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SHRINKAGE ESTIMATORS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES

BRIAN WILLIAMSON

Abstract. As high-dimensional data becomes ubiquitous, standard estimators of the population covariance
matrix become difficult to use. Specifically, in the case where the number of samples is small (large p small
n) the sample covariance matrix is not positive definite. In this paper we explore some recent estimators
of sample covariance matrices in the large p, small n setting - namely, shrinkage estimators. Shrinkage
estimators have been shown to be positive definite and well-conditioned, two key properties to a good
estimate of the population covariance matrix. We test how well the estimators preserve the qualitites of
the population covariance matrix and how much information is retained from the sample covariace matrix.
We also perform a simulation study to measure the difference between the estimators and the population
covariance and compare the different estimators.
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1. Introduction

In many sciences - including spectroscopy, functional magnetic resonance imaging, text retrieval, and
gene arrays - high-dimensional data is becoming the norm. As more variables can be measured with the
advent of new computing techniques, it becomes difficult to estimate relationships between the p variables
using standard covariance and correlation matrices. For example, say that you are a researcher studying
the correlation between various genes in humans. You are able to measure 10,000 genes, but only have
200 participants in your study. The resulting data matrix is 200 × 10, 000. If you wish to study all
pairwise correlations, then the covariance matrix that is calculated is 10, 000×10, 000. If n < p the sample
covariance matrix will never be positive definite (in fact it will be positive semidefinite), and thus is not
necessarily a good estimate for the population covariance matrix. We need an estimate which exhibits
the same characteristics as the population covariance as well as being positive definite. The problem is
finding a reliable and accurate estimate that also performs well when the data has only a few observations
in relation to the number of parameters (n << p).

A computationally simple estimator for the population covariance Σ is the maximum likelihood estimate,
given by

(1) (SML)ij =
1

n

n∑
k=1

(xki − xi)(xkj − xj),

where xi = 1
n

∑n
k=1 xki, and xki is the kth observation of the vector Xi. Another equally simple estimator

is the unbiased sample covariance,

(2) S =
n

n− 1
SML.

However, both of these estimators exhibit problems in the n << p case where a large number of eigenvalues
become zero and the sample covariance loses its full rank. As we will show in the next section, this makes
both the maximum likelihood estimate and the unbiased sample covariance undesirable as estimates of the
population covariance in the n << p case.

Many estimators for the population covariance assume that it is sparse, or that there are many marginal
independencies in the population. While this is intuitive, the data may not behave in exactly the same
way. For instance, take the estimator where all of the off-diagonal elements are zero and the diagonals
are kept as estimates of the variance of the element, which preserves some information from the sample
covariance matrix (namely the variances) but loses all of the information on the off-diagonal. Clearly we
need an estimator which preserves more information from the sample covariance matrix but also performs
better as an estimate for the population covariance.

One way of quantifying the issue of “better” is calculating the Frobenius norm between the estimate and
a created population covariance matrix via a simulation study. The Frobenius norm measures “closeness”
to Σ, and so minimal Frobenius norm points to a “better” estimate. A researcher can thus determine
the best estimator for different combinations of p and n or for different methods of calculating pairwise
correlation (Spearman versus Pearson). These studies are particularly revealing as we enter the large p
small n case, in which finding a good estimator affects a growing number of problems.

Also consider the calculation for the mean squared error of the sample covariance,

(3) MSE(S) = Bias(S)2 + V ar(S).

We know that Bias(S) = 0 (since we have defined it as the unbiased estimator) and thus to make a more
accurate estimator from the sample covariance we need to reduce its variance. Shrinkage techniques using
the sample covariance produce an estimator with reduced variance and provide us with a much improved
estimator for the population covariance. The shrinkage estimators we explore are all convex combinations
of the sample covariance matrix (2) and a target matrix T, which is a positive definite matrix such as the
identity and is generally structured (like the identity with 1’s along the diagonal and 0’s elsewhere). The
estimator is of the form

(4) Σ∗ = λ1S + λ2T.
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We will show that these optimal weights are λ∗ and 1−λ∗. However, this comes at a tradeoff, since changing
the sample covariance (or using a convex combination of the sample covariance matrix and another matrix)
will introduce bias. We need to consider MSE in its entirety, then, in dealing with these estimators.

In the next section we will go through some background of the problem and define some necessary
terms. In the third section we will explore a few shrinkage estimators and go through their derivation and
properties. In the fourth section, we will present a simulation study of the accuracy of these estimators.
In the last section, we will discuss the results of the simulation study and their implications.

2. Background

The most desirable estimate of the population covariance will both be positive definite and well-
conditioned, as well as having a minimized MSE.

Definition 2.1. Let A be a k × k symetric matrix. Then A is positive semidefinite if 0 ≤ xTAx ∀x 6= 0.
If 0 < xTAx ∀x 6= 0, then A is positive definite.

Fulfilling the criteria for positive definiteness allows us to quickly check if our matrix is invertible.
However, first we need to introduce some notation that will be helpful moving forward.

Remark 2.2. Let A be a k × k symmetric matrix with spectral decomposition A =
∑k

i=1 λieie
T
i . Let the

normalized vectors be the columns of another matrix P = [e1, e2, ...]. Then

(5) A(k×k) = P(k×k)Λ(k×k)P
T
(k×k),

where
PP T = I ⇒ P T = P−1

and

(6) Λ =


λ1 0 ... 0
0 λ2 ... 0
. . . .
0 ... ... λk


Theorem 2.1. A real symmetric matrix A is positive definite if all of the eigenvalues of A are positive.

Proof. Let A be a real symmetrix matrix. Then if A is a positive definite matrix, we can write

0 < xTAx = xTPΛP Tx,

where P and Λ are described as in 2.2 and x 6= 0. Then we can write

xTPΛP Tx = (P Tx)TΛ(P Tx) = yTΛy,

where y = P Tx. Thus we have

[
y1 y2 ... yk

] 
λ1 0 ... 0
0 λ2 ... 0
. . . .
0 ... ... λk



y1

y2

...
yk

 = λ1y
2
1 + λ2y

2
2 + ...+ λky

2
k,

where λi ∈ R. If one of these λi is negative (or zero), then we can choose x such that the yi = 0 except for
yi corresponding to the negative λi, which is a contradiction. Thus we must have that λi > 0. �

Example 2.1.

A =

[
1 0
0 1

]
is positive definite, since for any non-zero column vector x = [a b]T we have

xTAx =
[
a b

] [1 0
0 1

] [
a
b

]
= a2 + b2 > 0.

Recall that our estimator is a linear combination of two matrices. In fact, we will show in Section 3 that
it is a linear combination of a positive definite matrix and a positive semidefinite matrix. Thus it follows
that the sum is positive definite.
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Theorem 2.2. Let A be a real, symmetric positive definite matrix and B be a real, symmetric positive
semidefinite matrix. Let 0 < α < 1. Then the linear combination

(7) αA+ (1− α)B

is positive definite.

Proof. We want to show that

(8) xT (αA+ (1− α)B)x > 0

for all x 6= 0. Thus we need to show

(9) αxTAx+ (1− α)xTBx > 0

for all x 6= 0. By definition we have αxTAx > 0 for all x 6= 0, and similarly by definition (1−α)xTBx ≥ 0
for all x. Thus we are guaranteed that Equation (8) is satisfied for all x 6= 0, guaranteeing the positive
definiteness of the sum and completing the proof. �

Also, recall that our estimator will always involve the sample covariance matrix. We now show that the
sample covariance matrix is guaranteed to be positive semidefinite.

Theorem 2.3. The sample covariance matrix S = 1
n−1E

[
(x− x)(x− x)T

]
is positive semidefinite.

Proof. For all vectors u 6= 0,

uTSu = uT
(

1

n− 1
E
[
(x− x)(x− x)T

])
u(10)

=
1

n− 1
E
[
uT (x− x)(x− x)Tu

]
(11)

=
1

n− 1
E
[(
uT (x− x)

)2]
(12)

=
(
uT (x− x)

)2 ≥ 0.(13)

�

A second necessary condition for our estimator is that it is well-conditioned. Since we are exclusively
working with real numbers, we simplify the definition of well-conditioned to the case dealing only in the
reals.

Definition 2.3. The condition number of a nonsingular matrix A with respect to norm || ◦ || is K(A) =
||A||||A−1||. For any nonsingular matrix A and natural norm || ◦ ||,

1 = ||I|| = ||AA−1|| ≤ ||A||||A−1|| = K(A).

A matrix A is well-conditioned if K(A) is close to 1, and ill-conditioned if K(A) is significantly greater
than 1.

Good-conditioning guarantees that the estimator is computationally feasible. Since a computer doesn’t
differentiate between true zero and 10−100, for example, a good condidtion number tells us that we can
actually compute our estimator. This is necessary for data analysis.

The class of shrinkage estimators, as we will prove in the next section, is always positive definite and
well-conditioned, and since it is defined to be the convex combination which minimizes MSE for the
associated target matrix, it exhibits all of the characteristics of a good estimate for Σ. In the next section
we will cover the properties of some of the more widely used shrinkage estimators.
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3. Shrinkage Estimators

As we covered in the previous section, ideal estimators are both positive definite and well-conditioned,
and retain the information from the sample covariance matrix. In particular, some estimators exhibit
all of this behavior and are distribution-free (i.e. do not make any assumptions about the underlying
distribution of the data). Ledoit and Wolf’s ([7], [6], [8]) proposed shrinkage estimator is distribution-
free, and they provide a procedure for finding the optimal shrinkage intensity. Schäfer and Strimmer
[11] take the Ledoit-Wolf estimator and apply it to six different target matrices (recall from (4) that a
shrinkage estimate is a convex combination of the sample covariance matrix and a target matrix). Chen
et al.[2] improve on the Ledoit-Wolf method to create the Rao-Blackwell Ledoit-Wolf (RBLW) method,
which they prove outperforms the Ledoit-Wolf method when the data is Gaussian. Thus the assumption
that the underlying data are Gaussian is best used if applying the RBLW method. They also create an
oracle approximation shrinkage (OAS) estimator, both of which they show to outperform the Ledoit-Wolf
estimator with Gaussian data. Chen et al.[3] improve on both LW and the OAS method assuming data
from the elliptical family (e.g. Gaussian, Student’s t, multivariate Cauchy, multivariate Exponential) by
starting from a robust covariance estimator and iterating until convergence, which is distribution free
within the elliptical family. The last of the shrinkage estimators we will consider is that of Chen et al.[1],
which combines the shrinkage estimator with a tapering estimator. Tapering is a soft form of banding
(used by Rothman et al.[10]). While banding sets the entries far away from the diagonal to be zero and
keeps the entries within the band unchanged, tapering also gradually shrinks the off-diagonal entries within
the band to zero. Banding only makes sense to use if there is a natural ordering to the variables.

3.1. Ledoit-Wolf Estimator. The Ledoit-Wolf estimator (LW) enjoys properties which make it a good
estimator. First, it is guaranteed to be well-conditioned (as we will see later, it is the weighted average
of S and a structured estimator created to be well-conditioned, and thus the LW estimator inherits the
good conditioning). Second, it is proven to be more accurate asymptotically than the sample covariance
matrix. Also, as we mentioned above, it is distribution-free - no asumptions are made about the underlying
distribution of the data - which is especially useful in cases where the data come from an unknown source
or from a new technique. The LW estimator is easy to compute and interpret, since it is the asymptotically
optimal convex linear combination of the sample covariance matrix and the identity matrix.

To guarantee that the LW estimator is both well-conditioned and accurate, the sample covariance matrix
is shrunk to a structured matrix (in this case the identity, though we will see later that other structured
matrices can be used) with an optimal weight identified by minimizing a quadratic loss function. The
resulting matrix has smaller MSE asymptotically than the sample covariance matrix. The identity is
chosen for the target matrix in order to inherit its good conditioning and to gain accuracy. Also, through
the lemmas of Ledoit and Wolf [8], we can find a consistent estimator for the optimal weights λ1 and λ2

in Equation (4).
The full derivation of the LW estimator can be found in [8]. First, we start with the finite sample case.

Let Xp×n be a data matrix distributed with mean zero and covariance Σ. Define the Frobenius norm to

be ||A|| =
√

tr(AAT )
p , thus setting the norm of the identity to be one. Now denote the sample covariance

matrix by S, and the identity by I. We wish to find the estimators given in Equation (4) which minimizes
E[||Σ∗ − Σ||2]. We now set T = I and look for λ1 and λ2. In order to find Σ∗ we need four parameters
related to Σ. The dependence on Σ is not realistic (since we do not know Σ), so after defining Σ∗ (i.e.
finding λ1 and λ2) our task will be to find S∗ which estimates Σ∗ and has the same properties as Σ∗

asymptotically. First define

(14) < A1, A2 >=
tr(A1A

T
2 )

p
.

The four variables necessary to define Σ∗ are: µ =< Σ, I >, α2 = ||Σ − µI||2, β2 = E[||S − Σ||2], and
δ2 = E[||S− µI||2]. Now we derive some lemmas and theorems which help to bring us to Σ∗.

Lemma 3.1. Ledoit and Wolf [8] Lemma 2.1, page 368. α2 + β2 = δ2.
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Proof.

δ2 = E[||S− µI||2] = E[||S− Σ + Σ− µI||2](15)

= E[||S− Σ||2] + E[||Σ− µI||2] + 2E[< S− Σ,Σ− µI >](16)

= E[||S− Σ||2] + E[||Σ− µI||2] + 2 < E[S− Σ],Σ− µI > .(17)

Now since E[S] = Σ, the last term cancels and we get

E[||S− Σ||2] + E[||Σ− µI||2] = E[||S− Σ||2] + ||Σ− µI||2 = α2 + β2

by definition. �

Using the four variables defined above and Lemma 3.1, we can now write down Σ∗.

Theorem 3.2. Ledoit and Wolf [8] Theorem 2.1, page 368.

(18) Σ∗ =
β2

δ2
µI +

α2

δ2
S

minimizes

(19) E[||Σ∗ − Σ||2] =
α2β2

δ2

for all Σ∗ of the form Σ∗ = λ1I + λ2S.

Proof. Let λν = λ1 and (1− λ) = λ2. Then

E[||Σ∗ − Σ||2] = E[||λνI + (1− λ)S− Σ||2](20)

= λ2||Σ− νI||2 + (1− λ)2E[||S− Σ||2],(21)

where we can replace the expected value term by β2.
First we restrict ourselves to minimizing ||Σ− νI||2 with respect to ν. Since ||I|| = 1 by definition,

||Σ− νI||2 = ||Σ||2 − 2ν < Σ, I > +ν2.

We differentiate with respect to ν and solve:

(22) 0 = −2 < Σ, I >= ν2 ⇒ ν =< Σ, I >= µ.

Now we can rewrite our previous condition as

(23) E[||Σ∗ − Σ||2] = λ2||Σ− µI||2 + (1− λ)2E[||S− Σ||2] = λ2α2 + (1− λ)2β2.

In order to minimize MSE, we take the derivative with respect to λ and set equal to zero:

(24) 2λα2 − 2(1− λ)β2 = 0⇒ λ =
β2

α2 + β2
=
β2

δ2
,

and

(25) 1− λ =
α2

δ2
.

Then

(26) E
[
||Σ∗ − Σ||2

]
=

(
β2

δ2

)2

α2 +

(
α2

δ2

)2

β2 =
α2β2

δ2
.

Thus λ1 = β2

δ2
and λ2 = α2

δ2
, and the condition on the expectation is met. �

In the proof of Theorem 3.2 we notice that β2

δ2
is the shrinkage intensity, and µI is the shrinkage

target. If we now think in terms of MSE, we see that the expression E[||Σ∗ − Σ||2] can be broken into
E[||Σ∗ − E[Σ∗]||2] + ||E[Σ∗]− Σ||2, where the first term denotes the variance and the second term denotes
the bias (squared). We know that I has no variance, and thus its only contribution to the MSE is to
increase the bias. We also know that because S is the MLE, it has no bias. Thus the contribution from
S is only variance. Therefore, the linear combination Σ∗ is the optimal tradeoff in terms of variance and
bias. This tradeoff (and the balance achieved by the LW estimator) is shown in Figure 1. Here we see
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the MSE achieved by the optimal shrinkage intensity (the black dot along the MSE curve). We also see
the variance curve (that is, the contribution from S) and the squared bias curve (the contribution from
I). Notice that as we increase the shrinkage intensity past the optimal point, we are lowering variance but
increasing bias. Also, as we decrease the shrinkage intensity, we are lowering bias but increasing variance.
This tradeoff is a delicate balance, and is illustrated in Figure 1.

Figure 1. Tradeoff Between Variance and Bias in MSE Calculation for the LW Estimator [8].

However, Σ∗ relies on µ, α2, β2, and δ2, which are all scalar functions of the unknown Σ. Thus we must
find the asymptotically consistent estimators for each of these four functions, which will in turn give us a
consistent estimator of Σ∗. Usually in studying the asymptotic properties of an estimator, we would fix p
and let n→∞. However, since our problems involve p on the same order as n or even larger, we can’t fix
p and let n → ∞. Thus we let p → ∞ at the same rate as n → ∞. This is called general asymptotics.
Then the optimal shrinkage intensity λ becomes a constant that we can estimate consistently, using the
lemmas and theorems in Ledoit and Wolf (2004).

In the general asymptotics case, let n = 1, 2, ... be the index in a sequence of models. Then for each
n, Xn is a pn × n matrix with n observations on each of pn random variables. We assume the matrix Xn

has been centered to have mean 0 and covariance Σn (the population covariance has a subscript merely to
denote that the dimensions are set by n). The sample covariance be written as

(27) Sn =
XnX

T
n

n
,

and now our four parameters from above become: µn =< Σn, In >, α2
n = ||Σn−µnIn||2, β2

n = E[||Sn−Σn||2],
and δ2

n = E[||Sn−µnIn||2]. We introduce new notation here with the n subscript to denote work in asymp-
totics, and for taking limits. We find the value of each of the four parameters for each fixed n, and work
as n→∞.
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Here we present the main theorems of Ledoit and Wolf, leaving the proofs to the dedicated reader who
wishes to read the original paper. The proofs rely on a few assumptions - not normality of the data,
however - and a deeper understanding of general asymptotics than we need to understand the results as
they relate to our goals.

Lemma 3.3. Ledoit and Wolf [8] Lemma 3.1, page 377. µn, α2
n, β2

n, and δ2
n remain bounded as

n→∞.

The boundedness of these four values is important for the results in the asymptotic case, since we wish
µn, α2

n, β2
n, and δ2

n to be consistent. We decompose our covariance matrix into eigenvalues and eigenvectors

Σn = ΓnΛnΓTn ,

where Λn is the diagonal matrix of eigenvalues and Γn is a rotation matrix with the columns the eigenvec-
tors. Now set Yn = ΓTnXn, which is a pn× n matrix. Then (yn11, ..., y

n
pn1)T is the first column of Yn. Notice

that Yn is a matrix of iid observations on a system of pn uncorrelated random variables. We obtain the
following result.

Theorem 3.4. Ledoit and Wolf [8] Theorem 3.1, page 377. Define Θ2
n = Var[ 1

pn

∑pn
i=1(yni1)2]. Then

Θ2
n is bounded as n→∞, and limn→∞ E[||Sn − Σn||2]− pn

n (µ2
n + Θ2

n) = 0.

Theorem 3.4 tells us that the expected loss of the sample covariance is bounded, but is on the same order
as pn

n (µ2
n + Θ2

n). However, this quantity only goes to zero in special cases and thus the sample covariance
matrix is only consistent under general asymptotics in only those special cases. This occurs when pn

n goes

to zero and when µ2
n and Θ2

n go to zero (which implies that most of the random variables have variances
which are zero asymptotically). Thus any error off the diagonal in the sample covariance matrix cause it
not to be consistent under general asymptotics. In order to improve our estimate of the true covariance
matrix, we turn to shrinkage. Due to Theorem 3.4 we see that the error of the sample covariance (denoted
by β2

n) goes to pn
n µ

2
n as n → ∞. Unless pn

n is negligable, shrinkage will improve our estimate by lowering
the error (because as we showed in Theorem 3.2 shrinkage will achieve minimum MSE).
Now we want to find a consistent estimator for Σ∗n. We already stated that Σ∗n is not a practical estimator
because it depends on Σn, which is unknown. Thus we estimate µn, α2

n, β2
n, and δ2

n.

Lemma 3.5. Ledoit and Wolf [8] Lemma 3.2, page 379. Define mn =< Sn, In > . Then E[mn] = µn
for all n, and mn − µn converges to zero in quartic mean (fourth moment) as n goes to infinity.

As a bit of notation, let →
q.m.

denote convergence in quartic mean as n→∞. A consistent estimator for

δ2
n is also its sample counterpart:

Lemma 3.6. Ledoit and Wolf [8] Lemma 3.3, page 379. Define d2
n = ||Sn−mnIn||2. Then d2

n−δ2
n →q.m.

0.

Set the vector xnk to be the kth column ofXn, and let k = 1, 2, ..., n. Then Sn = XnXT
n

n = 1
n

∑n
k=1 x

n
k(xnk)T .

The matrices xnk(xnk)T are iid, so we can find the error β2
n of the average.

Lemma 3.7. Ledoit and Wolf [8] Lemma 3.4, page 380. Define b
2
n = 1

n2

∑n
k=1 ||xnk(xnk)T −Sn||2 and

b2n = min(b
2
n, d

2
n). Then b

2
n − β2

n →q.m. 0 and b2n − β2
n →q.m. 0.

The estimator b2n ensures that Lemma 3.1 is satisfied, and that the following estimator is nonnegative.

Lemma 3.8. Ledoit and Wolf [8] Lemma 3.5, page 380. Define a2
n = d2

n − b2n. Then a2
n − α2

n →q.m. 0.

Now we can replace the formula for Σ∗n with our consistent estimators, which yields

(28) S∗n =
b2n
d2
n

mnIn +
a2
n

d2
n

Sn.

The next theorems show that the asymptotic properties of the estimator are unchanged from the original.
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Theorem 3.9. Ledoit and Wolf [8] Theorem 3.3, page 381. S∗n is a consistent estimator of Σ∗n,
since ||S∗n − Σ∗n|| →q.m. 0. Thus E[||S∗n − Σn||2]− E[||Σ∗n − Σn||2]→ 0.

Due to Theorem 3.9 here and Theorem 3.4 in [8] (page 380), we know that S∗n is an asymptotically
optimal linear shrinkage estimator of the sample covariance matrix (with respect to quadratic loss and
under general asymptotics). Also recall that the convex linear combination of a positive definite matrix
and a positive semidefinite matrix is positive definite, our result from Theorem 2.2. However, this is only
true when the optimal shrinkage intensity is positive. In practice, the optimal shrinkage intensity might
be calculated to be a negative number. Thus we constrain it to be positive in all calculations. Now we
know that the identity is positive definite. The sample covariance matrix is guaranteed to be positive
semidefinite by Theorem 2.3. Thus, we know that S∗n is positive definite and therefore guaranteed to
always be invertible, even when pn > n, which makes it an ideal estimator of the sample covariance matrix.
Theorem 3.5 in [8] tells us that S∗n is generally well-conditioned, meeting the other criterion we established
for a good estimator. Ledoit and Wolf also simplify their estimator in [7] to the form

(29) Σ̂ = (1− λ)S + λI,

where λ is the optimal shrinkage intensity given in Lemma 3.8 as b2n
d2n

. This is the general form equation

that we will use to denote Σ̂ for the rest of our discussion. Also notice that this is the same form as
Equation (4) with λ1 = (1 − λ) and λ2 = λ. They go on to say that in order to avoid overshrinkage and
undershrinkage, it is acceptable to replace λ in Equation (29) with

(30) λ∗ = max(0,min(1, λ)).

Here we constrain to λ ∈ [0, 1] because in practice the optimal shrinkage intensity can be calculated to be
negative. Notice that this solution does not take into account the problem that if the shrinkage intensity
is zero, the estimate Σ̂ is not positive definite. Ledoit and Wolf didn’t need to take this into account since
they only used one target matrix, but this is dangerous if we use a different target matrix.

3.2. Target Matrices other than the Identity. As we mentioned above, Schäfer and Strimmer, [11],
take the LW estimator given in Equation (29) and apply it to six different target matrices. They again
address the problem of n << p, but now instead of merely shrinking towards the identity they choose one
of six target matrices, with equations of the form Σ̂ = (1 − λ)S + λT , where S is the sample covariance
matrix and T is the target matrix. However, choosing new matrices means that the optimal shrinkage
intensity varies based on the target matrix chosen. Schäfer and Strimmer write the equation for the
optimal shrinkage intensity for target matrix T = (tij) as

(31) λ∗ =

∑p
i=1 V ar(si)− Cov(ti, si)∑p

i=1 E[(ti − si)2]
.

In order to estimate λ∗, it is possible to replace all expectations, variances, and covariances by their sample
counterparts.

At this point it is important to pick the target matrix. In order to maximize the benefits of shrinkage,
the target should be chosen using the presumed structure of the data as a guide. Six commonly used
targets (those presented in [11]) are given in Figure 2. Notice that each of these targets has a different
equation for calculating the optimal shrinkage intensity λ∗. Target A is the identity, used in LW. Target
B is the scalar multiple of the identity. A and B are two natural choices for the target matrix due to their
simplicity. One does not have to make many assumptions about the underlying structure of the population
covariance matrix to use the identity as the shrinkage target. Target C builds on target B by adding a
common covariance. A, B, and C are all low dimensional, which is ideal because they impose a relatively
strong structure on the resulting estimate, which then requires little data to fit. Also, estimators created
using these targets shrink all elements of the sample covariance matrix (recall from Figure 2 that these
three targets are the only ones presented which shrink the diagonal elements of the sample covariance
matrix towards the target). The resulting estimator is a linear combination of a scaled version of the
sample covariance with a scaled version of the target. Target A is used by Ledoit and Wolf in their papers,
while target B is used in a few papers cited in [11]. Targets D, E, and F only shrink the off-diagonal
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Figure 2. Shrinkage Targets and Optimal Shrinkage Intensity [11].

elements. E and F were used in [7] to model stock returns, while D is used in [11].
The choice of D in [11] illustrates the problem of finding the correct target matrix. The authors are

interested in inferring gene networks from small sample genomic data. Thus they choose D, which is a
compromise between A, B, C (the low dimensional models) and E, F (high dimensional). Target D shrinks
the off-diagonal entries toward zero, but keeps the variances unchanged. This separation of variance and
covariance assumes that the parameters of the covariance matrix fall into two distinct classes which can
be treated separately by shrinkage.

3.3. Rao-Blackwell Ledoit-Wolf Estimator. One of the desirable properties of the LW estimator was
that it was distribution-free. This allows us to approach data with a consistent estimator that performs
better than the sample covariance matrix without making many assumptions about the structure of the
data. However, if we are confident that the data comes from a Gaussian distribution, then the LW estimator
can be improved upon. Applying the Rao-Blackwell theorem to the LW method results in a new estimator
that we will call the RBLW estimator. Again our goal is to minimize MSE of the estimator, so we use

the format Σ̂ = λ1S + λ2T, where now T = tr(S)
p I. Chen et al. [2] make this choice for T because it is
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well-conditioned. In this case, as with the LW estimator, the expression for Σ̂ simplifies to

(32) Σ̂ = (1− λ∗)S + λ∗T.

As above, || ◦ || denotes the Frobenius norm. Applying the LW method to calculate the optimal shrinkage
intensity for this target matrix gives

(33) λ∗LW =

∑n
i=1 ||xixTi − S||2

n2
[
tr(S2)− tr2(S)

p

] .
Then the LW estimator is determined by plugging (33) into (32). Now under the Gaussian assumption on
the data, S is a sufficient statistic for estimating Σ. Simply by looking at the LW estimator, we notice that
it is a function of S and of other statistics (namely T). We now introduce the Rao-Blackwell theorem, as
it will help us in improving the LW estimator. First we present the notion of a sufficient statistic.

Definition 3.1. A statistic T (X) is sufficient for an underlying parameter θ if P(X = x|T (X) = t, θ) =
P(X = x|T (X) = t).

Theorem 3.10. [14] Let θ̂ be an estimator of θ with E(θ̂2) <∞ for all θ. Suppose that T is sufficient for

θ, and set θ∗ = E(θ̂|T ). Then for all θ

(34) E(θ∗ − θ)2 ≤ E(θ̂ − θ)2.

This theorem tells us that we can improve on our original estimator, or at least stay constant. Now
we apply the Rao-Blackwell theorem to the LW estimator to obtain the RBLW estimator. The proof of
Theorem 3.11 can be found in [2].

Theorem 3.11. Chen et al. [2] Theorem 2, page 5018. Let Xp×n be a matrix consisting of n
independent p-dimensional Gaussian vectors, and covariance matrix Σ. Let S be the sample covariance
matrix. Then the conditional expectation of the LW estimator is

(35) Σ̂RBLW = E[Σ̂LW |S] = (1− λ∗RBLW )S + λ∗RBLWT,

where

(36) λ∗RBLW =
(n−2)
n tr(S) + tr2(S)

(n+ 2)
[
tr(S2)− tr2(S)

p

] .
This estimator satisfies that

(37) E[||Σ̂RBLW − Σ||2] ≤ E[||Σ̂LW − Σ||2]

for all Σ.

Similarly to the LW estimator, the shrinkage intensity is modified to avoid overshrinkage to be

(38) λ∗RBLW = min(1, λ∗RBLW ).

The RBLW estimator inherits the property of achieving the asymptotically minimum MSE from the LW
estimator (since the RBLW and LW estimators are equivalent asymptotically [2]). However, as is the case
with the LW estimator, for very small n the asymptotics do not hold and we are not guaranteed to have
minimum MSE.

3.4. The OAS Estimator. The justification for the oracle approximating shrinkage (OAS) estimator is
developing an estimator that works for small n. Rather than considering asymptotic solutions, we employ
an iterative process. Consider the case of n = 2: λ∗RBLW and λ∗LW are close to 1, and thus Σ̂ ≈ S for each.
Ideally, we would be closer to the target matrix. Thus, the iterative approach. We take an initial guess at
Σ, Σ̂0, which is the sample covariance or any other symmetric nonnegative definite estimator. Then the
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iterative process generates a new estimate for Σ̂, and this continues until convergence. The authors of [2]

denote the solution as Σ̂OAS . The iterative process is:

(39) λj+1 =

(
1−2
p

)
tr(Σ̂jS) + tr2(Σ̂j)(

n+1−2
p

)
tr(Σ̂jS) +

(
1−n
p

)
tr2(Σ̂j)

(40) Σ̂j+1 = (1− λj+1)S + λj+1T.

However, these equations lead to the following theorem which gives us a solution for the optimal shrinkage
intensity and the estimator itself:

Theorem 3.12. Chen et al. [2] Theorem 3, page 5019. Let λ0 ∈ [0, 1] be an initial guess of the
shrinkage intensity. Then the iterations specified in (39) and (40) converge as j →∞ to

(41) λ∗OAS = min


(

1−2
p

)
tr(S2) + tr2(S)(

n+1−2
p

) [
tr(S2)− tr2(S)

p

] , 1


and

(42) Σ̂OAS = (1− λ∗OAS) S + λ∗OAST.

The proof of Theorem 3.12 is in [2]. Notice that under asymptotic conditions (p → ∞ and n → ∞)
the OAS solution and RBLW solution converge to each other, and are equivalent to the LW solution [2].
However, in small sample situations (take the n = 2 extreme case, for example) the OAS and RBLW
estimators behave entirely differently - λ∗OAS ≈ 1 while λ∗RBLW ≈ 0. Thus choosing an estimator becomes
very important especially in small sample cases. When the samples are truly Gaussian, the authors in [2]
show that the RBLW and OAS estimators perform better than the LW estimator. However, violations
of the Gaussian assumption change the small sample behavior, creating a need for estimators which are
robust to this assumption.

3.5. Chen Estimator. In order to be distribution-free (to an extent - no assumptions must be made as
long as the data comes from the elliptical family, so fewer assumptions are made than any estimator besides
the LW estimator), Chen et al. [3] work in the elliptical class of distributions. These include the Gaussian,
multivariate t, and many others.

Definition 3.2. [3] Let x be a p× 1 random vector generated by x = νu, where ν is a positive real random
variable and u is a p× 1 real Gaussian random vector with mean zero and positive definite covariance Σ.
Then x is elliptically distributed and the pdf of x can be written as

(43) p(x) = φ
(
xTΣ−1x

)
,

where φ is the characteristic function related to the pdf of ν.

Here the characteristic function is defined by Gabriel Frahm [4]. For example, the characteristic function

of the centered multivariate normal is e−
1
2
tTΣt Again, an iterative process determines the estimator. Recall

that the sample covariance is defined in Equation (2). In order to work around the problems with the
sample covariance in high dimension, Chen et al. use Tyler’s method [13] and work with the normalized
samples si = xi

||xi||2 , where || ◦ ||2 is the 2-norm, and || ◦ || still denotes the Frobenius norm. They state that

the maximum likelihood estimate of Σ will be of the form

(44) Σ̂ =
p

n

n∑
i=1

sis
T
i

sTi Σ̂−1si
.

To find this solution, we iterate between

(45) Σ̃j+1 = (1− λ)
p

n

n∑
i=1

sis
T
i

sTi Σ̂−1
j si

+ λI
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and

(46) Σ̂j+1 =
pΣ̃j+1

tr
(

Σ̃j+1

)
until convergence. Assuming we know Σ (and therefore λ, the optimal shrinkage intensity) we can write
down the “estimator” (since we have no real knowledge of Σ, this estimator is useless to us until we can
approximate it)

(47) Σ̃ = (1− λO)
p

n

n∑
i=1

sis
T
i

sTi Σ̂−1
j si

+ λOI

where λO minimizes MSE as

(48) λO = arg minλE
[
||Σ̃− Σ||2

]
.

The following theorem provides a closed form solution to Equation (48):

Theorem 3.13. Chen et al. [3], page 4099. Let tr(Σ) = p. Then for iid elliptical samples, the solution
to Equation (48) is

(49) λO =
p2 + 1−2

p tr(Σ2)

(p2 − np− 2n) +
(
n+ 1 + 2(n−1)

p

)
tr(Σ2)

.

The proof of this theorem is contained in the Appendix of [3]. Since we do not know Σ, an estimate of

λO is proposed where each instance of Σ is replaced with M̂ , a consistent estimator of Σ. An example of
M̂ is the LW estimator, while another (used by the authors of [3]) is

(50) R̂ =
p

n

n∑
i=1

sis
T
i ,

the trace-normalized sample covariance matrix. Chen et al. use the trace-normalized sample covariance to
keep constant with their earlier use of Tyler’s method. Then we can use fixed-point iteration applied to
Equations (45) and (46) to find the estimator.

3.6. Shrinkage-to-Tapering Estimator. All of the previous estimators we have considered thus far rely
on p and n going to ∞ at roughly the same rate. However, what if this is not the case? In some situations
(Chen et al. [1] apply this estimator to breast cancer gene expression data), p goes to ∞ much faster than
n. To deal with this situation, Chen et al. [1] combine the strengths of both the shrinkage estimator and
the tapering estimator. The estimator has the same form as the general shrinkage estimator in (29) but
now the shrinkage target is a tapered version of the sample covariance matrix. A tapering estimator - as
stated by T. Cai et al. [12] - takes each entry in the proposed matrix and multiplies it by a weight. This
estimator has been shown to be consistent when the dimensionality p grows at any sub-exponential rate
of n, which allows us to consider much higher-dimensional matrices [1]. For instance, starting with the
sample covariance matrix, we could have weight 1

sij
along the diagonal and zero elsewhere to create the

identity. The weights can be chosen so that the tapering is done however one desires. A more formal
definition is provided by Chen et. al [1] (with the notation that S is the set of all p×p symmetric matrices
and A ◦B = (aijbij)):

Definition 3.3. Chen et al. [1] Definition II.1, page 5641. Let S be the set of p × p smmetric
matrices. A covariance matrix taper A ∈ S satisfies

(51)

p∑
j=1

νj(A ◦B) ≤
p∑
j=1

νj(B)

for all B ∈ S, where νi denotes the ith eigenvalue.
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Thus, element-wise multiplication with any covariance matrix taper is guaranteed to decrease the average
eigenvalue. Then we can define a tapering estimator :

(52) Σ̂taper = W ◦ S,

with W a covariance matrix taper.
Now define W as

(53) wij =


1, for |i− j| ≤ k/2
2− |i−j|k/2 , for k/2 < |i− j| < k

0, else

Notice that since diag(W ) = 1, W is a covariance matrix taper. Thus

(54)

p∑
j=1

νj(W ◦ Σ) = tr(W ◦ Σ) = tr(Σ) =

p∑
j=1

νj(Σ).

Also, the way we have defined W sets k as its bandwidth, since any entry at least k − 1 off of the diagonal
is set to zero. Last, we must modify W ◦Σ since it is not necessarily positive definite [1]. If we diagonalize
W ◦ Σ and then replace the negative eigenvalues with zeros, we will ensure the positive semi-definiteness
of the new estimate. According to [1], the optimal bandwidth of W under Frobenius risk (which we have

considered previously) is n
1

2(α+1) , where α > 0 is a smoothing parameter which specifies the rate of decay of
the off-diagonal elements in Σ [1]. However, this taper relies on a natural ordering of the variables, which
is very dependent on the situation. Thus we have to assume order to use this estimator.

The proposed estimator now is a shrinkage estimator following the format of (29), but the shrinkage
target is the tapered version of the sample covariance matrix. That is, we have a shrinkage-to-tapering
oracle (STO) estimator

(55) Σ̂STO = (1− λ∗STO)S + λ∗STO(W ◦ S).

The optimal shrinkage intensity λ∗STO is the solution to

(56) λ̂∗STO = arg minλ∈[0,1]E
[
||Σ̂STO − Σ||2

]
.

In [1] we learn that for any covariance matrix the STO estimator can improve on both the tapering and
shrinkage oracle estimators. Then we can determine the optimal shrinkage intensity.

Theorem 3.14. Chen et al. [1] Theorem III.1, page 5645. The optimal shrinkage intensity of the
STO estimator under minimum Frobenius risk is

(57) λ̂∗STO =
E
(
||S||2 − ||V ◦ S||2

)
−
(
||Σ||2 − ||V ◦ Σ||2

)
E (||S||2) + E (||W ◦ S||2)− 2E (||V ◦ S||2)

,

where V = (vij) =
√
wij.

However, as in many of out previous discussions, this estimate involves Σ which is unknown. Chen et
al. then suggest an approximating algorithm. We initialize with Σ̂0 = S, and replace Σ by Σ̂0 in (57).

Then we get the next estimate Σ̂1. This process is iterated until convergence. The optimal bandwidth k∗

is determined by cross-validation to minimize prediction error on test data.

4. Simulations

We now run simulations using the Ledoit-Wolf estimator (Target A in Schäfer and Strimmer), the rest
of the Target Matrices, a new estimator devised by Schäfer et al. [11] [9] for an R package, and my
implementation of their method. The first simulation takes all of the estimators and for fixed n and p
(starting at 200 and 200), simulates a true covariance matrix using a method devised by Hardin et al.
[5], and then calculates the estimator using data generated from the multivariate normal first and then
the multivariate normal with outliers. The multivariate normal used has mean 5 and standard deviation
1 for each of the variables, and follows Σ for its covariance structure. To simulate outliers, we calculate
the sample covariance matrix using 90% normal data and 10% multivariate normal data with mean 50
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and standard deviation 1. Then for each estimator Σ̂ we calculate ||Σ̂− Σ||2, and repeat this process 100
times. These steps are performed first using the Pearson method of correlation calculation and then with
the Spearman method.

Next, we fix p at 500 and then increment n = (10, 100, 400). We again calculate MSE as we did in
the first simulation, and add the “corpcor” estimate. Here we only work with the Pearson correlation due
to issues in computation time and the fact that the “corpcor” estimate does not allow calculation with
Spearman correlation. We also add the estimator calculated by the “corpcor” package in R developed by
Schäfer et al. [11] [9]. The estimator calculated in the R package is different from their paper, in that it
calculates only one target. The shrinkage intensity is calculated as

(58) λ∗ =

∑p
k=1 V(skk)∑p

k=1(skk −median(s))2
,

where median(s) denotes the median of the sample variances. This is the last estimator that we track.
We also track the calculated shrinkage intensity as we increment n. We plot the calculated shrinkage
intensity for the targets A-F as well as “corpcor” and the “median” value calculated in Equation (58).
Even though using the “corpcor” function “estimate.lambda.var” under the base conditions should result
in the same thing as the “median”, there is enough blackboxed by the “corpcor” package that it is an
interesting exercise to plot both. On both figures each data point represents the average of 10 iterations
of the simulation.

Last, with p fixed at 500, we increment n = (5, 10, 20, 50, 100, 200, 300, 400, 500) and again calculate
MSE as we did in the previous simulation. The data is first distributed normally according to the
multivariate distribution described above, and then according to the outlier model. Here each data point
represents the average of 100 iterations of the simulation.

4.1. Pearson vs Spearman Correlation and the Six Target Matrices. Looking at Figure 3, notice
that in (a) Target D performs best, though only slightly. As we move to (b) and the Spearman correlation,

notice that not only does the median value of MSE(Σ̂ − Σ) double on the log scale (from around 11.6
to about 22) but Targets A, B, and F outperform all other targets by a large margin. In (c), working
with outliers and the Pearson correlation, all targets perform the same on average, but it is much worse
than in (a), where outliers are not present. Last, in (d), Targets A, B, and F again outperform all of the
other targets when outliers are present. Here the median value is similar to the median value in (c), but
individual targets (A, B, and F) perform much better than they did using Pearson correlation.

In the case of normal data with no outliers, using the Spearman correlation coefficient raises MSE.
Interestingly, Target E is incredibly affected while Targets C and D are fairly highly affected and A, B, and
F are only moderately affected. Part of this discrepancy could come from the calculation of the shrinkage
intensity for each target. If we refer back to Figure 2, we notice that the covariance between values in
the sample covariance matrix plays a large role in the calculation of Target E’s shrinkage intensity. If this
value is large enough, the calculated intensity could become negative, leading the used shrinkage intensity
to be zero. This is problematic, because Σ̂ is no longer guaranteed to be positive definite.

Now in the case of data with outliers, using the Spearman correlation coefficient in calculations actually
lowers the MSE. We see a similar pattern to (b) in Figure 3, with the slight difference being that Target
D now has a lower MSE than Target C.
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Figure 3. Log MSE(Σ̂−Σ) calculated for each of the six target matrices laid out in Figure
2. (a) Multivariate data with Pearson correlation, (b) Multivariate data with Spearman
correlation, (c) Data with outliers and Pearson correlation, (d) Data with outliers and
Spearman correlation.
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Figure 4. Log MSE calculated for each of the six target matrices laid out in Figure 2,
plus the “Corpcor” estimator from the package “corpcor” [9]. The data is generated from
the multivariate normal.
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4.2. Shrinkage Intensity and MSE for Selected Values of n. In Figure 4, as n increases, the MSE
for each approaches a common value. We expect this to happen, because the target is especially important
when n is small and the sample covariance matrix is a particularly poor estimator of Σ. As n → p,
however, we expect λ → 0 and Σ̂ → S. This is natural, because when n ≥ p, S is the MLE and the best
estimate of Σ, and is also invertible. The Corpcor estimate consistently has the lowest MSE, which is to
be expected since not only is it more recent than the others (developed in 2007 rather than 2005) but it
is also code developed and optimized by the authors, rather than the others which were developed for use
in this paper and not fully optimized. All of the other targets beside Target E perform the same. Target
E is interesting, because as we noted earlier the covariance plays a large role and can sometimes drive the
shrinkage intensity below zero, thus making the matrix used the sample covariance matrix. This has large
problems with small n and large p, as we see in Figure 4. However, as n→ p, the estimate approaches the
others in terms of MSE. Thus for this data we should use the Corpcor estimate for n << p, but as n→ p
the estimator doesn’t have a huge effect.
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Figure 5. Log MSE calculated for each of the six target matrices laid out in Figure 2,
plus the “Corpcor” estimator from the package “corpcor” [9]. The data is generated from
the multivariate normal with outliers.

Figure 5 shows an interesting trend. This data has outliers, and here the Corpcor estimate performs
significantly better with small n and actually does worse as n → p. All of the other estimates perform
the same. These values are significantly higher than their normal data counterparts. Similar to our prior
conclusion, here we definitely use Corpcor for n << p, and only when n ≈ p can we justify using the
others.
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Figure 6. Shrinkage intensity calculated for each of the six targets laid out in Figure 2
plus “Corpcor” and the “median” value from [9]. We ran at three values of n, and the data
is generated from the multivariate normal.

Now consider Figure 6, which provides the calculated shrinkage intensities for each of the estimates
used in Figure 4. Notice that both Median and Target E have essentially zero as the optimal shrinkage
intensity across the board. The slight increase we notice accounts for the decrease in MSE as n → p,
but the fact that the optimal intensity is so close to zero means that these are still the worst estimates.
In the case of Target E, this means that the optimal intensity was calculated as less than zero and was
brought up by our stipulation that the intensity must be in [0, 1]. However, Median doesn’t suffer from this
same issue. Interestingly, the Corpcor estimated shrinkage intensity is quite different from than calculated
simply using Equation (58). Clearly there is something else going on in the corpcor package that produces
this discrepancy. Also notice that Target F has the same calculated shrinkage intensity as Corpcor, but it
performs worse than Corpcor in Figure 4. This must have to do with the target matrix chosen for Corpcor.
All of the other targets have shrinkage intensity consistent with their performance in Figure 4.
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Figure 7. Shrinkage intensity calculated for each of the six targets laid out in Figure 2
plus “Corpcor” and the “median” value from [9]. We ran at three values of n, and the data
is generated from the multivariate normal with outliers.

However, Figure 7 has the interesting information. Notice that the Corpcor estimate is close to one,
corresponding to using almost entirely the target matrix, which is not known. The median, supposedly
the way that “corpcor” calculates the optimal shrinkage intensity, is close to zero. This, as we know,
corresponds to using almost entirely the sample covariance matrix. The incredible difference between these
two values means that the package definitely performs some other calculations to determine the optimal
shrinkage intensity. Now setting aside the Corpcor estimate, consider the others. They are all incredibly
close to zero - except for F, which again is the same as Corpcor - which is unexpected given that the
sample covariance matrix is a very bad estimate in the small n cases. Also, Target D is similar to all of the
others, which is not the case in the normal data. Equally confusing is that Target C has a higher optimal
shrinkage intensity, but there is no noticeable difference in its MSE. Here again we see the discrepancy
between the MSE of Target F and Corpcor, while the optimal shrinkage intensity is calculated to be the
same.

The fact that the MSE of the Corpcor estimate increases to approach the others as n → p indicates
that as n→ p the sample covariance matrix becomes a better estimate of the covariance matrix - which we
expected - and that the target used to calculate the Corpcor estimate does a poorer job. It is unexpected
that even when n = 100, which is 1

5p, the Corpcor estimate is only slightly better than the other estimates.

The huge difference in optimal shrinkage intensity leads us to believe that Σ̂ will be different, but the
estimates must not vary as much as we would expect. Perhaps if we ran trials with much higher dimension
we would see more variation in the estimates, but this requires much more computation power than is
available to us.
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Figure 8. Log MSE calculated for each of the six target matrices laid out in Figure 2,
plus the “Corpcor” estimator from the package “corpcor” [9]. The data is generated from
the multivariate normal.

4.3. MSE for a Range of Values of n. Consider Figure 8, where we have run many different values of
n to watch the approach as n→ p. Again, the Corpcor estimate has the lowest MSE and the estimates all
approach the same value as n→ p. However, there are two interesting trends to notice. First is that Target
E has a significantly higher MSE for the small values of n - 5, 10, and 20 - but is similar for the others.
This echoes our results discussed above but is seen on a much larger scale here. Also, there is a strange
spike up between n = 5 and n = 10 for the other Targets. In fact, the difference in log MSE between them
and Corpcor is very small. It is very odd that for this incredibly small value of n the estimates should be
so similar, and simply increasing n to 10 not only causes a jump up in the Target estimates but also sees
a decrease in MSE in the Corpcor estimate. The n = 5 case must be special in that the data is so small
that the estimate is very similar. The jump in MSE could possibly be explained by added noise from the
added values outweighing the increase in sample size. This effect lowers with increased n after 10, as we
see a decrease in MSE. The plot also adds power to the trends observed our previous figures with the
extra iterations of the simulation.
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Figure 9. Log MSE calculated for each of the six target matrices laid out in Figure 2,
plus the “Corpcor” estimator from the package “corpcor” [9]. The data is generated from
the multivariate normal with outliers.

Finally, we arrive at Figure 9. Recall that in Figure 5 the corpcor estimate rose in MSE to reach the
others. Now with the addition of more data points we see this trend again, with the exception of a spike
downward in MSE for the Corpcor estimate between n = 5 and n = 10. Notice that this was precisely
the spot where in Figure 8 we had a spike upwards in MSE for the Targets (minus Target E). This spike
is very steep, and leads us to question what is going on under the hood in the “corpcor” package. It may
be a similar phenomenon to what we observed in Figure 8, though in the opposite direction, but it is hard
to tell given that we don’t know the target matrix and the information from Figure 7 indicates that the
shrinkage intensity would not have changed much from n = 5 to 10. Figure 9 also validates the conclusion
that the Corpcor estimate is better to use in the case of outliers.

5. Conclusions

In this paper we have presented six different shrinkage estimators for the covariance matrix. We have
discussed the main theorems leading to the properties that we want in an estimator of the covariance
matrix - positive definiteness and good conditioning. The LW estimator assumes the least about the data,
while the rest make a few different assumptions. Schäfer and Strimmer allow the user to make assumptions
about the underlying structure of the data in order to choose a target matrix other than the identity. Chen
et. al assume that the data is Gaussian for the RBLW and OAS estimators, and then assume that the data
is distributed elliptically. Last, the STOA estimator combines the strenghts of shrinkage and tapering to
handle the case where p goes to ∞ much faster than n. All of these estimators should behave far better
than the sample covariance matrix in the small n large p case.

However, as we noticed in our simulations, the sample covariance matrix performs surprisingly well.
Perhaps we only see this phenomenon at comparatively low ratios of n/p, which we were limited to by
computation power. Ideally we would run dimensions of p higher than 500, and in the future it would be an
interesting exercise to do so. We noticed that the “corpcor” package doesn’t calculate the optimal shrinkage
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intensity the same way as the method in (58). Also, the targets described in Schäfer and Strimmer [11] all
calculate a very similar estimate. It would be interesting to compare the other estimators with these, but
unfortunately we were not able to acquire code for them and in the interest of time and analysis coding
our own version was not feasible.

Of the estimators we were able to compare in the simulation study, Corpcor performs best for small n
in both the case of normal data and data with outliers. Only when n ≈ p would it be more appropriate to
use one of the other estimators. If we were to use one of these others, the best would be Targets A, B, or
F. These have the best performance both in normal data and in outlier data besides Corpcor, regardless
of sample size. Interestingly, Target A is the LW estimate and proves that it is a viable option. We
hypothesize that the other estimators - RBLW estimator, the OAS estimator, the Chen estimator, and
the Shrinkage-to-Tapering estimator - would perform better than all of the estimators considered in the
simulation study, at least for the normal data. Since all of these estimators rely on assumptions about the
distribution of the data, they might blow up in the case of outliers.

In the future, it would be interesting to implement the R code for the other estimators. These other
estimators have been shown to perform better than the estimators that we ran simulations on, but we were
not able to reproduce the results. Also, looking under the hood of the “corpcor” estimator to understand
why it was so different from the “median” value in computation would be a good exercise. Along this
vein optimizing our code to run more efficiently would significantly reduce computation time and allow for
many more simulations to be run, especially in higher dimensions. To investigate the odd results from our
simulations, I would want to try many more values of n and also many different combinations with different
p, since a much larger difference between the two might contain a lot of information. I also want to try
different methods of creating outliers, and using data distributed differently - perhaps with the multivariate
t distribution, or something completely outside of the elliptical family to see how the estimators which rely
on those assumptions handle the new data. I would also like to explore different algorithms for finding the
optimal λ, which then would find a better Σ̂. Also, there were plenty of techniques similar to shrinkage,
like adaptive banding, which might be a better estimate in certain situations.



SHRINKAGE ESTIMATORS FOR HIGH-DIMENSIONAL COVARIANCE MATRICES 23

References

[1] Xiaohui Chen, Z. Jane Wang, and Martin McKeown. Shrinkage-to-Tapering Estimation of Large Covariance Matrices.
IEEE Transactions on Signal Processing, 60:5640–5656, 2012.

[2] Yilun Chen, Ami Weisel, Yonina C. Eldar, and Alfred O. Hero. Shrinkage Algorithms for MMSE Covariance Estimation.
IEEE Transactions on Signal Processing, 58:5016–5029, 2010.

[3] Yilun Chen, Ami Weisel, and Alfred O. Hero III. Robust Shrinkage Estimation of High-Dimensional Covariance Matrices.
IEEE Transactions on Signal Processing, 59:4097–4107, 2011.

[4] Gabriel Frahm. Generalized Elliptical Distributions: Theory and Applications. Ph.D. Dissertaion, Economic and Social
Statistics Department, University of Cologne, Germany, 2004.

[5] Johanna Hardin, Stephan Ramon Garcia, and David Golan. A method for generating realistic correlation matrices. Annals
of Applied Statistics, 7:1249–1835, 2013.

[6] Olivier Ledoit and Michael Wolf. Honey, I Shrunk the Sample Covariance Matrix. UPF Economics and Business Working
Paper, 691, 2003.

[7] Olivier Ledoit and Michael Wolf. Improved estimation of the covariance matrix of stock returns with an application to
portfolio selection. Journal of Empirical Finance, 10, 2003.

[8] Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-dimensional covariance matrices. Journal of
Multivariate Analysis, 88:365–411, 2004.

[9] Rainer Opgen-Rhein and Korbinian Strimmer. Accurate Ranking of Differentially Expressed Genes by a Distribution-Free
Shrinkage Approach. Statistical Applications in Genetics and Molecular Biology, 6, 2007.

[10] Adam J. Rothman, Elizaveta Levina, and Ji Zhu. A new approach to Cholesky-based covariance regularization in high
dimensions. Biometrika, 3:539–550, 2010.
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