more

di�erent clusters.
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Also, the only robust method discussed in depth here is the MCD. The above

methods can probably be extended to other robust methods like the Rousseuw's

Minimum Volume Ellipsoid (Hampel et al., 1986; Rousseeuw, 1984; Rousseeuw

and Leroy, 1987), S-estimation, and M-estimation.
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Chapter 3

Outlier Detection in the Multiple

Cluster Setting Using the

Minimum Covariance

Determinant

3.1. Introduction

As discussed previously, it is important to be able to distinguish outliers in a variety

of situations. Various methods for �nding outliers in a one dimensional setting have

been developed. These methods, such as box plots, histograms, and Q-Q plots,

tend to be graphical and diÆcult to modify to work in higher dimensions. We

have given a method for �nding outliers in a multiple dimensional setting that

uses algebraic instead of graphical techniques. The method involves calculating a

robust distance and then comparing it to the quantiles of a speci�ed F distribution.

All of these methods, however, assume that the data come from one population

and not multiple populations.

The multiple cluster, multiple dimension case is another important place where

outliers should be able to be identi�ed. A few stray points can easily result in

incorrect estimates, or worse, they could mask the number and shape of the clusters
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present. The previous multiple dimensional one cluster outlier detection method

can be generalized to a multiple cluster case.

Outliers can have a particularly detrimental e�ect on non-robust clustering

algorithms. An outlier or a cluster of outliers can in
uence the shape of a particular

cluster, which in turn might mask separation between clusters. It is important to

use robust methods in clustering and also to be able to identify the data points that

are not in line with the bulk of the data. Robust cluster methods in combination

with identi�cation procedures will lead to more reliable data analyses.

Along with the importance of using robust clustering methods, it is also im-

portant to continue to use aÆne equivariant methods in any clustering algorithm

which distinguishes between clusters using a distance metric. A non-aÆne equiv-

ariant distance metric, such as Euclidean, might not have the capability to discrim-

inate between clusters if their shape matrices diverge strongly from the underlying

spherical assumption of that distance. As an example, consider the data in �gure

3.1. These data show two well separated clusters which both have a cigar shape.

Even if we can somehow correctly identify the two cluster centers, using Euclidean

distances will not give a good separation of these two groups, and the clustering

method will probably not be able to identify that there are two clusters within the

data structure. Figure 3.2 shows that the ellipses that cover 70% of the data do

overlap. Figure 3.3 shows that the 99% ellipses do not overlap when the correct

metrics are used. In this case, using Euclidean distances could incorrectly classify

some of the points from cluster 1 into cluster 2 and vice versa. As seen previously,

aÆne equivariance leads to a data dependent metric which is better at �nding

cluster shapes and therefore separating clusters.

In the one cluster case we used a metric that was based on the Minimum

Covariance Determinant (MCD), a robust measure of location and shape. In this

section, a similar idea is used, but instead of a minimum covariance determinant

for the whole dataset, the MCD of each cluster is calculated. The MCD for each

cluster determines the metric for that cluster and the metric can then be used to
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Figure 3.1: Two independent bivariate normal data sets centered at (2,4) and (4,2)

with equal covariances.
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Figure 3.2: Using Euclidean distances (with the correct centers identi�ed) the prob-

ability (�22) ellipses overlap at the 70% level.
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Figure 3.3: Using the data speci�c metrics (with the correct centers identi�ed) the

probability (�22) ellipses do not overlap even at the 99% level.

calculate a robust distance from each point in the dataset to the cluster center.

The size of each cluster is determined by the number of points which are closer

to that cluster's center than any other cluster center. The robust distance is then

compared against the F distribution (modi�ed slightly from chapter 2) with the

size of the cluster as the \n" parameter.

The solution for the one cluster MCD starts with a random set of points and

iterates to a solution using an algorithm that removes and replaces points according

to their distances. As discussed in chapter 2, the random points give initial shape

and location estimates. Using those estimates, the distances for all the points are

computed, and with the closest \half sample" of those points, a new shape and

location are computed. The process is repeated until convergence. A solution is

obtained for many random starts, and the solution with the smallest covariance

determinant is retained. This algorithm works well in the one sample case because

even with 20-40% outliers, the probability of selecting p+1 random \good" points

is still high. However, when g � 2, where g is the number of groups, (especially

when the dimension is high, p � 3) it does not makes sense to start with g random
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subsets of points because with high probability all the subsets will have a similar

location and shape to the entire dataset. Once the estimates resemble the entire

data metric, it is diÆcult to converge back to the individual cluster metrics using

the distances to remove and replace points. In this work, we start from a robust

estimate of the clusters given by a program due to Reiners and Woodru� (2000).

Their program gives a robust initialization of the points to groups (which also,

consequently, gives both an initial metric and an initial size of each of the groups.)

The method of �nding a starting point is important; however, it is not what we

are focusing on in this chapter.

Note that throughout this chapter, the number of groups is assumed to be �xed

and known. This assumption is malleable in that additional small clusters will be

ignored in the robust analysis, so they will not have an impact on estimating the g

principal clusters. If an analyst is unsure of the number of populations present in

the data, it would be wise to try the analysis on a variety of values for the number

of clusters.

We will apply cuto� values to multi-cluster, multivariate normal data given

di�erent values of g, n, p, and di�erent arrangements and percentages of outlying

points.

3.2. A Look at Various Clustering Methods

Many clustering algorithms exist for clustering various types of data. These algo-

rithms use data, multivariate or univariate, as input, and as output the algorithm

gives each datum a classi�cation into a particular group. Some algorithms require

that the number of populations be pre-speci�ed, and some algorithms allow for an

unknown number of populations. Those algorithms that do not require as input

a number of groups usually give results for a variety of values for the number of

groups. The user then picks the result that most accurately �ts the rest of the

problem. Those algorithms that do require as input a number of groups can be run
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with di�erent values for the number of groups. The user can then choose the result

that makes the most sense according to the problem or according to some statis-

tical criterion. Finding an appropriate criterion may prove to be a hard problem.

These methods can be used to �nd a best �t to a problem with a given number of

groups. Finding the correct number of groups for a particular data set is beyond

the scope of this work.

3.2.1. Hierarchical Agglomeration

Hierarchical agglomeration can be done by di�erent approaches, but the basic idea

is to start with small clusters (or individual points) and agglomerate to larger

clusters. Sometimes the agglomeration is done one pair at a time, and sometimes

multiple clusterings happen simultaneously. The agglomerations are done accord-

ing to some minimum distance. At least initially, the distance metric cannot be

cluster-speci�c data-dependent because there is no way to measure variability of a

single point. Only once a cluster has more than p+1 points can the metric for that

cluster be data-dependent. Since the clusters are allowed to grow at di�erent rates,

it can take many agglomerations before all the clusters have at least p+ 1 points.

When data-dependent distances are unavailable, either entire-data-set distances,

Euclidean distances, Manhattan distances, or absolute distances can be used. Note

that the latter three distances are not aÆne equivariant.

Hierarchical clustering imposes a hierarchical structure on data that may not

be hierarchical. Clustering a dataset with a non-hierarchical structure may lead to

clustering of \individuals linked by a series of intermediates" that do not seem to

belong together (Everitt, 1993). Consider a two dimensional dataset where each

point is of roughly the same absolute distance from its neighbors. The hierarchical

method might group the points in a \chain" type formation when in fact the

extreme points are not close to one another in any metric. A clustering done

on the Iris data (which is not hierarchical) shows that the hierarchical procedure

mclust (in S-Plus) clusters with a large number of errors. Furthermore, using this
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procedure, each permutation of the data gives a di�erent clustering (Coleman

et al., 1999), which would not happen if the data had a hierarchical structure.

\A hierarchical method su�ers from the defect that it can never repair what

it has done in previous steps" (Kau�man and Rousseeuw, 1990). Once a set of

points is linked, each subsequent step can link more points to that cluster, but the

algorithm does not allow for that set of points to become unlinked. For example,

two points on the border of two di�erent clusters may get linked accidentally, when

on further inspection they would not seem closer to each other than to the cluster

centers of their respective clusters. (This can happen when Euclidean distances

are initially used, and data-dependent distances are subsequently used, see �gure

3.3.)

It is important to note that for data with hierarchical structure and stan-

dardized variables, hierarchical agglomeration can provide much insight into the

clustering structure of the dataset. However, it is also important to have other

methods that are reliable in situations with data that has non-hierarchical or

unknown structure. We use partitioning methods that require no internal data

structure.

3.2.2. Optimization Methods in Clustering

Optimization methods use model based assumptions to derive di�erent criteria

which, when optimized, de�ne a clustering of the dataset. Frequently used meth-

ods require that all points be assigned to a particular group. (See the clustering

methods available in the software: mclust, kmeans, pam, clara, and fanny in S-

Plus version 4.5 and proc cluster, proc fastclus, and proc varclus in SAS version

6.) Some methods, such as k-means, also use Euclidean distances or some other

non-aÆne equivariant distance.

The model based assumptions can lead to inaccurate results if the data do not

follow the assumptions. Let Ek be the set of all points in cluster k, then Wk is the
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sample cross-product matrix for the kth cluster,

Wk =
X
i2Ek

(xi � xk)(xi � xk)
T

and W =
Pg

k=1Wk. One clustering method optimizes tr(W ) (Ward, 1963), but

this method treats the clusters as spherical and the same size. Another method

optimizes jW j (Friedman and Rubin, 1967). The jW j method allows for ellipsoidal
distributions, but requires that the clusters have the same orientation, size, and

shape. A third method optimizes
Pg

k=1 nk log tr (Wk=nk) (Ban�eld and Raftery,

1993) which allows for di�erent size spherical shaped clusters. A �nal method

optimizes
Pg

k=1 nk log jWk

nk
j (Scott and Symons, 1971) which allows for di�erent

ellipsoidal con�gurations for each cluster. Note that each of these optimizations

criterion requires that at least p+ 1 points be in each cluster in order to calculate

a non-singular Wk. This assumption may not always hold, but if fewer than p+ 1

points make up a particular cluster, maybe that \cluster" is simply a small group

of outlying points. Since these above methods require that all points be allocated

to a cluster, any small groups of outlying points might skew the estimates.

3.2.3. Robust Optimization Clustering

The clustering method we used, which will be described, assumes only that the

clusters are elliptical. (The outlier identi�cation methods, however, treat the data

as having some moments follow certain distributions.) Since the cluster shape is

estimated from assigned points, it is required that p+1 points be assigned to each

of the main clusters. However, this method allows for unassigned points, so there

could easily be allowed a cluster of points which is smaller than p + 1 included in

the group of outlying points. The algorithm and the program are due to Reiners

and Woodru� (Reiners and Woodru�, 2000), and the program is called cluster.

The optimization criterion used in this clustering algorithm is the same as

that due to Scott and Symons (1971). However, Reiners and Woodru� use a

blackboard architecture that improves the eÆciency of the algorithm and allows
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for implementation on a parallel processor. The blackboard consists of three levels:

Level 1. This level contains the best solution found so far. (In our work a \best

solution" consists of g sets of location, shape, and cluster assignment.)

Level 2. This level contains the best solutions for each subsample.

Level 3. This level contains all the solutions for the current subsample, and it is

erased when the current subsample is optimized

The clustering algorithm is as follows:

1. Select an evaluation sample. This sample will be used to evaluate the solu-

tions based on the optimization criterion. (With small datasets, the evalua-

tion sample is the entire data set.)

2. Select a subsample from the entire dataset.

3. Randomly select one seed point that has not been used in a seed. Find a

location and shape pair from the blackboard, and use them to assign the

closest 2p points to the seed point to create a seed. Repeat this process g�1

times (except that the seed points are selected so as to be mutually distant

from the seeds formed so far.) All 2gp points used in the seeds are then

marked as having been used in a seed, and they will not be used as a seed

point in the next iteration.

4. Calculate the means and covariances of the seeds, and again �nd the 2p

closest points to improve the original seeds.

5. Add points from the rest of the subsample to the seeds based on the closest

distances (with the seed metrics) to a cluster. Again, �nd cluster means and

covariances, and improve the clusterings by adding or removing points based

on the new cluster means and covariances.
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6. Store the information on the third level of the blackboard. Return to step 3

unless a stopping criteria is reached. There are two stopping criteria: all the

points in the subsample have been used in the seeds, or the current clustering

is exactly the same as the previous clustering.

7. Project all the clusterings onto the evaluation sample, and store the best one

on the second level of the blackboard. Erase the third level of the blackboard.

Return to step 2, and repeat as many times as desired.

It is worth pointing out that with small data sets, it may not be necessary

to subsample. Also, in the �rst iteration, there are no metrics available on the

blackboard. In this case, the entire data metric is used. Though it may not

be representative of the clusterings, the entire data metric does give an aÆne

equivariant estimate of the parameters. It has been discussed that this clustering

method allows for a speci�ed number of points to be removed in the optimization

step. For example, say T points are allowed to be \unclustered." Every time

an estimate is evaluated on the evaluation sample, the closest n � T points are

found, and those points are used in the evaluation criteria. This way, outliers are

not forced into clusters which could have the e�ect of skewing the estimates. This

method accommodates any number of outlying points up to T . For our simulations

we used T = 100 for large clusters (of size 200 - 700) and T = 20 for small clusters

(of size 50-100.)

3.3. Robust Estimators in a Cluster Setting

Estimating cluster location and shape is a diÆcult problem in robust statistics.

Most known methods make various distributional or shape assumptions that fail

in the presence of outliers. This means that these clustering methods break down

in the presence of a small number of outliers, particularly if the outliers are in

their own cluster. The cluster shapes may be ellipsoidal with similar shape and

size, but a cluster of outliers can skew the shape of one of the clusters, making it
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diÆcult to detect.

As in chapter 2, there is still interest in aÆne equivariant estimators. It is

important to ensure that the estimates are not e�ected by measurement scale,

location, or orientation.

3.3.1. Minimum Covariance Determinant

As discussed in chapter 2, we will use the Minimum Covariance Determinant

(MCD) location and shape estimates as robust estimates of the location and shape

of the clusters. Points that are outliers with respect to a particular cluster will not

be involved in the location and shape calculations of that cluster, and points that

are outliers with respect to all clusters will not be involved in the calculations of

any clusters. The di�erence between the single population case and the multiple

cluster case is that, in the latter, MCD samples need to be computed for each

cluster. This important di�erence leads to a need for a good robust starting point

in the clustering situation. Note that we also needed a good starting point for

the one cluster MCD, but we bypassed that problem by using many small random

samples. As previously mentioned, when the number of clusters grows, it becomes

increasingly more diÆcult to �nd random samples that re
ect the true layout of

the cluster data.

3.3.2. Estimating the MCD

Again, the exact MCD is impossible to �nd except in small samples or trivial cases.

So, the algorithm used to estimate the MCD will be the estimator. The algorithm

used in the multiple cluster case will be similar to the single population algorithm

with the one exception that the starting point of the algorithm will no longer be

a random sub-sample of the data. The reason that it is important to have a non-

random starting point for robust clustering is that random starts often give rise to

shapes that are more representative of the entire data metric than the individual
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cluster metrics. Even with random samples of only g � (p+ 1) points (where g is

the number of clusters and p is the dimension), it is highly unlikely that a random

starting point would partition the points into their g clusters respectively. From

a starting point which re
ects the entire data metric, it is diÆcult to separate the

points into the correct g clusters.

For a robust start, we used the program due to Reiners and Woodru� (2000)

discussed previously. One characteristic of their program is that a parameter is set

for the number of points that are allowed to be left out of the initial clustering.

Because of the optimization criteria they use, the speci�ed number of points will

always be left out. The parameter should be set to be larger than the estimated

number of outliers. However, if the parameter is set too high, the program will

have trouble estimating the cluster shapes from the remaining data. This number

should be a function of n.

The outlier detection methods described in this paper are not dependent on

this particular robust clustering algorithm. Any robust initialization would give

similar results. Even random starts could be used if a condition was added to

prevent the clusters from converging to the large dataset shape.

For each dataset, the procedure for calculating the MCDs for each cluster is as

follows.

1. Decide from how many populations the data came.

2. Use the program cluster to �nd an initial robust clustering of the data.

3. From the initial clustering, calculate the mean and covariance of each of the

clusters. (Each point belongs to at most one cluster, use the points belonging

to a particular cluster to calculate its mean and covariance in the usual way.)

4. Calculate the MSD to each cluster, based on the most recently calculated

mean and covariance, for each point in the dataset.
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5. Assign each point to the cluster for which it has the smallest MSD. Also,

assign a cluster size (nj) to each cluster based on the number of points that

are closest to that cluster.

6. For each cluster, choose a \half sample" (= b(nj + p+1)=2c) of those points
with the smallest MSDs from step 4.

7. For each cluster, compute the mean and covariance of the current half sample.

8. Repeat steps 4-7 until the half sample no longer changes.

9. Report estimates

For each cluster, the MCD sample will then be the �nal half sample (step 6).

For each cluster (j), a robust distance like d2
S�

j

(xi; X
�
j
), where S�

j
and X

�
j
are the

MCD shape and location estimates for cluster j, is likely to detect outliers because

outlying points will not a�ect the MCD shape and location estimates. For points

xi that are extreme, d
2
S�

j

(xi; X
�
j
) will be large for all j, and for points xi that are not

extreme, d2
S�

j

(xi; X
�
j
) will not be large for a particular j. Here we are not subject

to problems of masking and swamping.

3.4. Distance Distributions

3.4.1. Distances, a Review

Mahalanobis squared distances give a one-dimensional measure of how far a point

is from a location with respect to a shape. Using MSD we can �nd points that

are unusually far away from a location and call those points outlying. We have

discussed the importance of using robust aÆne equivariant estimates for the lo-

cation and shape of the data. Unfortunately, using robust estimates gives MSDs

with unknown distributional properties.
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In chapter 2, an approximate distributional result for MSD distances based on

location and shape derived from an MCD sample is given. Although the robust

distances are asymptotically �2
p
, an F distribution �ts the extreme points much

more accurately across all sample sizes, but especially in small samples. The

distances based on the MCD metric can be expressed as,

c(m� p+ 1)

pm
d
2
S�

X

(Xi; X
�
)

�� Fp;m�p+1: (4.1)

where X
�
andS�

X
are the location and shape estimates of the MCD sample, p is the

dimension of the sample, and m and c are both parameters based on the shape of

the MCD sample. The unknown parameters, m and c, can be estimated in two

ways, using simulations or using an asymptotic result. The simulation results are

the most accurate but also the most time consuming. In this chapter, we will use

the asymptotic F distribution approach which gives results that are more accurate

than the �2
p
distribution and use much less computing time than the F distribution

with simulated estimates. The parameter c can be estimated as in chapter 2,

c =
P (�2

p+2 < �
2
(p;h=n))

h

n

where �2
�
is a Chi-Square random variable with � degrees of freedom, and �2

�;�
is

the � cuto� point for a �2
�
random variable (Croux and Haesbroeck, 2000). Again,

we assume that the extreme points are asymptotically independent of the MCD

estimates because they do not enter into the calculations. A similar independence

argument to that of the one cluster model works for each cluster in the multiple

cluster model.

For m there exists an asymptotic expression that is good in large samples and

only moderately accurate in small samples (Croux and Haesbroeck, 2000). For

small samples, simulation may be necessary to estimate m accurately. Croux and

Haesbroeck used in
uence functions to determine an asymptotic expression for the

variance elements of the MCD sample. Details are given in Appendix A. In this

chapter we use only the theoretical parameter estimate in the interest of computing

time.
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3.4.2. Robust Cuto� in a Cluster Setting

Using the same arguments from the single population setting in the cluster setting,

an F distribution can be used to approximate distances which are large with respect

to a cluster location and shape. However, in this setting there are new factors to

consider such as how many points are in each cluster and whether extreme points

are simply members of another cluster.

In the single cluster case, the sample size of the dataset is used in the F cuto�

calculation. Therefore, in the multiple cluster case, a sample size must be known

or estimated for each cluster. The sample size also determines the \h" factor used

in the MCD calculation. Recall, n�h
n

is the breakdown of the MCD estimator. The

sizes from the �nal MCD iteration (step 5 in section 3.3.2) will be used as the sizes

of each of the clusters. The last MCD iteration also provides a robust location and

shape for each cluster, these estimates are used to compute distances from each

cluster. For a particular point, the distance from each cluster center will be found,

and a point will be counted in the cluster for which its distance is the smallest.

# in cluster j = nj =
nX
i=1

I(d2
S�

j

(Xi; X
�
j
) � d

2
S�

k

(Xi; X
�
k
) 8k = 1; : : : ; g groups)

Let n1; n2; : : : ; ng be the sizes of the respective clusters, n =
Pg

j=1 nj. The break-

down for the MCD clustering method is n
��h�
n�

where n� = min fn1; n2; : : : ; ngg
and h� = bn�+p+1

2
c. With these constructions in mind, the distances of interest are

those associated with the cluster to which a point is closest. Let ~di be the distance

from point i to the closest cluster. An outlying point, i, will be one with ~di greater

than some cuto� value.

Consider g groups of nj multivariate data points in dimension p, and let Xij �
Np(�j;�j) where i =observation and j =cluster. Let Sj be an estimate of �j such

that, mjSj �Wishartp(�j; mj). For the multiple cluster case,

cj =
P (�2

p+2 < �
2
p;hj=nj

)

hj=nj
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and

cj(mj � p+ 1)

pmj

d
2
S�

j

(Xi; Xj

�
)

�� Fp;mj�p+1:

Distributional cuto� results for distances based on the above type of clustered data

with four di�erent types of outlier arrangements: none, cluster, radial, and di�use

are given.

3.5. Results

As in the one cluster case, outliers can be identi�ed as points with robust distances

that exceed some cuto� value. The cuto�s are computed from distributional quan-

tiles of �2 and F distributions. Because �nding estimates for the parametersm and

c by simulation is so computationally intensive, results are provided only for the F

cuto� with theoretical estimates for m and c and for the �2
p
cuto�. To compare the

accuracy of these two estimates, we ran experiments on clean multivariate normal

data and also on contaminated multivariate normal data. The contamination was

done in three ways:

1. As a distinct cluster of outliers.

2. As radial outliers.

3. As di�use outliers generated using a covariance structure equal to the entire

dataset.

The Monte Carlo experiments were done at p = 4; 7; 10 with g = 2; 3 for the

clean data and g = 2 for the contaminated data. Let np
g
be the size of the groups

simulated for a particular dimension and number of groups.

n
4
2 = 300; 300 and 200; 400

n
4
3 = 300; 300; 300 and 200; 300; 400
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n
7
2 = 500; 500 and 300; 700

n
7
3 = 500; 500; 500 and 300; 500; 700

n
10
2 = 500; 500 and 300; 700

n
10
3 = 500; 500; 500 and 300; 500; 700

The cluster centers were separated by a distance of 2D where D =

r
�2
p;:99

p
. The

value
q
�2p;:99 is the asymptotic radius of a 99% containment ellipsoid around a

cluster of standard normal data. By separating the clusters at a distance of 2D,

we have clusters that do not overlap.

In a cluster situation the size of the entire dataset is known, but the size of

the individual clusters in not known. Therefore, the clustering algorithm must

be applied before outliers can be identi�ed. In the clustering algorithm nj, the

number of points belonging to cluster j, is determined. From nj we apply the

theoretical formulas given for mj and cj. The cuto� values for 5%, 1% and 0.1%

rejection are calculated for both Fp;mj�p+1 and �
2
p
.

3.5.1. Clean Data

For each combination of size, dimension, and number of clusters 100 sets of inde-

pendent data were simulated, and the number of points the cuto�s identi�ed as

outlying was counted. (The number of independent data sets is small due to the

computational intensity of the clustering algorithm.)

The tabulated results in table 4 report the percentage of data identi�ed as

outlying for each nominal level at p = 4; 7; 10 and cluster sizes as mentioned above.

As in the one cluster situation, the F cuto� results are much closer to the target

signi�cance level than the �2
p
cuto�s. Also, because the cluster sizes are relatively

large, the asymptotic F cuto� is only slightly conservative.
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3.5.2. Contaminated Data

Three methods were employed to generate outliers in each dataset. Since we have

outlying points, both type I and type II errors can be measured. The type II

error estimates what percentage of true outlying points would be identi�ed as non-

outlying. The type I error measures the percentage of points which were generated

under the null hypothesis that were allocated to a cluster.

The outliers which were generated as a separate cluster were placed along the

axis that was used to separate the two clusters at the same distance the two clusters

were separated. E.g. cluster 1 is distributed N(0; I), cluster 2 was distributed

N(2D; I), and the cluster of outliers was distributed N(4D; I). (Where D =r
�2
p;:99

p
).

The radial outliers were generated with the same center as their respective

clean clusters but with a covariance of 5 times the cluster's covariance. Again, we

are interested in points that are truly outlying so that we can calculate the type

II error of our method, but some points that are generated with a large covariance

matrix may still be close to the cluster's center. In dimension 4, 38% of points

generated with N(0; 5I) will be within the �24;:99 bound of a N(0; I) dataset. Using

an acceptance-rejection algorithm, each outlying radial point that was generated

was accepted if and only if it was outside the ellipse of clean data. The outliers

were constructed to form an annulus around the clean data such that the average

squared distance of an outlying point was 2�2
p;:99 away from the center of the clean

data. By creating an annulus of outliers, we can correctly measure our type II

error as those outlying points that get clustered.

The di�use outliers were generated using the location and shape of the entire

dataset. Again, we are only interested in points that are truly outlying, so we

use the same acceptance-rejection algorithm to reject points that fall among the

clusters of good data. In dimension 4, n42 = 300; 300, 82.7% of the disperse points

would have fallen within �24;:99 of one of the two clusters.
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The number of outliers simulated for each combination of size and dimension

was constructed relative to the smallest cluster. For dimension 4, n42 = 200; 400, if

the number of outliers is 20% of the larger cluster (80 points), it would be diÆcult

to distinguish between the good cluster of 200 points and the bad cluster of 80

points. So, the percentage of outliers of each pair of size and dimension is relative

to the smaller of the two clusters. For each dimension, size, and outlier type we

simulated outliers of size 20% of the smallest cluster. (In preliminary work di�erent

outlier percentages were tried and results were virtually identical.)

For each combination of size, dimension, and type of outliers, 100 sets of inde-

pendent data were simulated, and the number of points the asymptotic F and the

�
2 cuto�s identi�ed as outlying was counted.

Cluster Outliers

Table 5 gives the results for both type I and type II errors for data contaminated

by a cluster of outliers. These simulations were done with two di�erent cluster

con�gurations, but the total sample size of the clean data stayed constant across

dimension (600 total clean points in dimension 4 and 1000 total clean points in

dimensions 7 and 10.) As we saw in the one cluster experiments for type I error,

the theoretical F cuto� is a little conservative, but it is an improvement over the

�
2 cuto�. For type II error, there is no clustering of the outlying points except in

dimension 4 at the extreme percentages.

Radial Outliers

Like the cluster outliers, the total sample size of the clean data stayed constant

across dimension, and the outliers were always 20% of the smallest cluster size. In

table 6 we see again that the theoretical F is an improvement over the �2 which is

far too liberal at identifying outliers. There is more type II error with the radial

outliers, but the amount is negligible except for dimension 4 with an extreme cuto�.
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Di�use Outliers

The results for di�use outliers in table 7 are similar to those for radial outliers.

Once again, the the theoretical F cuto� gives an improved but conservative bound

for the type I error. The type II error is seen as a problem again only in dimension

4 with extreme cuto�s.

As in the one cluster experiments, the results do not appear to depend on p.

Further simulations would probably show the dependence to be primarily on the

sample size. We are encouraged to notice that the results are similar for balanced

and unbalanced clusterings. The large type II error may be disconcerting, but it is

important to remember that as the level of signi�cance gets smaller, eventually the

type II error will get larger. These results lead to the following recommendations:

1. With a robust initial starting value, the MCD estimator can be modi�ed to

�nd clusters of data.

2. With the MCD estimates, the theoretical F cuto� is superior to the �2
p
cuto�.

3. The F cuto� method works well under the null hypothesis that all the data

come from g multivariate normal populations (where g is the number of

clusters). When the data are contaminated the F cuto� method still performs

adequately in measures of both the type I and type II error.

3.6. Conclusion

A method for �nding outliers in a robust cluster situation is given. The method

relies heavily on a robust clustering, and reasons are given for the importance of a

robust method for �nding clusters. The F cuto� is still clearly superior to the �2
p

cuto� which is commonly used to determine outliers.

One robust clustering method is given here, other robust methods could be
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applied in the same manner. Speci�cally, M-estimates and S-estimates could be

used in place of the MCD estimate.

Also, this method could be further explored by using more clusters, di�erent

outlier con�gurations, and the simulated values of m and c as parameters for the

F cuto�.
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Chapter 4

Outlier Detection and Clustering

with S-Estimation

4.1. Introduction

In the �rst chapters of this work, robust methods for �nding outliers in the one

and multiple cluster case were given. The robust estimator used was the minimum

covariance determinant (MCD) (Hampel et al., 1986; Rousseeuw, 1984; Rousseeuw

and Leroy, 1987) which was modi�ed in our work for the multiple cluster case. An

extension to this outlier detection work is to use a di�erent robust estimator in

place of the MCD.

M-estimation was developed as a generalization of maximum likelihood esti-

mation (thus the \M".) The idea is to solve a system of equations which can be

independent of the underlying probability distribution function whereas maximum

likelihood maximizes the likelihood function. The optimization can then be devel-

oped into an iteration scheme which assigns weights to data points. The weights

are smaller for extreme points and can be used to calculate robust estimates for

the mean and covariance. With certain optimization functions, a constraint is

needed in the M-estimation to keep the estimates from imploding. S-estimation

was developed as a constrained optimization problem and has since been shown to
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be a subset of M-estimation with a particular type of constraint.

M- and S-estimators which give smaller weights to extreme points and zero

weight to extreme points which are larger than some �nite value are called re-

descending and su�er from the problem that as more points are given zero weight,

the determinant of the covariance decreases which leads to large Mahalanobis dis-

tances which leads to more points getting zero weight. If no constraints are put on

the algorithm to compute a redescending estimator, eventually all the points will

be given zero weight. In order to converge to a solution some constraint needs to

be added to the problem.

In chapter 2, we used a robust technique to estimate location and shape for a

one cluster dataset. Once the estimates were de�ned, we used them in the metric

to compute Mahalanobis Squared Distances (MSDs) for each point from the robust

center estimate. With an F distribution cuto�, points were determined as outlying

if they had an MSD larger than some predetermined cuto�. In chapter 2, we used a

robust technique to estimate location and shape for clusters (g � 2, where g is the

number of clusters). With the metrics de�ned, we calculated the distances of points

to clusters, and using those distances we determined which points belonged to

which cluster. With an F-distribution cuto�, points were determined as outlying if

they had a distance larger than some predetermined bound. This method of �nding

outliers in the one or multiple cluster case can be generalized by substituting the

robust MCD estimates with any other robust shape and location estimator.

Properties of S-estimates are generally well known, and the asymptotics as-

sociated with them are often good in small samples. S-estimators are relatively

more eÆcient than MCD estimators (Rocke and Woodru�, 1997). With similar

sample sizes as used with the MCD, the S-estimators will perform better in outlier

detection when using the same type of F-cuto�.

We will investigate the quality of �nding outliers for various values of n, p, g,

and di�erent arrangements and percentages of outlying points for the translated

biweight S-estimator.
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4.2. M- and S- Estimation

4.2.1. M- Estimation

M-estimation of a one-dimensional location parameter was introduced by Huber

(Huber, 1964). Later, Maronna de�ned M-estimates for multivariate location and

shape (Maronna, 1976). Huber extended Maronna's de�nition to a solution of

simultaneous equations (Huber, 1981). The idea for an M-estimator comes from

the equations used to solve for maximum likelihood estimators.

Consider the maximum likelihood estimation of � and � for a multivariate

family of densities g(X) = j�j� 1

2 f(d2) where d2 = (X � �)t��1(X � �). The

maximum likelihood estimates ~� and ~� will maximize

Y
i

j�j� 1

2 f(d2
i
):

where d2
i
= (xi��)t��1(xi��) is the argument based on the realization xi. Letting

�(x) = log(f) and  (x) = � d

dx
�(x), the above maximization can be represented as

X
i

 (di) = 0

X
i

[di (di)� 1] = 0

M-estimation is a generalization of maximum likelihood estimation. In M-

estimation  and � are not restricted by the presumptive probability density func-

tion, and estimates for � and � are found by solving

X
i

 (di) = 0

X
i

�(di) = 0

where, usually,  is an even function and � is an odd function (here �(d) =

d �  (d)� 1.)

In maximum likelihood, the optimization equations can be written as

0 =
X
i

w(di)�
�1(xi � �)
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0 = �n
2
��1 +

1

2

X
i

w(di)�
�1(xi � �)(xi � �)t��1

where w(x) =
 (x)

x
and  (x) = � d

dx
f(x). From the equations, the iterated esti-

mates for � and � can be written as

~�(j+1) =

P
iw(d

(j)
i )xiP

iw(d
(j)
i )

~�(j+1) = n
�1X

i

w(d
(j)
i )(xi � ~�(j+1))(xi � ~�(j+1))t

Similarly, in M-estimation the optimization conditions can be represented as

0 = n
�1X

i

v1(di)(xi � �)

0 = n
�1X

i

[v2(di)(xi � �)(xi � �)t � v3(di)�]

where v1, v2, and v3 are the weight functions (which depend on  and reduce to

v1(d) = v2(d) =
1
d
� �@ log f(d)

@d
= 1

d
� �@�(d)

@d
and v3(d) = 1 for maximum likelihood.)

The iterated parameter M-estimates can be written as

~�(j+1) =

P
i v1(d

(j)
i )xiP

i v1(d
(j)
i )

(2.1)

~�(j+1) =

P
i v2(d

(j)
i )(xi � ~�(j+1))(xi � ~�(j+1))tP

i v3(d
(j)
i )

(2.2)

Our interest in M-estimates is due to their robust qualities. A redescending  

function will give smaller weights to extreme points thus insuring outlying points

from heavily in
uencing the estimates. A choice of  that is not redescending will

not be as robust to outlying points. (E.g., the sample mean gives equal weight to all

points and is highly sensitive to extrema.) However, a choice of  that redescends

to zero can cause problems in the estimation. As the estimate for j�j shrinks, the
di will grow, and fewer and fewer points will have non-zero weight. Each additional

point that has zero weight decreases the determinant of the covariance estimate

which increases all of the MSDs of the data. Eventually, if enough points have

zero weight, ~� will be singular, and the iteration process will fail to converge.
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The iteration scheme can easily wander into one of these non-converging regions if

there are no constraints placed on the distances. For any M-estimator that has a

redescending  function, a constraint is needed in the estimation algorithm.

A possibility for constraining the estimates is to constrain the MSD according

to some expectation under multivariate normality. Some possibilities are:

n
�1X

i

�(di) = E(�(d))

n
�1X

i

 (di) = E( (d))

n
�1X

i

 (di)di = E( (d)d)

n
�1X

i

 
2(di) = E( 2(d))

n
�1X

i

w(di) = E(w(d))

median(di) = median(d)

where � is a given optimization function,  (d) = @�(d)

@d
, and w(d) =  (d)

d
. For each

data point, the distance will be scaled so that the chosen constraint is satis�ed.

With any of the above constraints, we can choose a redescending  function to

obtain robust estimates of shape and location for multivariate data.

4.2.2. S- Estimation

S-estimation originated in the regression context (Rousseeuw and Yohai, 1984)

as a constrained optimization problem. Later, it was applied to the multivariate

scale and location estimation problem (Davies, 1987). Lopuha�a showed that an

S-estimate of location and scale is a type of constrained M-estimate (Lopuha�a,

1989). An S-estimate of multivariate location and shape is de�ned as follows:

De�nition 4.2.1 (Rousseeuw and Yohai, 1984) Let � : IR+ ! IR
+ be a twice

continuously di�erentiable, symmetric, nondecreasing function which has �(0) = 0
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and is constant at �(x) = �(c) 8x � c. Given a dataset of n points in IRp, let the

S-estimator, (~�; ~�), be de�ned by minimizing j~�j subject to

n
�1X

i

�(di) = b0:

Lopuha�a (1989) showed that S-estimates are a case of constrained M-estimates

where

v1(d) = w(d)

v2(d) = w(d)

v3(d) = v(d)

 (d) =
@�(d)

@d

w(d) = v(d) =
 (d)

d

with constraint n�1
P
i �(di) = b0 = E(�(d)). As S-estimates are simply a type

of constrained M-estimate, this work will address some common redescending S-

estimators.

Examples

Below are �ve examples of S-estimators that contain redescending  functions.

Each estimator is determined by the � function, but �,  and the weights, w, are

given for completeness.

Andrew's Wave (c) (Andrews et al., 1972):

�aw =

(
c

�2
(1� cos � d

c
) d � c

2c
�2

d > c

 aw =

(
1
�
sin� d

c
d � c

0 d > c

waw =

(
1
�d
sin� d

c
d � c

0 d > c



62

Hampel, three-part redescending (a; b; c) (Andrews et al., 1972) (where 0 < a �
b � c):

�h =

8>>><
>>>:

1
2
d
2

d � a

ad� 1
2
a
2

a < d � b

ab� 1
2
a
2 + (c� b)a

2
[1� ( c�d

c�b )
2] b < d � c

ab� 1
2
a
2 + (c� b)a

2
d > c

 h =

8>>><
>>>:

d d � a

a a < d � b

a
c�d
c�b b < d � c

0 d > c

wh =

8>>>><
>>>>:

1 d � a
a

d
a < d � b

a(c�d)
d(c�b) b < d � c

0 d > c

Tukey's Biweight(c) (Tukey, 1972):

�b =

(
c
2

6
[1� (1� (d

c
)2)3] d � c

c
2

6
d > c

 b =

(
d(1� (d

c
)2)2 d � c

0 d > c

wb =

(
(1� (d

c
)2)2 d � c

0 d > c

Least Winsorized Squares (c) (Rousseeuw and Leroy, 1987):

�lws =

(
d2

2
d � c

c
2

2
d > c
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 lws =

(
d d � c

0 d > c

wlws =

(
1 d � c

0 d > c

Translated-Biweight (a; b) (Rocke, 1996):

�tb =

8>>>>>>><
>>>>>>>:

d2

2
d < a

a2

2
� a2(a4�5a2b2+15b4)

30b4
+

d
2(1

2
+ a4

2b4
� a2

b2
) + d

3( 4a
3b2
� 4a3

3b4
)+

d
4(3a

2

2b4
� 1

2b2
)� d54a

5b4
+ d6

6b4
a � d � a+ b

a
2

2
+

b(5b+16a)

30
d > a+ b

 tb =

8><
>:
d d < a

d(1� (d�a
b
)2)2 a � d � a + b

0 d > a+ b

wtb =

8><
>:

1 d < a

(1� (d�a
b
)2)2 a � d � a+ b

0 d > a + b

The �ve above examples are all redescending estimators, but each is slightly

di�erent. One common trait across these functions is that the  function is linear

close to zero. Winsor's principle, quoted by Tukey (p. 457) (Tukey, 1960), states

\all distributions are normal in the middle." The  function for the maximum

likelihood estimate of the mean for normal data is linear. So, a good S-estimate

allows for Winsor's principle and has a  function which, near zero, resembles that

which is best for Gaussian data.

An important di�erence in the above S-estimators is the number of parameters

in each. Hampel's wave takes three parameters, Rocke's translated-biweight takes
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two parameters, and the others each take one parameter. Two factors in choos-

ing an appropriate estimator for robust estimation are the breakdown and the

asymptotic rejection point. The number of allowable parameters in an S-estimate

determines the 
exibility in the values of these two factors.

The breakdown of an estimator can be of two types, the replacement break-

down and the additive breakdown. The two breakdowns are similar in many con-

texts but must be de�ned as di�erent quantities. Replacement breakdown is a

number associated with replacing one or more of the data points with any possible

value. Additive breakdown is a number associated with adding data to the original

set. Both types measure how well the estimator behaves with these restructured

datasets. As a robust criterion, we use the replacement breakdown.

De�nition 4.2.1 (Lopuha�a and Rousseeuw, 1991) The replacement breakdown

point of a location estimator tn at a collection X is de�ned as the smallest fraction

m

n
of outliers that can take the estimator over all bounds:

�
�(tn; X) = min

1�m�n

�
m

n
: sup
Ym

jjtn(X)� tn(Ym)jj =1
�

(2.3)

where the supremum is taken over all possible corrupted collections Ym that can be

obtained from X by replacing m points of X by arbitrary values.

The breakdown of a covariance estimator, Cn, at a collection X is de�ned as the

smallest fraction m

n
of outliers that can either take the largest eigenvalue �1(Cn)

over all bounds, or take the smallest eigenvalue �p(Cn) arbitrarily close to 0:

�
�(Cn; X) = min

1�m�n

�
m

n
: sup
Ym

D(Cn(X)� Cn(Ym)) =1
�

(2.4)

where the supremum is taken over the same corrupted collections Ym as in (2.3) and

where D(A;B) = maxfj�1(A) � �1(B)j; j�p(A)�1 � �p(B)
�1jg with �1 � : : : � �p

being the ordered eigenvalues.

In robust estimation we are interested in estimators that have high breakdown.

The mean has a breakdown of 1=n. In dimension 1 the median has a breakdown of
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b(n+1)=2c

n
. It is important to have estimators that are resistant to a certain amount

of contamination.

Theorem 4.2.1 (Lopuha�a and Rousseeuw, 1991) Let X be a set of n � p + 1

points in IRp. Write r = b0= sup(�), where b0 is the value used in the S-estimation

constraint. If r � (n � p)=(2n) then S-estimates de�ned by a function � that

satis�es De�nition 2.1 have a breakdown point

�
�(tn; X) = �

�(Cn; X) =
bnrc
n

� r:

When r = (n� p)=(2n), the breakdown is �� = b(n�p)=2c
n

.

Lopuha�a showed that S-estimators are a subclass of M-estimators, and Lopuha�a

and Rousseeuw showed that the breakdown of the S-estimators is r ; yet there is a

commonly cited (Davies, 1987; Lopuha�a, 1989; Rocke, 1996; Barnett and Lewis,

1994) result that M-estimators have a breakdown of 1=(p + 1) (Maronna, 1976).

These results appear contradictory, but they are not. Because M-estimates are not

constrained, in high dimensions it is possible to have more than one root to the

optimization equations. Maronna showed that there exists a root that solves the

optimization criteria and breaks down at 1=(p + 1). He did not, however, show

that there exists no root with a higher breakdown. The S-estimation work shows

that it is possible that an estimator of higher breakdown can occur. (Rocke, 1998)

Another important concept is that of the asymptotic rejection point.

De�nition 4.2.1 (Rocke, 1996) Consider a redescending M- or S-estimator, in

which c0 = inffd0jw(d) = 0; 8d > d0g where w =  (d)=d. The asymptotic re-

jection probability (ARP) of this estimator is then de�ned as the probability in

large samples under a reference distribution (usually multivariate normal) that a

MSD exceeds c0. If the estimator is normed to the normal distribution, the ARP

is 1� F�2(p)(c
2
0).
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The ARP gives the percentage of data points that would be given zero weight

if in fact the data were uncontaminated (and in our case distributed multivariate

normal.) It is clear that we can choose c0 to give any value for the ARP, but

manipulating the value of the ARP will also change the breakdown of the estimator.

Since the biweight estimator is a one parameter family, it is not possible to set

both the breakdown and the ARP by manipulating the parameter. As shown by

Rocke (1996), when the breakdown is set to accommodate robust situations, the

ARP drops to such a low level that the biweight would fail to identify even many

pathological outliers. The maximum breakdown for S-estimators is b(n�p)=2c
n

, which

approaches 50% of the data. When we apply this breakdown in high dimensions to

the biweight, the ARP becomes unacceptable for robust estimation. For example,

when p = 20 and r = 0:5 (large sample) then c = 9:72 and the ARP = 1 �
F�2(20)(94:5) = 10�11. This means that in order for a data point to be declared

an outlier (and thus given zero weight) the point must have d2 � 94:5 which is 12

standard deviations away from the mean (Rocke, 1996). It should be agreed that

a point might be considered outlying even if it is closer to the bulk of the data

than 12 standard deviations away.

In order to have control over both the ARP and the breakdown, we need to

use an estimator that has at least two adjustable parameters. Both the translated-

biweight (t-biweight) and Hampel's wave allow for the dual constraints. Though

Hampel's functions probably perform equally well in simulations, we chose to use

the t-biweight in this work because of its continuous �rst derivatives.

Though we are not constrained by only one parameter, not every combination

of breakdown and ARP is possible with the t-biweight. Our programs are set to

have the maximum breakdown, and the user is able to choose the ARP. If the

user chooses an ARP that is too large, the parameter b is reduced, and as b ! 0

the limit of the t-biweight is the least Winsorized squares estimator. If the user

chooses an ARP that is too small, the parameter a is reduced, and as a ! 0,

the limit of the t-biweight is the biweight estimator. Using the t-biweight, the
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two parameters a and b can be chosen to give the desired breakdown and ARP

subject to the estimator changing in the limit. In other words, given a particular

breakdown point, the ARP of the t-biweight cannot be larger than that of the

least Winsorized squares estimator or smaller than that of the biweight estimator

(Rocke, 1996).

4.2.3. Comparison with the MCD

In the �rst chapters of this work, we have studied behavior of the MCD estima-

tor. The MCD has some favorable properties, namely, it is computable without

a robust starting value and it has a high breakdown. Also, we know some of the

asymptotic properties of the estimator, and these properties were used in describ-

ing the behavior of the extreme data points using the MCD metric. Though the

MCD and the S-estimator are both n
�1=2 estimators (Butler et al., 1993), the

relative eÆciency of the S-estimator is much higher than the MCD (Rocke and

Woodru�, 1997). This means that in order for the MCD to work as well as the

S-estimator, more data are needed.

4.3. Computing the S-Estimate

For reasons discussed above, we use the t-biweight in our simulations. For the one

cluster case, the algorithm for computing the S-estimate is fairly straight forward.

For the multiple cluster case, the algorithm is modi�ed to allow for any number

of clusters. One potential problem with S-estimates is that they are sensitive to a

good starting value. As with the MCD we use the cluster program to initialize

our estimates when the data come from two or more populations.
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4.3.1. The One Cluster Setting

S-estimates have been used as robust estimates of location and shape of multivari-

ate data (Davies, 1987). Davies' optimization equations can be solved as a system

of iterative equations, see eqs. 2.1 and 2.2. The solutions give values for ~� and ~�.

The algorithm is as follows.

1. Start with an initial estimate of ~� and ~�.

2. Compute d2
i
= (xi� ~�)t ~��1(xi� ~�) using the most recent estimates of ~� and

~�.

3. Compute k such that n�1
P
i �(di=k) = b0. (Where b0 = E[�(d)] under

multivariate normality.)

4. Replace di with ~di = di=k.

5. Find

~� =

P
iw(

~di)xiP
iw(

~di)

~� =
p
P
i w(

~di)(xi � ~�)(xi � ~�)tP
iw(

~di)
:

6. If ~� and ~� have changed, repeat 2-5. Otherwise, report ~� and ~�.

Our program uses the t-biweight, and therefore w = v. With the t-biweight

function a point which is far from the mean of a cluster will have a large MSD

for that cluster. The t-biweight takes arguments a and b as well as the MSD for

a point using the current metric. Beyond a + b data points will be given zero

weight in the estimating equations. The ARP de�nes the value for a + b and can

be set by the user. The value a will then automatically be calculated to give the

correct breakdown. In this work we set r = n�p
2n

, as this allows for the maximum

breakdown possible for S-estimators.
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Step 1 requires an initial estimate for ~� and ~� to be available. In the one cluster

setting we used both uncontaminated and contaminated data. To get an initial

estimate of parameters, we used the ordinary mean and covariance estimates of the

entire clean dataset. (Usually, the clean part of the data would, obviously, not be

known.) In practice, some sort of robust estimates should be used to initialize the

algorithm. One option is to run multiple starts with randomly selected points and

then use some criterion to determine which initialization is best. Another option is

to initialize the program with the MCD estimates. Our choice of using the sample

mean and covariance as initial estimates was done in the interest of time.

4.3.2. The Multiple Cluster Setting

The algorithm for �nding the t-biweight estimates in the multiple cluster setting

is similar to that in the one cluster setting with these modi�cations:

(a) The initialization is done with the program cluster.

(b) The sample size of the clusters is re-estimated at each iteration because

the number of points allocated to each cluster can change throughout

the program.

(c) The estimates for each group are calculated one cluster at a time.

(d) The number of clusters in the dataset must be determined prior to the

analysis.

The algorithm is as follows:

1. Use the cluster program to give an initial clustering of the data based on

n, p, and g.

2. Using the cluster assignments, calculate a mean and covariance for each

cluster. (E.g., the mean for cluster 1 will be the average of those points which

have been assigned to cluster 1 by the cluster program.)
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3. Calculate the MSDs, based on the most recently calculated cluster means

and covariances, for each point in the entire dataset.

4. Assign each point to the cluster for which it has the smallest MSD. Also,

assign a cluster size to each cluster based on the number of points that are

closest to that cluster.

5. For each cluster �nd the t-biweight S-estimate of the mean and covariance

based on the above distances and cluster sizes.

6. Repeat steps 3-5 until the parameter estimates no longer change.

7. Report ~�i and ~�i for each cluster.

Let the cluster sizes be n1; n2; : : : ; ng, for g clusters. Then the breakdown

parameter is set at rj =
b(nj�p)=2c

nj
j = 1; g. The other parameters will be set to

have a speci�ed ARP (ARP = 0.01 in our work) for each cluster.

4.4. Identifying Outliers

The goal of �nding S-estimates of shape and location is to use the estimates in

identifying outliers in the data. In chapters 2 and 3 we used the F distribution to

approximate the tail behavior of distances based on MCD estimates. The motiva-

tion was that an MCD covariance can be thought of to have Wishart-like �rst two

moments, and that property is used to establish degrees of freedom appropriate

for an F distribution which describes the related distances.

The theorem in chapter 2 states that the MCD estimates are asymptotically

independent of the tail distances which motivates the use of an F statistic. The

theorem can be directly applied in the S-estimation situation only to points outside

the ARP bound. Points that are extreme will be given zero weight and will not

be used in the estimates. Those extreme points are the subject of interest in this

paper as they will be identi�ed as outlying. It can be argued that any extreme
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points are independent of the S-estimates if extreme is de�ned to mean outside the

ARP rejection bound.

The ARP has been de�ned as the percentage of points that would be given

zero weight if in fact the data were uncontaminated. Extreme points that are

outside the ARP cuto� will be given zero weight and therefore will not be strong

in
uences on the S-estimates. In the MCD case, the extreme points also did not

directly in
uence the estimates. Since the interest of this work is in the extreme

points, we can use the logic from chapter 2 to apply an F statistic as a cuto� for

an MSD with an S-estimate metric. Points that are outside the ARP bound will

be treated like the MCD extrema from chapters 2 and 3. Points that are inside

the ARP bound but also extreme will not be highly correlated with the estimates,

and so heuristically the methods should approximate the behavior of these semi-

extreme points. We will analyze points inside and outside the ARP bound in the

interest of examining many di�erent situations.

4.4.1. F Cuto�

As with the MCD estimates, we are interested in �nding a statistic that would allow

identi�cation of outliers at a particular level. The derivation of approximating the

MSDs with an F statistic uses the idea that the �rst few moments of the covariance

resemble those of a Wishart distribution. Though the MCD does not have an exact

Wishart distribution, the approximation was OK in small samples and seemed to

be quite good in large samples. The sample covariance matrix does have a Wishart

distribution (if the data come from a multivariate normal distribution), and the

de�nition of an S-estimate is more like the sample covariance than that of the

MCD. This fact, along with the relative eÆciency of the S-estimate being larger

than the MCD, leads us to think that the Wishart approximation will be better

for the S-estimate than it was for the MCD.
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4.4.2. Degrees of Freedom

AWishart approximation is incomplete without an estimate for the degrees of free-

dom. Using a method of moments approximation in chapter 2, we found we could

use the moments of the diagonal elements of the covariance matrix to estimate the

degrees of freedom. In the MCD work we used both simulation and a theoretical

formula due to Croux and Haesbrock (2000) to estimate the moments of the MCD

shape matrix which gave the appropriate degrees of freedom.

S-estimates of covariance are scaled to be consistent for the population co-

variance (under multivariate normality assumption) (Davies, 1987). Consistency

gives us asymptotic unbiasedness, so only the second moment is needed to �nd the

desired degrees of freedom. Applying the logic from the development of the MCD

degrees of freedom to the S-estimate degrees of freedom, we get:

~m =
2

Var[ ~sii]

where Var [ ~sii] is the variance of the diagonal elements of the S-estimate covariance

matrix.

We can estimate the variance in two ways: through simulation and through an

asymptotic formula. (Lopuha�a, 1989; Davies, 1987). Since the diagonal elements

are identically distributed and uncorrelated, we can simulate N copies of the p� p
S-estimate shape matrix from the n data points in each sample and then estimate

m from the variance of the Np diagonal elements. Lopuha�a (1989) derives the

value of the variance of the diagonal elements under standard normality as:

Var[ ~sii] =
2�1 + �2

n

where

�1 =
p(p+ 2)E0;I [ 

2(jjXjj)jjXjj2]
fE0;I [ 0(jjXjj)jjXjj2 + (p + 1) (jjXjj)jjXjj]g2 ;

�2 =
�2
p
�1 +

4E0;I [(�(jjXjj)� b0)
2]

fE0;I [ (jjXjj)jjXjj]g2
;
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b0 = E0;I [�(jjXjj)];

E0;I is the expectation under standard multivariate normality, and jjXjj is the

norm of a vector X in IR
p. Details for the computable form of the theoretical

formulas for ~m are given in Appendix B. From the results in the one cluster case,

it is seen that the simulated and theoretical estimates give similar values. In the

multiple cluster case, only the theoretical estimates are used due to computing

constraints. Because the cluster sizes are unknown in the multiple cluster case,

it is diÆcult to simulate the m parameter for every situation. (Even though the

simulated cluster sizes are known to the user, these sometimes change slightly in

the clustering step.)

Using the estimated variance we get an estimate for the approximate degrees

of freedom for a Wishart distribution that describes an S-estimate. The degrees of

freedom is then used, with the size and dimension, to calculate the correct cuto� for

the MSDs with S-estimate metrics. As in the MCD work, the �nal approximation

is:

( ~m� p+ 1)

p ~m
d
2
~�
(xi; ~�)

�� Fp; ~m�p+1

where ~� and ~� are respectively the location and shape S-estimates, and ~m is the

estimated degrees of freedom for the approximate Wishart distribution.

4.5. Results

In this chapter we have attempted to do two things, cluster the data points using

S-estimation and establish outlier rejection formulas for various cluster settings.

As in previous sections we use robust distances, now with the metric de�ned by

an S-estimate, to identify outliers based on distributional quantiles. Experiments

were done for various dimensions and sizes as well as number of clusters, cluster

con�gurations, and outlier con�gurations.
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4.5.1. One Cluster

The one cluster (or one population) data were generated as clean data from a

multivariate normal distribution for various sizes and dimensions. Since in our

analyses, we know that there is only one cluster, the interest is in outlier detection

at various cuto� percentages instead of clustering. The S-estimates were calculated

as in section 4.3.1, and MSDs were determined using the S-estimate metric. For

each combination of dimension and size three cuto� values were calculated,

1. �2
p
,

2. F with degrees of freedom calculated from the asymptotic formulas, and

3. F with degrees of freedom calculated from simulations.

The quantiles for the distributional cuto�s were set for both pointwise and dataset-

wise rejection at levels 5%, 1%, and 0.1%. We discuss the distinction between the

two types of rejection.

Pointwise Rejection

Pointwise rejection refers to the usual type I error encountered when the data fall

into some natural ordering. It is rejecting a point because the distance to the

point is too large (or small) to reasonably belong to the null data. If our focus

is on stray points that might require special attention, it is best to use pointwise

rejection. The results based on 1000 trials of independent uncontaminated multi-

variate normal data for 5%, 1%, and 0.1% levels for all cuto�s at p = 4; 7; 10, and

n = 50; 100; 500; 1000 are provided in table 8.

As seen before, the �2
p
cuto� is liberal, the theoretical F is conservative, and

the simulated F is quite good. However, it seems that the asymptotics work well

for the S-estimators, and all three cuto�s give reasonable values at the speci�ed

nominal levels.
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Datasetwise Rejection

Datasetwise rejection is more conservative and focuses on the dataset as a whole

rather than the individual points. If the interest is in anything unusual happening

in the sample that may require special attention, it is best to use datasetwise

rejection. Here, the signi�cance is determined so that the probability that an

outlier is identi�ed in the data is set to the desired level. Using a Bonferonni

approximation to obtain the desired level of signi�cance, the cuto�s are set at

levels of :05=n; :01=n; and :001=n to give datasetwise rejection levels of :05; :01;

and :001. The results for 5%, 1%, and 0.1% datasetwise rejection for all cuto�s

and p = 4; 7; 10 and n = 50; 100; 500; 1000 are provided in table 9.

Again, the �2
p
cuto� is liberal, the theoretical F is conservative, and the sim-

ulated F is quite accurate. However, in these simulations there appears to be a

lot of variability in the percentages. At the extreme levels it is not surprising that

the tail behavior is sporadic. Though the �2
p
cuto� did well at rejecting at the

pointwise level, very large data sets are needed to get accurate �2
p
cuto� values for

datasetwise rejection.

From these simulations it appears that if moments are simulated, the �rst two

moments of the covariance of an S-estimate behave like the �rst few moments of a

Wishart variable.

The results for 1000 trials of contaminated data for p = 4; 7; 10 and n =

50; 100; 500; 1000 are provided. Table 10 gives the results for data that have been

contaminated using a cluster of outliers. Table 11 gives results for data that have

been contaminated by radial outliers. The contamination was done identically to

that in chapter 3, and the radial outliers were again simulated using the acceptance-

rejection algorithm. The outliers are always 20% of the good data (n). Since the

data are contaminated, interest is now in both the correct classi�cation of the good

data and the misclassi�cation of the contaminated data. Like in chapter 3, we call

type I error the percentage of points which have been generated by a multivariate
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normal distribution but are classi�ed as outlying. Type II error is the percentage

of points which have been generated as contamination yet are classi�ed into one

of the clusters.

Both tables 10 and 11 show that all the cuto�s are conservative, and the �2
p

seems to be superior over the theoretical F as all nominative levels and in both the

type I and type II error.

From the clean and contaminated one cluster simulations it is seen that the

asymptotic F cuto� is better under the null hypothesis (especially in considering

datasetwise rejection), but the methods are equal (or maybe the �2
p
is a little

better) when the data are contaminated.

4.5.2. Multiple Clusters

The data in this section were simulated in the same way as was done in chapter 3.

The simulations were of clean, cluster outliers, radial outliers, and di�use outliers

at p = 4; 7; 10 and

n
4
2 = 50; 50 and 300; 300 and 200; 400

n
4
3 = 50; 50; 50 and 300; 300; 300 and 200; 300; 400

n
7
2 = 80; 80 and 500; 500 and 300; 700

n
7
3 = 80; 80; 80 and 500; 500; 500 and 300; 500; 700

n
10
2 = 100; 100 and 500; 500 and 300; 700

n
10
3 = 100; 100; 100 and 500; 500; 500 and 300; 500; 700

where np
g
is the cluster sizes and con�gurations in dimension p with g groups. With

S-estimation, smaller data sets were simulated because the initial work showed that

the estimator did well even with small data sets.

As seen in table 12, both the theoretical F cuto� and the �2
p
cuto� fairly accu-

rately identi�ed the correct percentage of outliers for nominal levels 5%, 1%, 0.1%.

The results for two clusters and three clusters are similar, so we can hypothesize
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that this method would be successful with more than three clusters. The simula-

tions of small sample sizes show the �2
p
to be more liberal than the F, especially

at the extreme levels.

Tables 13, 14, and 15 give the results for the contaminated data. Again, we are

interested in both type I and type II error for the contaminated data. It is seen that

the theoretical F and the �2
p
cuto� give very similar results for all contamination

types and sample sizes. The only type II error of any signi�cance is seen in small

data sets, and this error is seen with both the �2
p
and the F cuto�s.

The results from the S-estimate simulations show that the methods do not

appear to depend on p. In both the one and multiple cluster setting, the �2
p
cuto�

is good and the theoretical cuto� is excellent when the data is uncontaminated.

When the data is contaminated, both methods work well at classifying the clean

data (though they are both slightly conservative), and both methods have some

type II error when the sample size is quite small. These results lead to the following

recommendations:

1. With a robust initial starting value, the translated biweight S-estimator can

be used to cluster the data.

2. If the S-estimate metric is used, in most cases the asymptotic F cuto� works

just as well as the �2
p
cuto�.

3. With small data sets, the asymptotic F cuto� is superior to the �2
p
cuto�,

but type II error must be considered.

4.6. Conclusion

A robust method for clustering data and identifying outliers is given. This method

is dependent on a robust starting point, but any good robust starting point should

perform equally well.
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The S-estimate was examined because its asymptotic properties are more well

known than those of the MCD. The performance of the method is excellent when

the data are uncontaminated, but the MCD appears to have better type II error

with contaminated data.

This method could continue to be explored using other S-estimators or other ro-

bust estimators. Also, we could use di�erent initial clustering methods to examine

how the starting estimates a�ect the algorithm.
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Chapter 5

Conclusion

In this thesis we have explored new robust methods of treating multivariate data.

Our philosophy is that though robust methods may not always be necessary, there

are often times when they are invaluable. Also, it is often diÆcult to discern

whether or not a robust method should be used, and it is wise to err on the side

of being cautious.

We began with a method that identi�ed outliers based on an F cuto� which was

derived from a method of moments estimate and was compared to distances which

had a Minimum Covariance Determinant metric. The MCD was an important

part of the analysis because of its robust properties. We knew that the distances

with the MCD metric had an asymptotic �2
p
distribution, but the �2

p
quantiles

were very liberal in outlier identi�cation for all but very large sample sizes. The

simulated F cuto� worked quite well, but �nding the correct degrees of freedom was

computationally intensive. The F cuto� based on theoretical degrees of freedom

gave good but conservative results and were easy to compute.

The robust properties of the MCD estimator led us to think that it could be

used in clustering data that had signi�cant contamination. Since the F with the

simulated degrees of freedom was diÆcult to compute, our results were based on

F with theoretical degrees of freedom and �2
p
cuto� values. The MCD distances

provided good tools for clustering. Also, the F cuto� value did an excellent job of
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correctly identifying good data in both the clean and contaminated data sets. The

type II error of this method was minimal. The only disadvantage was that it was

dependent on a robust initial estimate, which was provide by the programs due to

Reiners and Woodru� (2000).

Since the robust MCD estimator worked so well, we repeated our analyses using

a di�erent robust estimator, the translated biweight S-estimator. The distances

with S-estimate metrics also have an asymptotic �2
p
distribution, and the �2

p
cuto�

values appear to work much better in the small sample simulations than they did

in the MCD small sample simulations. The draw back to the S-estimation is that

the type II error is somewhat large in small samples.

Some future projects have been discussed. Di�erent robust estimators can be

analyzed. Also, since the MCD is highly robust, we would like to improve the F

cuto� to be more accurate in small samples. We have thought that in small samples

the degrees of freedom associated with the F distribution might be more heavily

dependent on the sample size or the dimension. If we can �nd this relationship or

a model for this relationship, a more accurate formula for the degrees of freedom

would give better cuto� values for identifying outliers.

It would also be worth investigating the relationship between the initial es-

timates and the �nal clustering and outlier detection. Also, a very interesting

project would be to �nd some goodness-of-�t statistic that would help decide the

correct number of clusters for a particular data set.
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Chapter 6

Results of Simulations
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6.1. MCD { 5% Cuto� (1 Cluster)

Percentiles from Chi-Square(p) cuto� values

n

50 100 500 1000

p 5 19.77 13.50 7.12 6.07

10 29.93 21.74 8.54 6.79

20 26.75 32.54 12.25 8.46

Percentiles from Asymptotic cuto� values

n

50 100 500 1000

p 5 0.14 1.41 4.45 4.76

10 0.06 0.82 4.21 4.71

20 0.01 0.36 3.61 4.43

Percentiles from Monte Carlo cuto� values

n

50 100 500 1000

p 5 3.33 3.83 4.91 4.92

10 1.89 3.20 4.83 4.94

20 1.82 2.59 4.46 4.83

Table 1. Each entry represents the percent of simulated data that was above

a speci�c 5% cuto� value. (Ideally, an entry in a cell would be 5.) The cuto�

values were determined by dimension, size, and method of analysis. We can see

that the Chi-Square cuto�s consistently reject too many points as outlying. The

asymptotic method is quite conservative, but it appears to become quite accurate

as n increases. The simulation method is very good for medium to large samples,

and it has the best performance of the three for small samples. The analysis was

done using the MCD estimates on one cluster of data.
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6.2. MCD { 1% Cuto� (1 Cluster)

Percentiles from Chi-Square(p) cuto� values

n

50 100 500 1000

p 5 10.21 5.46 1.83 1.44

10 20.97 10.33 2.38 1.64

20 23.63 24.77 3.95 2.26

Percentiles from Asymptotic cuto� values

n

50 100 500 1000

p 5 0 0.10 0.79 0.93

10 0 0.06 0.77 0.91

20 0 0.03 0.60 0.84

Percentiles from Monte Carlo cuto� values

n

50 100 500 1000

p 5 0.45 0.65 0.95 0.99

10 0.26 0.5 0.96 0.98

20 0.35 0.42 0.83 0.96

Table 2. Each entry represents the percent of simulated data that was above

a speci�c 1% cuto� value. (Ideally, an entry in a cell would be 1.) The cuto�

values were determined by dimension, size, and method of analysis. Again, we

see the same results, the Chi-Square cuto�s consistently reject too many points as

outlying. The asymptotic method is quite conservative, but it appears to become

quite accurate as n increases. The simulation method is very good for medium to

large samples, and it has the best performance of the three for small samples. The

analysis was done using the MCD estimates on one cluster of data.
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6.3. MCD { 0.1% Cuto� (1 Cluster)

Percentiles from Chi-Square(p) cuto� values

n

50 100 500 1000

p 5 4.48 1.69 0.29 0.19

10 12.10 3.86 0.41 0.22

20 19.82 15.17 0.78 0.35

Percentiles from Asymptotic cuto� values

n

50 100 500 1000

p 5 0 0 0.06 0.08

10 0 0 0.07 0.09

20 0 0 0.05 0.08

Percentiles from Monte Carlo cuto� values

n

50 100 500 1000

p 5 0.02 0.04 0.09 0.10

10 0.02 0.03 0.10 0.10

20 0.01 0.04 0.08 0.10

Table 3. Each entry represents the percent of simulated data that was above

a speci�c 0.1% cuto� value. (Ideally, an entry in a cell would be 0.1.) The cuto�

values were determined by dimension, size, and method of analysis. Again, we

see the same results, the Chi-Square cuto�s consistently reject too many points as

outlying. The asymptotic method is quite conservative, but it appears to become

quite accurate as n increases. The simulation method is very good for medium to

large samples, and it has the best performance of the three for small samples. The

analysis was done using the MCD estimates on one cluster of data.
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6.4. MCD { Clean Data (2 & 3 Clusters)

2 Clusters 3 Clusters

Bal. Unbal. Bal. Unbal.

5% F 5% F

4 3.91 4.02 4 3.86 4.06

P 7 4.44 4.44 P 7 4.37 4.27

10 4.32 4.33 10 4.29 4.31

5% Chisq 5% Chisq

4 38.11 37.99 4 37.83 38.01

P 7 34.72 34.74 P 7 34.75 34.71

10 34.74 34.23 10 34.52 34.71

1% F 1% F

4 0.63 0.67 4 0.64 0.70

P 7 0.81 0.83 P 7 0.82 0.75

10 0.80 0.82 10 0.81 0.77

1% Chisq 1% Chisq

4 21.66 21.96 4 21.57 21.73

P 7 17.94 17.98 P 7 17.88 17.76

10 17.59 17.16 10 17.30 17.43

0.1% F 0.1% F

4 0.04 0.03 4 0.04 0.04

P 7 0.07 0.06 P 7 0.08 0.06

10 0.07 0.09 10 0.07 0.07

0.1% Chisq 0.1% Chisq

4 9.82 9.87 4 9.73 9.85

P 7 6.88 6.97 P 7 6.79 6.67

10 6.40 6.32 10 6.31 6.40

Table 4. Each entry represents the percent of simulated data that was misclas-

si�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports for data that come from two populations and the second column reports

for data that come from three populations. Balanced refers to data that consist of

equal sized clusters; unbalanced refers to data that consist of unequal sized clus-

ters. These data were generated as clusters of multivariate normal data with no

contamination. The analysis was done using the MCD estimates.
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6.5. MCD { Cluster Outliers (2 Clusters)

Type I Error Type II Error

Bal. Unbal. Bal. Unbal.

5% F 5% F

4 2.87 2.91 4 0.00 0.00

P 7 3.36 3.71 P 7 0.00 0.00

10 3.31 3.61 10 0.00 0.00

5 4 33.40 34.70 4 0.00 0.00

P 7 30.75 32.34 P 7 0.00 0.00

10 30.42 32.01 10 0.00 0.00

1% F 1% F

4 0.42 0.42 4 0.17 0.00

P 7 0.57 0.61 P 7 0.00 0.00

10 0.53 0.62 10 0.00 0.00

1% Chisq 1% Chisq

4 18.03 18.73 4 0.00 0.00

P 7 15.02 16.01 P 7 0.00 0.00

10 14.39 15.49 10 0.00 0.00

0.1% F 0.1% F

4 0.02 0.03 4 2.29 0.66

P 7 0.04 0.06 P 7 0.06 0.00

10 0.04 0.05 10 0.00 0.00

0.1% Chisq 0.1% Chisq

4 7.38 7.84 4 0.00 0.00

P 7 5.25 5.84 P 7 0.00 0.00

10 4.80 5.42 10 0.00 0.00

Table 5. Each entry represents the percent of simulated data that was misclas-

si�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports the type I error for the procedure, and the second column of tables reports

the type II error. Balanced refers to data that consist of equal sized clusters; un-

balanced refers to data that consist of unequal sized clusters. These data were

generated as clusters of multivariate normal data with a cluster of contamination

of size 20% of the smallest clean cluster. The analysis was done using the MCD

estimates on two clusters of contaminated data.



87

6.6. MCD { Radial Outliers (2 Clusters)

Type I Error Type II Error

Bal. Unbal. Bal. Unbal.

5% F 5% F

4 2.93 3.39 4 0.67 0.88

P 7 3.26 3.68 P 7 0.01 0.02

10 3.20 3.61 10 0.00 0.00

5% Chisq 5% Chisq

4 33.72 35.00 4 0.07 0.08

P 7 30.75 32.26 P 7 0.00 0.00

10 30.34 31.83 10 0.00 0.00

1% F 1% F

4 0.37 0.51 4 1.73 2.50

P 7 0.47 0.63 P 7 0.06 0.05

10 0.48 0.61 10 0.00 0.02

1% Chisq 1% Chisq

4 18.02 19.20 4 0.12 0.23

P 7 14.72 15.85 P 7 0.00 0.00

10 14.31 15.32 10 0.00 0.00

0.1% F 0.1% F

4 0.01 0.03 4 11.68 13.71

P 7 0.04 0.05 P 7 0.76 1.73

10 0.03 0.04 10 0.09 0.61

0.1% Chisq 0.1% Chisq

4 7.49 8.33 4 0.40 0.61

P 7 5.02 5.61 P 7 0.00 0.02

10 4.67 5.28 10 0.00 0.00

Table 6. Each entry represents the percent of simulated data that was misclas-

si�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports the type I error for the procedure, and the second column of tables reports

the type II error. Balanced refers to data that consist of equal sized clusters; un-

balanced refers to data that consist of unequal sized clusters. These data were

generated as clusters of multivariate normal data with radial outliers of size 20%

of the smallest clean cluster. The analysis was done using the MCD estimates on

two clusters of contaminated data.
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6.7. MCD { Di�use Outliers (2 Clusters)

Type I Error Type II Error

Bal. Unbal. Bal. Unbal.

5% F 5% F

4 2.86 3.18 4 0.00 0.00

P 7 3.18 3.78 P 7 0.00 0.00

10 3.20 3.58 10 0.00 0.00

5% Chisq 5% Chisq

4 33.26 34.90 4 0.00 0.00

P 7 30.36 32.49 P 7 0.00 0.00

10 30.27 31.56 10 0.00 0.00

1% F 1% F

4 0.37 0.46 4 0.32 0.66

P 7 0.51 0.67 P 7 0.00 0.02

10 0.49 0.61 10 0.00 0.00

1% Chisq 1% Chisq

4 17.59 18.93 4 0.00 0.00

P 7 14.53 16.16 P 7 0.00 0.00

10 14.20 15.47 10 0.00 0.00

0.1% F 0.1% F

4 0.02 0.03 4 17.98 12.80

P 7 0.04 0.05 P 7 0.63 1.16

10 0.04 0.05 10 0.11 0.32

0.1% Chisq 0.1% Chisq

4 7.27 8.23 4 0.00 0.00

P 7 4.97 5.91 P 7 0.00 0.00

10 4.63 5.29 10 0.00 0.00

Table 7. Each entry represents the percent of simulated data that was misclas-

si�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports the type I error for the procedure, and the second column of tables reports

the type II error. Balanced refers to data that consist of equal sized clusters; un-

balanced refers to data that consist of unequal sized clusters. These data were

generated as clusters of multivariate normal data with di�use outliers of size 20%

of the smallest clean cluster. The analysis was done using the MCD estimates on

two clusters of contaminated data.
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6.8. S-estimation { Clean Data (1 Cluster { Pointwise)

n

50 100 500 1000

5% F { simulated 4 4.59 4.47 4.89 4.93

P 7 3.04 4.18 4.66 4.83

10 0.21 1.34 4.12 4.52

5% F { theoretical 4 4.99 4.52 4.88 4.94

P 7 0.79 2.67 4.13 4.54

10 0.21 1.34 4.11 4.53

5% Chisq 4 7.42 6.11 5.26 5.12

P 7 3.26 5.62 5.25 5.13

10 2.71 3.87 4.84 4.94

1% F { simulated 4 1.08 0.96 1.00 0.99

P 7 0.97 1.15 1.03 1.00

10 0.21 1.02 1.04 1.01

1% F { theoretical 4 1.32 0.98 1.00 1.00

P 7 0.04 0.34 0.83 0.90

10 0.21 1.00 1.04 1.01

1% Chisq 4 3.42 1.90 1.15 1.07

P 7 3.04 2.82 1.28 1.12

10 0.21 1.34 1.37 1.18

0.1% F { simulated 4 0.10 0.10 0.10 0.10

P 7 0.09 0.14 0.10 0.10

10 0.10 0.13 0.10 0.10

0.1% F { theoretical 4 0.14 0.11 0.09 0.10

P 7 0.00 0.02 0.07 0.08

10 0.13 0.13 0.10 0.10

0.1% Chisq 4 0.95 0.29 0.12 0.11

P 7 1.35 0.58 0.14 0.12

10 0.21 0.72 0.17 0.13

Table 8. Each entry represents the percent of simulated data that was above

a cuto� value of a particular distribution at a speci�ed signi�cance level. The

three distributional methods give similar results. The analysis was done using the

S-estimates on one cluster of data.
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6.9. S-estimation { Clean Data (1 Cluster { Datasetwise)

n

50 100 500 1000

5% F { simulated 4 4.50 4.50 5.10 5.20

P 7 4.30 6.10 4.70 4.90

10 5.20 5.50 6.30 5.60

5% F { theoretical 4 6.50 4.60 5.00 5.30

P 7 0.00 0.10 2.70 4.00

10 6.30 5.40 6.30 5.60

5% Chisq 4 34.90 15.80 7.00 6.30

P 7 48.90 30.30 7.50 7.10

10 9.60 35.50 10.50 8.80

1% F { simulated 4 1.00 0.80 1.10 1.00

P 7 1.00 1.20 0.90 1.10

10 1.10 1.50 1.10 1.40

1% F { theoretical 4 1.40 1.00 1.10 1.00

P 7 0.00 0.00 0.20 1.00

10 1.50 1.40 1.10 1.50

1% Chisq 4 17.90 5.80 1.90 1.60

P 7 24.50 13.40 2.20 1.50

10 9.60 15.50 2.70 2.00

0.1% F { simulated 4 0.30 0.00 0.00 0.00

P 7 0.10 0.10 0.10 0.10

10 0.20 0.20 0.20 0.30

0.1% F { theoretical 4 0.50 0.00 0.00 0.00

P 7 0.00 0.00 0.00 0.10

10 0.20 0.20 0.20 0.30

0.1% Chisq 4 4.80 1.10 0.10 0.20

P 7 8.90 3.00 0.10 0.20

10 9.60 4.10 0.30 0.30

Table 9. Each entry represents the percent of data sets that had a point above a

cuto� value of a particular distribution at a speci�ed datasetwise signi�cance level.

As with the MCD simulations, the �2
p
cuto� appears to be too liberal, the F with

asymptotic degrees of freedom is a bit too conservative, and the F with theoretical

degrees of freedom is accurate. The analysis was done using S-estimates on one

cluster of data.
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6.10. S-Estimates { Cluster Outliers (1 cluster)

Type I Error Type II Error

n n

50 100 500 1000 50 100 500 1000

5% F { simulated 4 0.98 1.10 1.22 1.26 0.04 0.01 0.00 0.00

P 7 0.41 0.79 1.08 1.10 0.01 0.00 0.00 0.00

10 0.00 0.12 0.73 0.88 0.00 0.00 0.00 0.00

5% F { asymptotic 4 1.05 1.11 1.23 1.26 0.04 0.01 0.00 0.00

P 7 0.10 0.41 0.90 1.01 0.21 0.01 0.00 0.00

10 0.00 0.12 0.73 0.88 0.00 0.00 0.00 0.00

5% Chisq 4 1.92 1.68 1.36 1.33 0.00 0.00 0.00 0.00

P 7 0.41 1.19 1.26 1.20 0.00 0.00 0.00 0.00

10 0.07 0.39 0.92 0.99 0.00 0.00 0.00 0.00

1% F { simulated 4 0.11 0.12 0.14 0.14 0.55 0.16 0.05 0.05

P 7 0.12 0.11 0.14 0.13 0.15 0.04 0.00 0.00

10 0.00 0.10 0.11 0.12 0.05 0.00 0.00 0.00

1% F { asymptotic 4 0.13 0.12 0.14 0.14 0.44 0.15 0.05 0.05

P 7 0.01 0.02 0.11 0.11 5.00 0.12 0.00 0.00

10 0.00 0.11 0.11 0.12 0.04 0.00 0.00 0.00

1% Chisq 4 0.62 0.30 0.17 0.15 0.10 0.07 0.05 0.05

P 7 0.41 0.44 0.19 0.15 0.01 0.01 0.00 0.00

10 0.00 0.12 0.16 0.14 0.00 0.00 0.00 0.00

.1% F { simulated 4 0.01 0.00 0.01 0.00 7.56 2.10 0.69 0.60

P 7 0.02 0.01 0.01 0.00 2.64 0.42 0.05 0.03

10 0.00 0.00 0.00 0.01 1.04 0.08 0.00 0.00

.1% F { asymptotic 4 0.02 0.00 0.01 0.00 6.43 2.03 0.69 0.60

P 7 0.00 0.00 0.00 0.00 44.29 2.38 0.07 0.04

10 0.00 0.00 0.00 0.01 0.94 0.08 0.00 0.00

.1% Chisq 4 0.08 0.03 0.01 0.01 0.70 0.70 0.54 0.52

P 7 0.17 0.04 0.01 0.01 0.10 0.06 0.03 0.03

10 0.00 0.06 0.01 0.01 0.01 0.00 0.00 0.00

Table 10. Each entry represents the percent of simulated data that was mis-

classi�ed according to some speci�ed cuto� and percentage. The �rst column of

tables reports the type I error, the second reports the type II error. The data were

contaminated with a cluster of outliers which were 20% of the sample size. The

analysis was done using S-estimates on one cluster of data.
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6.11. S-Estimates { Radial Outliers (1 cluster)

Type I Error Type II Error

n n

50 100 500 1000 50 100 500 1000

5% F { simulated 4 1.07 1.09 1.22 1.24 0.13 0.00 0.00 0.00

P 7 0.44 0.78 1.06 1.14 0.05 0.00 0.00 0.00

10 0.00 0.14 0.75 0.87 0.13 0.00 0.00 0.00

5% F { asymptotic 4 1.13 1.10 1.22 1.24 0.10 0.00 0.00 0.00

P 7 0.08 0.40 0.89 1.05 5.98 0.02 0.00 0.00

10 0.00 0.14 0.75 0.87 0.12 0.00 0.00 0.00

5% Chisq 4 2.06 1.67 1.36 1.31 0.00 0.00 0.00 0.00

P 7 0.45 1.20 1.24 1.24 0.04 0.00 0.00 0.00

10 0.08 0.39 0.94 0.98 0.03 0.00 0.00 0.00

1% F { simulated 4 0.12 0.13 0.14 0.14 7.39 0.96 0.00 0.00

P 7 0.11 0.12 0.14 0.14 4.57 0.36 0.00 0.00

10 0.00 0.11 0.12 0.11 3.92 0.17 0.00 0.00

1% F { asymptotic 4 0.13 0.13 0.14 0.14 6.38 0.92 0.00 0.00

P 7 0.00 0.03 0.10 0.12 45.23 3.60 0.00 0.00

10 0.00 0.11 0.12 0.11 3.58 0.17 0.00 0.00

1% Chisq 4 0.68 0.32 0.17 0.15 0.49 0.12 0.00 0.00

P 7 0.44 0.43 0.18 0.16 0.05 0.02 0.00 0.00

10 0.00 0.14 0.17 0.14 0.03 0.00 0.00 0.00

.1% F { simulated 4 0.01 0.00 0.01 0.01 43.38 24.31 8.17 5.92

P 7 0.00 0.01 0.00 0.01 32.63 13.35 0.55 0.05

10 0.00 0.01 0.01 0.01 26.19 9.25 0.05 0.00

.1% F { asymptotic 4 0.01 0.00 0.01 0.01 40.03 23.84 8.14 5.88

P 7 0.00 0.00 0.00 0.01 87.86 40.33 1.69 0.17

10 0.00 0.01 0.01 0.01 25.08 9.02 0.05 0.00

.1% Chisq 4 0.08 0.03 0.01 0.01 10.01 8.32 4.88 4.15

P 7 0.18 0.05 0.01 0.01 2.79 1.51 0.14 0.01

10 0.00 0.07 0.01 0.01 0.98 0.45 0.01 0.00

Table 11. Each entry represents the percent of simulated data that was mis-

classi�ed according to some speci�ed cuto� and percentage. The �rst column of

tables reports the type I error, the second reports the type II error. The data were

contaminated with radial outliers which were 20% of the sample size. The analysis

was done using S-estimates on one cluster of data.
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6.12. S-estimation { Clean Data (2 & 3 Clusters)

2 Clusters 3 Clusters

Small Bal. Unbal. Small Bal. Unbal.

5% F

4 5.16 4.93 4.85 4.71 4.82 4.77

P 7 4.15 4.65 4.78 4.36 4.67 4.76

10 3.21 4.11 4.23 3.32 4.03 4.08

5% Chisq

4 7.38 5.50 5.47 7.13 5.45 5.34

P 7 5.14 5.17 5.32 5.34 5.22 5.31

10 3.90 4.84 4.94 4.38 4.78 4.83

1% F

4 1.26 0.98 1.11 0.97 1.04 0.96

P 7 1.22 1.00 1.08 1.12 0.99 0.98

10 1.19 1.03 1.02 1.55 1.00 0.98

1% Chisq

4 3.61 1.22 1.34 3.07 1.30 1.19

P 7 3.19 1.21 1.30 3.30 1.21 1.21

10 3.18 1.37 1.39 3.25 1.32 1.33

0.1% F

4 0.23 0.11 0.10 0.07 0.10 0.09

P 7 0.18 0.11 0.11 0.12 0.11 0.10

10 0.21 0.11 0.09 0.29 0.10 0.11

0.1% Chisq

4 0.91 0.16 0.17 0.66 0.16 0.14

P 7 0.70 0.15 0.16 0.68 0.15 0.16

10 0.80 0.16 0.16 1.02 0.15 0.16

Table 12. Each entry represents the percent of simulated data that was mis-

classi�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports for data that come from two populations and the second column reports

for data that come from three populations. Small refers to the smallest combina-

tion of cluster sizes; balanced refers to data that consist of equal sized clusters;

unbalanced refers to data that consist of unequal sized clusters. These data were

generated as clusters of multivariate normal data with no contamination. The

analysis was done using the S-estimates.



94

6.13. S-estimation { Cluster Outliers (2 Clusters)

Type I Error Type II Error

Small Bal. Unbal. Small Bal. Unbal.

5% F

4 3.08 3.03 3.17 0.00 0.02 0.00

P 7 2.64 3.27 3.27 0.00 0.00 0.00

10 1.87 2.46 2.81 45.89 0.00 0.00

5% Chisq

4 4.59 3.40 3.63 0.00 0.02 0.00

P 7 3.15 3.70 3.707 0.00 0.00 0.00

10 2.99 2.92 3.37 44.46 0.00 0.00

1% F

4 0.70 0.57 0.55 0.30 0.12 0.00

P 7 0.72 0.65 0.65 0.06 0.00 0.00

10 0.99 0.57 0.61 47.86 0.00 0.00

1% Chisq

4 2.03 0.71 0.72 0.10 0.08 0.00

P 7 2.10 0.83 0.83 0.00 0.00 0.00

10 1.74 0.76 0.86 46.49 0.00 0.00

0.1% F

4 0.10 0.04 0.06 3.80 0.70 0.25

P 7 0.11 0.05 0.05 0.12 0.02 0.02

10 0.12 0.05 0.06 49.64 0.00 0.00

0.1% Chisq

4 0.57 0.07 0.09 0.50 0.53 0.20

P 7 0.47 0.07 0.07 0.06 0.02 0.02

10 0.54 0.08 0.11 48.93 0.00 0.00

Table 13. Each entry represents the percent of simulated data that was mis-

classi�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports the type I error for the procedure, and the second column of tables re-

ports the type II error. Small refers to the smallest combination of cluster sizes;

balanced refers to data that consist of equal sized clusters; unbalanced refers to

data that consist of unequal sized clusters. These data were generated as clusters

of multivariate normal data with a cluster of outliers of size 20% of the small-

est clean cluster. The analysis was done using the S-estimates on two clusters of

contaminated data.
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6.14. S-estimation { Radial Outliers (2 Clusters)

Type I Error Type II Error

Small Bal. Unbal. Small Bal. Unbal.

5% F

4 2.59 2.56 3.19 0.90 0.48 0.62

P 7 2.21 2.47 3.28 0.06 0.02 0.02

10 0.97 1.94 2.71 0.00 0.00 0.00

5% Chisq

4 3.96 2.94 3.60 0.80 0.45 0.60

P 7 2.58 2.78 3.66 0.06 0.02 0.02

10 1.93 2.31 3.20 0.00 0.00 0.00

1% F

4 0.56 0.39 0.54 2.30 1.25 1.65

P 7 0.50 0.41 0.62 0.12 0.06 0.08

10 0.46 0.38 0.59 0.00 0.01 0.00

1% Chisq

4 1.64 0.51 0.70 1.20 1.20 1.53

P 7 1.57 0.51 0.76 0.12 0.06 0.08

10 0.97 0.51 0.78 0.00 0.01 0.00

0.1% F

4 0.07 0.03 0.03 15.30 3.03 3.57

P 7 0.04 0.02 0.06 2.50 0.31 0.27

10 0.04 0.03 0.05 1.31 0.05 0.03

0.1% Chisq

4 0.34 0.05 0.06 3.60 2.50 3.13

P 7 0.24 0.04 0.08 0.38 0.26 0.27

10 0.30 0.05 0.09 0.00 0.02 0.00

Table 14. Each entry represents the percent of simulated data that was mis-

classi�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports the type I error for the procedure, and the second column of tables reports

the type II error. Small refers to the smallest combination of cluster sizes; balanced

refers to data that consist of equal sized clusters; unbalanced refers to data that

consist of unequal sized clusters. These data were generated as clusters of multi-

variate normal data with radial outliers of size 20% of the smallest clean cluster.

The analysis was done using the S-estimates on two clusters of contaminated data.
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6.15. S-estimation { Di�use Outliers (2 Clusters)

Type I Error Type II Error

Small Bal. Unbal. Small Bal. Unbal.

5% F

4 2.43 2.58 3.35 0.00 0.00 0.00

P 7 2.11 2.47 3.29 0.94 0.00 0.00

10 1.49 1.95 2.75 21.74 0.00 0.00

5% Chisq

4 3.87 2.95 3.84 0.00 0.00 0.00

P 7 2.67 2.77 3.70 0.94 0.00 0.00

10 2.43 2.34 3.27 21.11 0.00 0.00

1% F

4 0.61 0.41 0.59 2.00 0.00 0.00

P 7 0.47 0.43 0.64 1.06 0.00 0.00

10 0.77 0.39 0.59 22.58 0.00 0.00

1% Chisq

4 1.47 0.53 0.77 0.40 0.00 0.00

P 7 1.53 0.52 0.78 0.94 0.00 0.00

10 1.36 0.52 0.82 21.84 0.00 0.00

0.1% F

4 0.04 0.04 0.04 22.70 2.43 0.33

P 7 0.01 0.03 0.06 8.69 0.01 0.00

10 0.13 0.02 0.06 26.37 0.00 0.00

0.1% Chisq

4 0.37 0.06 0.08 4.70 1.02 0.00

P 7 0.24 0.04 0.08 1.81 0.00 0.00

10 0.48 0.04 0.10 23.47 0.00 0.00

Table 15. Each entry represents the percent of simulated data that was mis-

classi�ed according to a speci�ed cuto� and percentage. The �rst column of tables

reports the type I error for the procedure, and the second column of tables reports

the type II error. Small refers to the smallest combination of cluster sizes; balanced

refers to data that consist of equal sized clusters; unbalanced refers to data that

consist of unequal sized clusters. These data were generated as clusters of multi-

variate normal data with di�use outliers of size 20% of the smallest clean cluster.

The analysis was done using the S-estimates on two clusters of contaminated data.
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Chapter 7

Appendix: Theoretical Formulas

for Wishart Degrees of Freedom
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A. MCD Formula

The parameterm, the degrees of freedom for the estimated Wishart distribution, is

calculated using a series of steps. This estimation is due to Croux and Haesbroeck

(1999).

� =
n� h

n
(A.1)

where n is the sample size and h =

$
(n+ p+ 1)

2

%
:

q� is such that: 1� � = P (�2
p
� q�) (A.2)

c� =
1� �

P (�2p+2 � q�)
(A.3)

c2 =
�P (�2

p+2 � q�)

2
(A.4)

c3 =
�P (�2

p+4 � q�)

2
(A.5)

c4 = 3 � c3 (A.6)

b1 =
c�(c3 � c4)

1� �
(A.7)

b2 = 0:5 +
c�

(1� �)

 
c3 �

q�

p

 
c2 +

(1� �)

2

!!
(A.8)

v1 = (1� �)b21(�(
c�q�

p
� 1)2 � 1)� 2c3c

2
�
(3(b1 � pb2)

2 (A.9)

+ (p+ 2)b2(2b1 � pb2))

v2 = n(b1(b1 � pb2)(1� �))2c2
�

(A.10)

v =
v1

v2
(A.11)

m̂ =
2

c2
�
v

(A.12)



99

B. S-Estimate Formula

In this appendix we provide for completeness the useable forms of the formulas

due to Lopua�a (1989) needed to estimate the degrees of freedom parameter m of

the Wishart approximation.
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