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1 Motivation
Microarrays are currently used to collect genetic data, but, due to the large number
of genes examined at once (often in the thousands) and the noisiness of the data,
they are difficult to analyze. One very effective way to look for co-regulation is
to apply clustering, which sorts related genes into groups. The massive amount of
data generated by the microarray is then turned into smaller groups of genes that
biologists can focus on. Clustering requires a good algorithm for partitioning the
data, as the groups of genes are only as reliable as the algorithm used to generate
the groups. Because no one wants to waste time and money examining a group
of genes that doesn’t really belong together, developing new clustering algorithms
and refining current algorithms are important topics of statistical research. Un-
fortunately, it is difficult to test new clustering algorithms on real data, as the true
relationship between genes is generally unknown and thus the efficacy of the algo-
rithm cannot be determined. Instead, we simulate data whose structure resembles
that of real data, thereby creating datasets where we actually know the underlying
groups. Simulated datasets can then be used to examine new clustering algorithms
that, if they work well, can be used to analyze real microarray data in the future.
Thus, our project focuses on the creation of simulated data. While the motivation
is genetic data, these techniques could be applied equally well to other large data
sets (e.g., economic data). Rather than the generic samples and variables, we will
refer to subjects and genes.

2 Analysis of Simulated Data - Techniques

2.1 Distance Metrics
Many clustering algorithms partition genes based on the distances between each
pair of genes. Hence, the first question when clustering data is what distance
metric will be used to assess relationships between pairs of genes. In this project,
when considering the definition of distance between genes, we are not interested
in similarities of magnitude of expression level but rather in similarities of patterns
of expression between genes. In other words, we are more interested in two genes
whose expression levels rise and fall in tandem than we are in two genes that just
so happen to be expressed at the same level. (This is true for many large data sets
– if we are, for example, tracking stocks, we also wish to know which ones rise
and fall in tandem rather than those that have similar prices.) Euclidean distance
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is therefore completely unsuitable, as it measures magnitude rather than behavior.
Correlation, on the other hand, measures linear relationships – similarity of

behavior – which makes it a good candidate for our distance metric. (Unfortu-
nately, there is no metric that can measure all types of relationships.) Correlation
is defined as

cor(x, y) =
Σ(xi − x̄)(yi − ȳ)

(n− 1)sxsy

Note that correlation is symmetric (i.e., cor(x, y) = cor(y, x)). However,
correlation is not a true distance metric. Distance metrics must meet the following
criteria for all x, y, z in the metric space (in this case, Rn):

• d(x, y) ≥ 0

• d(x, y) = d(y, x)

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) ≤ d(x, z) + d(y, z)

Correlation itself, while it measures what we want, is a similarity instead of a
distance measure. As the linear relationship between genes becomes stronger, the
correlation between them increases; additionally, correlation itself clearly violates
the first criterion. We would prefer the distance to decrease as the strength of the
relationship increases, as this creates a more intuitive and reasonable system. We
will thus define our distance to be d(x, y) = 1−cor(x, y), though 1−|cor(x, y)| =
d(x, y) or 1 − cor(x, y)2 = d(x, y) could also be used with little change in the
theory. The choice simply depends on whether one is interested only in genes that
are positively correlated or in genes that are positively and negatively correlated.

Consider two pairs of genes: genes a and b, with correlation ρ, and genes c and
d, with correlation−ρ. We can then calculate the distances between these pairs of
genes using each potential distance metric as follows:

d(a, b) = 1− ρ 6= 1− (−ρ) = d(c, d)

d(a, b) = 1− |ρ| = 1− | − ρ| = d(c, d)

d(a, b) = 1− ρ2 = 1− (−ρ)2 = d(c, d)

Observe that using d(x, y) = 1− cor(x, y) we do not obtain d(a, b) = d(c, d),
whereas using the other distances we do. Also observe that 1−cor(x, y) = d(x, y)
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runs from 0 to 2 (the other two potential distances run from 0 to 1), thereby clearly
obeying the positivity requirement for distance metrics.

Because correlation is symmetric, we have that 1− cor(x, y) = 1− cor(y, x),
and therefore that d(x, y) = d(y, x). In other words, our distance is also sym-
metric, meaning that it obeys the second criterion for distance metrics. However,
our distance metric fails to meet the other two requirements for distance metrics.
While there are restrictions on the possible sets of correlations between three vec-
tors, they are not quite as stringent as the triangle inequality. Fortunately, the
triangle inequality is not often violated in practice and does not prevent us from
using correlation as our distance metric.

Finally, two vectors can have a distance of zero (equivalent to a correlation
of one) even if they are not identical. If one vector is simply a scaled or shifted
version of the other (i.e., x and ax + b where b = β ∗ (1 . . . 1) are our vectors),
then the distance between them is zero, which is, in fact, precisely why we chose
to use correlation – we want identically behaving genes to have a distance of zero,
regardless of their actual expression levels. To see this, we can first consider x
and ax such that E(x) = E(ax) = 0, which allows us to obtain

cor(x, ax) =
〈x, ax〉
||x||||ax||

=
〈x, x〉
||x||||x||

= 1

We can then consider cor(x, ax + b) and see that, when cov(x, ax + b) is the
covariance of x and ax+ b and var(x) is the variance of x,

cor(x, ax+b) =
cov(x, ax+ b)√
var(x)var(ax+ b)

=
cov(x, ax+ b)√
var(x)var(ax)

=
cov(x, ax) + cov(x, b)√

var(x)var(ax)

=
cov(x, ax)√
var(x)var(ax)

+
cov(x, b)√

var(x)var(ax)
=

cov(x, ax)√
var(x)var(ax)

= cor(x, ax)

We have already shown that cor(x, ax) = 1, so this implies that cor(x, ax +
b) = 1. Clearly one could re-center x as well with the same outcome. Correlation
also suffers from other limitations. First and foremost, it is only a measure of lin-
ear relationships. Non-linear relationships can and will be overlooked. Addition-
ally, correlation is not a robust measure. Even one outlier can easily overshadow
a genuine linear relationship or make it appear that a strong linear relationship
exists where one does not.
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2.2 Clustering
Now that we have set our distance, we can use it to cluster data. PAM (partitioning
around medoids) is a well-known clustering algorithm. Thus, PAM will be used to
cluster the data after it is simulated. While we do not expect perfect clusters, if the
simulated data clusters terribly with PAM, there is probably something wrong with
the data, not with the algorithm. Thus, PAM is a method not only of examining
the effects of various types of simulation on clustering but also of evaluating the
data. PAM partitions the data based on a dissimilarity matrix, which simply tells
us how related each pair of objects is; the dissimilarity matrix for simulated data
was created by using the correlation distance metric described above. If we have
genes 1, . . . , p, our dissimiliarity matrix will be

0 d(g1, g2) . . . d(g1, gp)
d(g1, g2) 0 . . . d(g2, gp)

...
... . . . ...

d(g1, gp) d(g2, gp) . . . 0


which in this case is

0 1− cor(g1, g2) . . . 1− cor(g1, gp)
1− cor(g1, g2) 0 . . . 1− cor(g2, gp)

...
... . . . ...

1− cor(g1, gp) 1− cor(g2, gp) . . . 0


PAM can search for the optimal number of clusters but, for this project, the

number was simply set to k, the actual number of clusters created in the simu-
lated data. PAM selects k representative genes, called medoids (hence the name,
partitioning around medoids), and every other gene in the data set is assigned to
a group containing the closest medoid, based on the dissimiliarity matrix. The
overall goal of the algorithm is to minimize the sum of dissimilarities between
genes and the medoids to which they are assigned. The first medoid is selected
by choosing the gene for which the sum of dissimilarities between it and all other
genes (i.e., the sum of the distances between each gene and the proposed medoid)
is minimized.

The second medoid is selected in much the same manner. We consider an un-
selected gene as the proposed medoid and calculate a difference score that mea-
sures its representative ability. This difference score is calculated by taking into
account the distance between all unselected genes and the proposed medoid. If
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an unselected gene is closer to its current medoid than to the proposed medoid,
it adds nothing (zero) to the difference score because it would not move if the
proposed medoid were selected. If an unselected gene is closer to the proposed
medoid than to its current medoid, then the difference in the distance between the
gene and the proposed medoid and the distance between the gene and the current
medoid is added to the difference score (for example, if an unselected gene is a
distance of .3 from its current medoid and .1 from the proposed medoid, we add
.2 to the difference score of the proposed medoid). We sum up the contributions
of each unselected gene to obtain the overall difference score for the proposed
medoid. The proposed medoid that has the largest difference score out of all uns-
elected genes is then chosen to be the new medoid. This process is repeated until
k medoids have been selected.

PAM then begins the swap stage. PAM examines the sum of dissimiliarities
when a representative gene (medoid) is swapped with an unselected gene. If there
exists a pair such that swapping them decreases the sum of dissimiliarities, the
swap is made. If there exists more than one such pair of genes, the swap that
decreases the sum of dissimilarities the most is selected. This swapping continues
until the sum of dissimilarities cannot be further minimized [2]. PAM has then
clustered the data as well as it is able. However, we wish to know the degree of
accuracy from the PAM clustering output. Thus, we look at measures of clustering
efficacy.

2.3 Measures of Clustering Efficacy
When clustering data, we would like genes that belong together to be placed in
the same cluster and genes that do not belong together to be placed in different
clusters. Both of these are good things, but bad things can also happen: genes that
don’t belong together can wind up in the same cluster and genes that do belong
together can wind up in different clusters. One method of measuring clustering
efficacy is to count up the number of pairs of genes in each of these four possible
scenarios, Clustered Together Clustered Apart

Actually Together a b
Actually Apart c d


Note that each of these numbers represents a count of pairs, since we are

observing every gene paired with all other genes examined. For p genes, we then
have a + b + c + d =

(
p
2

)
. One method of measuring the ratio of desirable to
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undesirable pairs is the Rand index, which simply takes the number of desirable
pairs over the total number of pairs (i.e., Rand index = a+d

a+b+c+d
) [4]. The Rand

index clearly increases as the partition improves, but there is unfortunately no
expected value for the Rand index of a random partition. Thus, while we know that
a Rand index of 1 represents a perfect partition and a Rand index of 0 represents
the worst possible partition, we have no idea what a value of, for example, .3
means.

In order for our index to have a definitive expected value, we can use the hy-
pergeometric distribution to measure the sampling distribution of pairs of genes
under the hypothesis that genes are randomly allocated. The hypergeometric dis-
tribution is used because we are essentially sampling without replacement – each
and every pair of genes is either correctly placed or not. We then have the adjusted
Rand index, in which the expected value is subtracted from the numerator and the
denominator of the Rand index. If we consider two partitions of p genes, u1, ..., ui,
representing the true partition of the data, and v1, ..., vj , representing the partition
of the data created by the clustering algorithm, with nij representing the genes in
both class ui and cluster vj , then the adjusted Rand index is

Σi,j

(
nij

2

)
− [Σi

(
ni.

2

)
Σj

(
n.j

2

)
]/
(
p
2

)
1
2
[Σi

(
ni.

2

)
+ Σj

(
n.j

2

)
]− [Σi

(
ni.

2

)
Σj

(
n.j

2

)
]/
(
p
2

)
The adjusted Rand index then gives us 1 as a perfect score and additionally

has 0 as the expected adjusted Rand index of a random partition. With these as
guides, we can now interpret intermediate scores. The adjusted Rand index is also
more sensitive, as it varies over a wider range – unlike the Rand index, it is not
bounded below by zero [4].

3 Simulation of Data
The goal of our project is to simulate k clusters, each containing n samples of p
genes with correlation ρ. The simulation will be conducted using a p-dimensional
multivariate normal distribution, which has the following probability density func-
tion:

1

(2π)p/2 |Σ|1/2
e−

1
2

(x−µ)T Σ−1(x−µ)

where µ represents the p x 1 mean vector, Σ represents the p x p covariance matrix,
and x represents the p x 1 random variable. The p x 1 mean vector, µ, was set to
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the zero vector and variances were set to 1, which can be done without loss of
generality. Observe that if x is a vector, a is a scalar, and β is a scalar such that
b = β ∗ (1 . . . 1), the correlation between x and ax + b is 1. In other words,
d(x, y) = d(ax + b, y) for all vectors y, as noted previously. Thus, we may
scale and shift the vectors at any point without affecting the underlying correlation
structure of the data. The correlation structure is the subject of interest, so there is
no sense in clouding the picture by introducing shifts and scaling at this point.

Σ must be positive definite. One can observe that the probability contours of
the distribution only exist if all eigenvalues are positive; as the determinant is the
product of the eigenvalues, clearly this implies that the determinant is positive.
More rigorously, one can see that because cor(x, y) = cor(y, x), Σ is symmetric.
As a symmetric matrix, Σ can be rewritten as AAT for some matrix A. Thus,
when v is any p x 1 vector,

〈Σv, v〉 =
〈
AATv, v

〉
= 〈Av,Av〉 = ||Av||2 ≥ 0

thereby implying that |Σ| ≥ 0.

3.1 Basic Simulation
The initial simulation was performed in order to provide a general understanding
of the problem. We let all genes in a cluster be correlated at the same level, so Σa,
the p x p covariance matrix for cluster a, will be

1 ρa · · · ρa
ρa 1 · · · ρa
...

... . . . ρa
ρa ρa · · · 1


where ρa is the correlation between genes in cluster a. Because the variance of
all genes has been set to 1, this covariance matrix is equivalent to the correlation
matrix; one can observe this from the fact that correlation is defined as

ρij =
σij
σiiσjj

and we have set σii = σjj = 1. To simulate multiple clusters at once, the cor-
relation matrix for each cluster was included as a diagonal partition of a larger
covariance matrix. If we wish to simulate k clusters, labeled 1, 2, . . . , k, then the
overall correlation matrix Σ will be
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Σ1 0 0 0
0 Σ2 0 0

0 0
. . . 0

0 0 0 Σk


where 0 is not a scalar but rather a matrix of zeroes (inter-cluster correlations will
not be introduced at this point). Thus, while Σa is a correlation matrix in and of
itself, it can also be thought of as an element of a larger correlation matrix.

From there, we generate by row a matrix of data. For one cluster, we will have
the following data matrix: 

g1,1 g2,1 · · · gp,1
g1,2 g2,2 · · · gp,2

...
... . . . ...

g1,n g2,n · · · gp,n


The above matrix represents n independent subjects drawn from the p-dimensional

multivariate normal distribution and becomes an n x p matrix where each subject
forms a row and each gene forms a column. While the entries of the matrix are
generated in rows, they are analyzed in columns, as it is the correlation between
genes rather than the correlation between subjects that is of interest. Indeed, the
correlation between subjects is assumed to be zero since they are independent.
The expected value of the correlation between any two genes in cluster a is ρa,
regardless of the value of n. And the means specified in the distribution for each
dimension (gene) represent columns, so that any shift in the mean vector would
affect each element in a column equally, as we expected previously. In other
words, all elements of any given column are generated from the same univariate
normal distribution and so a non-zero mean would simply increase or decrease the
expected value of each element by the same amount.

If a larger value of n is desired, adding more samples is trivial, as any number
of 1 x p vectors can be easily generated from the distribution. Another sample
would simply cause the data matrix to become:

g1,1 g2,1 · · · gp,1
g1,2 g2,2 · · · gp,2

...
... . . . ...

g1,n g2,n · · · gp,n
g1,n+1 g2,n+1 · · · gp,n+1
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Adding another correlated gene is possible but more difficult. We must add a
value for gene (p+1) for each of the n subjects. For each of the n samples, we are
considering a (p+1)-dimensional multivariate normal distribution where the first p
elements are fixed, leaving us with one dimension (which represents gene (p+1))
unspecified. In other words, we are generating a value for the (p+ 1)th gene from
a conditional univariate normal distribution. To generate values for gene (p + 1),
we must use the conditional distribution function f(gp+1|g1, g2, . . . , gp) because
each gene is correlated with all of the other genes, so the values of the first p
genes will alter the probability function of gene (p+ 1).

Because there are n samples, we must generate n values for the (p+1)th gene.
Each of these values will be conditional on the values of the other genes from the
same subject (and only on the values of the other genes from the same subject).
In essence, we maintain both the intra-subject dependence of genes (based on the
correlations we’ve specified) and the inter-subject independence, meaning that the
conditional distributions from which we generate our (p+ 1)th gene readings are
independent.

Recall that the mean of all genes is set to zero. Then

gp+1,i|g1, g2, . . . , gp ∼ N(Σp+1,aΣ
−1
a,aXi,Σp+1,p+1 − Σp+1,aΣ

−1
a,aΣa,p+1)

where Xi = [g1,i, g2,i, . . . , gp,i]
T [1]. Also recall that each of the values of gp+1

is independent; hence, the correlation between any two subjects – and therefore
between the values of the (p + 1)th gene for each subject – is zero. Therefore,
the distribution of gp+1 is an n-dimensional multivariate normal distribution with
mean 

Σp+1,aΣ
−1
a,aX1

Σp+1,aΣ
−1
a,aX2

...
Σp+1,aΣ

−1
a,aXn


and n x n covariance matrix

Σp+1,p+1 − Σp+1,aΣ
−1
a,aΣa,p+1 · · · 0

... . . . ...
0 · · · Σp+1,p+1 − Σp+1,aΣ

−1
a,aΣa,p+1
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The new (p+ 1) x (p+ 1) covariance matrix is written as[
Σa,a Σa,p+1

Σp+1,a Σp+1,p+1

]
where Σa,a is the p x p covariance matrix for the p genes in cluster a, Σp+1,p+1 is
the 1 x 1 covariance matrix of gp+1 (i.e., [1]), Σp+1,a is the 1 x p covariance vector
between gp+1 and the other p genes (i.e., [ρa, ρa, . . . , ρa], as all genes have the
same correlation), and Σa,p+1 = (Σp+1,a)

T .
Observe that there are several parameters, ρ, k, n, and p, in the data whose

values can be adjusted. By altering these parameters, it is possible to create a
wide variety of simulated data sets in the manner described above. By examining
several values of each parameter, the effect of changing each and the interactions
between such changes can be seen. Therefore, this is the next step in order to
determine the ideal parameters for any given situation and better understand their
effects. Once the effect of these variables on the data is determined, more compli-
cated simulations can be examined.

Data were generated for several values of each parameter: ρ = .2, .5, .8; k =
2, 3, 5; n = 5, 10, 20, 50; and p = 20, 50, 100. Each box seen in Figures 1, 2, and 3
represents 1000 samples drawn from a distribution with the specified parameters.
The data matrix was generated, PAM was used to cluster the data, and the adjusted
Rand value of the resulting partition was then calculated. The adjusted rand value
of each sample is plotted. While large correlation and large sample size have
a positive effect on clustering, a large number of clusters has a negative effect.
Number of genes has little to no effect.

When correlation is large, other parameters are very nearly irrelevant; even
with small sample sizes and a large number of clusters, good partitions are ob-
tained. However, when the relationship is weak, very large sample sizes are
needed to obtain a good partition. For example, even when we have two clus-
ters, 20 genes, and 50 samples, the mean adjusted Rand index of the partition we
obtain is only .705 when correlation is .2. When dealing with real data, correlation
unfortunately is the parameter we have least control over. While we can always
take more samples or examine a different number of genes, we cannot change the
innate relationship between genes. Weaker relationships are simply more difficult
to see and it is difficult to imagine any algorithm that can overcome this fact.
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3.2 Further Simulation
In the simulations conducted in earlier sections, no problems with the correla-
tion matrices were encountered. However, the correlation matrix itself began to
cause significant problems in more complex simulations. Specifically, large cor-
relations and large dimensions cause the determinant of the correlation matrix to
go to zero, thereby compromising its invertibility and stability. Eventually, as the
dimension of the matrix goes to infinity, the determinant becomes close enough
to zero that software cannot distinguish it from zero; the determinant goes to zero
regardless of the correlation, but it occurs more quickly for larger correlations.
As the off-diagonal values begin to approach the diagonal ones, the matrix comes
dangerously close to losing its linear independence. In Figure 4, one can see that
the determinant decreases exponentially as matrix size increases. Even with rela-
tively small matrices – with no more than 100 genes – the determinants are already
incredibly small. This can be seen numerically if we consider a p x p correlation
matrix Σ such that ρij = ρ for all i, j. We can then write

Σ = (1− ρ)I + ρM

where M is a p x p matrix of ones and I is the p x p identity matrix. Because M
has rank one, p − 1 of its eigenvalues are zero; the last is p. We then know that
the eigenvalues of Σ are 1 + (p − 1)ρ and p − 1 copies of 1 − ρ. Because the
determinant is the product of the eigenvalues, |Σ| = (1 + (p − 1)ρ)(1 − ρ)p−1,
which explains the exponential decrease in determinant size as p increases and the
fact that a larger value of ρ causes this to occur more quickly.

Adding additional randomness also causes problems, as the matrix that results
from even a slight perturbation often has a negative determinant. One way around
this is to consider a sample correlation matrix as the actual correlation matrix for
our distribution. In other words, we decide where we would like our correlations
centered, create Σ, draw a sample from the distribution, and use the correlation
matrix obtained from this sample in the distribution function. Because this data
exists, it clearly will come from a correlation matrix that is positive definite. Thus,
we obtain additional randomness without the problem of negative determinants.

3.3 Conclusion
We have explored methods of analyzng and simulating correlated data, which can
be useful in a variety of situations, particularly when working with microarray
data. Using the same methodology, we can simulate a wide variety of data with
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which we can test clustering algorithms, though problems with the simulation
can arise when dealing with very large amounts of data. These problems are
interesting subjects for future study; examining additional methods of introducing
randomness into the data as well as determining more precisely the nature of the
restrictions on the correlation structure would be particularly useful.
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Figure 1: The above plots show the distribution of adjusted rand values when there
are 20 genes. The number of subjects are varied across each plot: 5, 10, 20, and
50, from left to right within a plot. Correlation is varied by column and number
of clusters by row.
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Figure 2: The above plots show the distribution of adjusted rand values when there
are 50 genes. The number of subjects are varied across each plot: 5, 10, 20, and
50, from left to right within a plot. Correlation is varied by column and number
of clusters by row.
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Figure 3: The above plots show the distribution of adjusted rand values when there
are 100 genes. The number of subjects are varied across each plot: 5, 10, 20, and
50, from left to right within a plot. Correlation is varied by column and number
of clusters by row.
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Figure 4: The above plot shows the log of the determinant plotted against matrix
size for correlations of .2 (red), .5 (green), and .8 (cyan). Matrix size ranges from
1 to 100. Note that the larger the correlation, the more quickly the determinant
goes to zero.
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