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Abstract

Value Added Modeling is one method for measuring teacher accountability. Us-

ing multilevel regression, a model is created to isolate teacher influence and

control for student or classroom characteristics such as race, gender, class size,

socioeconomic status, etc. Because of inherent dependencies between variables,

basic linear regression is not sufficient to create an accurate model. For this

reason, multilevel regression is used to create value added models. Multilevel

regression consists of breaking the model into different levels and using the

estimates from one level in the model of the next level. This allows the er-

ror structures and variance components to carry through correctly, culminating

with a final composite model which measures teacher influence.
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Chapter 1

Background

1.1 Introduction

Over the past 20 years, school, teacher, and student test-score performances have

been increasingly utilized when considering the effectiveness of school systems

in educating students. Additionally, there have been efforts not only to increase

educators’ accountability, such as the No Child Left Behind Act, but also to

quantify exactly how effective teachers are in educating students. Recently,

a select few school districts have become integral to the discussion regarding

accountability by adopting a new method of evaluating teacher performance:

Value Added Modeling (VAM). Tennessee was the first state to implement

this method of evaluation, with the Tennessee Value-Added Assessment Sys-

tem, which began in 1992; other districts in Washington D.C., New York, and

Chicago have also utilized VAM [9]. The method relies heavily on student test

scores. The idea is that, based on the change in a student’s test scores from one

year to the next, the value a teacher adds to a specific student can be measured

through a linear model, while controlling for other characteristics that affect

a student’s ability to learn. Districts that implemented VAM use it to assist
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with teacher evaluation and impact teacher salary, applications for tenure, and

overall program evaluation [12].

There are two useful implications of using VAM to evaluate educators. First,

it filters out the effect of non-academic factors on a student’s education. The

method incorporates information about factors that influence education, which

can fall into three categories: student, classroom, and teacher characteristics.

Student characteristics include a student’s race, family income, gender, etc.,

and classroom characteristics include class size, and characteristics of the class

as a whole, such as the percent of students who are a specific race or socio-

economic status. Finally, teacher characteristics include the number of years

a teacher has been at her current school and overall years of experience. This

information is used to then isolate the effects of teachers and schools on student

learning, which helps narrow the evaluation, focusing on accountability more

than student improvement. Additionally, VAM can be a tool to help educate

teachers. It is used to determine if a teacher is effective or ineffective. Common

characteristics or teaching styles among effective teachers may then be exposed,

and action can be taken to improve the skills of teachers who have been deemed

less effective.

More specifically, VAM uses linear regression to create a model to measure

teacher effectiveness. The purpose is to isolate the influence of a teacher by

incorporating explanatory variables into the model in an attempt to remove the

effect of extraneous influences, where the coefficient of interest will simply be

teacher value added.
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1.2 Reception of VAM

The adoption of VAM in teacher assessment is a controversial topic in the ed-

ucation world [4]. Proponents of the method believe that it increases account-

ability, as well as transparency. Education reformers support the use of VAM

because it serves as a tangible measure of the skills of teachers, as related to

how well students are performing. The LA Times received student informa-

tion and test scores from about 6,000 elementary schools in the district and

created a model to evaluate the teachers. The data came from test scores in

math and English language arts from 2003-2010. The newspaper then pub-

lished the results and created a searchable database, which can be accessed at

http://projects.latimes.com/value-added/, where those interested could

search a teacher or school by name and obtain the results of the analysis [10].

Proponents of VAM claimed that the works of the Times created more trans-

parency in teacher evaluations and rightfully made that information public. Ad-

ditionally, those in favor of VAM argue that it creates a more financially efficient

and less subjective evaluation system. Instead of sending an evaluator into every

teacher’s classroom for a day or even half a day in order to assess that teacher’s

performance, the method allows computational assessment through data, which

is much more financially efficient than employing evaluators to send to thou-

sands of teachers’ classrooms and allows for a more objective and standardized

method of evaluation.

Opponents of the use of VAM claim that it relies too heavily on the use of

standardized test scores to evaluate teachers [11]. While the debate regarding

the use of standardized testing to assess students’ knowledge and capabilities is

a different topic entirely, it can be argued that standardized tests are not a suffi-

cient tool to measure how much a student has learned or how much a teacher has

taught. There are many areas in which a student can excel while still performing
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poorly on standardized tests [1]. Furthermore, in many cases, the teacher’s ca-

reer, pay, or even opportunity for tenure relies heavily on how students perform

on tests. One could argue that a student does not have much incentive to try

his or her best, however the tests are very influential on teachers’ performance

outcomes. This also creates an incentive for a teacher to “teach to the test,”

teaching students the specific information that is tested on instead of teaching

students how to think, how to critically evaluate concepts and ideas, or even

for the sole purpose of learning. Another critique is that, when using the VAM,

teachers are ranked against each other. After each teacher receives a score,

those scores are ranked against other teacher in the same school or district [4].

Rather than having a baseline score for what is considered a “good/effective”

teacher, the ranking system simply compares teachers; a school where the vast

majority of teachers are excellent will still have half the teachers perform below

the median with this model.

1.3 Linear Regression

VAM uses linear regression to create a model to measure teacher effectiveness.

The following is an explanation of basic linear regression, as explained by De-

Groot and Schervish [3].

The goal of linear regression is to model the relationship between the dependent

or response variable, Y , and the explanatory variables, X1, X2, . . . , Xi. This is

achieved by estimating the parameters β1, β2, . . . , βi to predict Y . The method

of least squares estimates the parameters by minimizing the sum of squared

residuals.

The standard linear regression model:

Yi = βo + β1Xi1 + β2Xi2 + ...+ βp−1Xi,p−1 + εi
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with εi ∼ N(0, σ2)

can be written in matrix notation as

Y = Xβ + ε

where each term represents a vector or matrix of variables.

Y =



Y1

Y2
...

Yn


X =



1 X11 X12 . . . X1,p−1

1 X21 X22 . . . X2,p−1
...

...
...

. . .
...

1 Xn1 Xn2 . . . Xn,p−1



β =



β0

β1
...

βp−1


ε =



ε1

ε2
...

εp−1


Considering the equation

Q =
∑

(Yi − βo − β1Xi1 − β2Xi2 − ...− βp−1Xi,p−1)2

the estimated bi will be those values of βi that minimize Q.

Using matrix notation, we see that

Q = (Y −Xβ)t(Y − xβ)

and we need to minimize Q. This can be achieved by taking the derivative at

each β and setting that derivative equal to zero.

∂Q

∂β0
= 2

n∑
i=1

(Yi −Xiβ)(−1) = 0

∂Q

∂β1
= 2

n∑
i=1

(Yi −Xiβ)(−Xi1) = 0

...

∂Q

∂βj
= 2

n∑
i=1

(Yi −Xiβ)(−Xij) = 0
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which, in matrix notation, is the same as solving the equation

(Y −Xβ)t(−X) = 0

Y tX +XtXβ = 0

=⇒ XtXβ = Y tX

=⇒ b = [XTX]−1XTY

where b is the vector of the estimates of βi. Estimating this the coefficients in

this manner is known as the method of least squares. Using the least squares

estimates as a function of Y , we can also look at the variance and expectation

of b.

var(b) = var[(XtX)−1XtY ]

= (XtX)−1Xtvar(Y )X(XtX)−1

= (XtX)−1Xt · σ2 · I ·X(XtX)−1

= σ2 · (XtX)−1

if var(Y ) = σ2 · I. We can also see that

E(b) = E((XtX)−1XtY )

= (XtX)−1XtE(Y )

= (XtX)−1XtXβ

= β

The expectation of b shows that the estimate is unbiased since E(b) = β.
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Chapter 2

Multilevel Regression

2.1 Motivation for the Different Models

Throughout this section, I will create a Value Added Model using different

methods of regression. For all the models, the assumption exists that students

take multiple standardized test per year (for example, one per month), which

allows for more observations. The regression equations will utilize the terms Yk

representing test scores, Tk and Mathk which are indicator variables as defined

in the following section, εk which is the normally distributed error term, and βi,

the parameter(s) for the explanatory variable(s). Finally, the error structures

throughout the three different models will be important, and a key difference in

determining the accuracy of the models.

2.2 Model 0

The first method, Model 0, is basic linear regression using method of least

squares estimation. In order to simplify the derivations and motivation, I will

restrict the many possible variables to only two. Additionally, the subscript k

represents the observation. One observation includes a test score, whether that
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test was math or ELA, and whether the student had the teacher of interest.

These three components together form a single observation, k. Model 0 is as

follows:

Yk = β0 + β1Tk + β2Mathk + β3TkMathk + εk

where εk ∼ N(0, σ2)

Tk =


1 if kth observation had teacher of interest

0 else

Mathk =


1 if kth score is from a math test

0 if kth score is from an ELA test

In the model above, β1 is the crucial component. This parameter is the measure

of a teacher’s influence, thus produces the value, or score, of interest. Eventu-

ally, the main question will be whether β1 is 0. The error term in Model 0, εk,

is normally distributed and represents the error in each observation, k.

The main problem with using the method of least squares for this type of dataset

is that it operates under the assumption that all observations, or all test scores,

are independent. This is not the case. We could have, for example, six test

scores from one student and four from another. Each test score is treated as an

independent observation, disregarding the fact that multiple test scores come

from the same student. The lack of independence violates the assumption made

in Section 1.3 that the var(Y ) = σ2 · I. Inherent in the variance is the fact that

cov(Yi, Yj) = 0, which is not necessarily true if the observations are not inde-

pendent. The lack of independence causes the allusion that the sample size is

very large (assuming each observation is independent), which will consequently

underestimate the amount of variability in our model. The underestimation

of the variance will then overestimate the test statistic and result in a lower
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p-value. The decreased p-value produces more false positives meaning the coef-

ficients (βs) will seem positive when they may not be. Teachers may seem more

effective than the data suggests. Therefore, we need an alternative method for

creating the model.

2.3 Multilevel Regression - Method 1

Due to the inaccuracy of Model 0, we need a slightly different method of esti-

mation. The model is the first method of multilevel regression, Model 1, is split

into two different levels, and the estimates from the first level are incorporated

into the equation in the second level. Further explanation of multilevel regres-

sion can be found in Broadening Your Statistical Horizons: Generalized Linear

Models and Multilevel Models [6].

Level 1

Yij = λ0i + λ1iMathij + εij

where εj ∼ N(0, σ2) and

Mathij =


1 Score comes from a math test

0 Score comes from an ELA test

Level 2

λ0i = β00 + β01Ti + ε0i

λ1i = β10 + β11Ti + ε1i

where Ti = 1 if Student i has the teacher in question and

ε0i
ε1i

 ∼ N(
0

0

 ,
σ2

0 0

0 σ2
1

)
In these equations, i represents the ith student and j provides a way to index

student i’s tests. The subscript k is no longer used because we are no longer
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considering the test score, subject, and teacher together as one “observation.”

Instead, we are utilizing each test score from each student for whom we have

data. ε0i is the error term for students’ math test scores, and ε1i is the error

term for students’ ELA test scores.

For each student i, Level 1 will estimate a λ0 and a λ1; if there are n students,

then there will be n pairs of λ estimations. In this level, the estimations are as

follows:

λ̂0i = average ELA test score for student i

λ̂0i + λ̂1i = average math test score for student i

In Level 2, the estimates are used within the linear regression on the second set

of equations. The focus then turns to the β estimates. To find the meaning of

these estimations, consider the expectation of each equation in Level 2.

Tk = 1⇒ E(Y ) = β00 + β01 + β10 + β11

Tk = 0⇒ E(Y ) = β00 + β10

∴ β̂01 + β̂11 = Estimate of value added measure of teacher of interest to Math

Similarly, for ELA scores,

Tk = 1⇒ E(Y ) = β00 + β01

Tk = 0⇒ E(Y ) = β00

∴ β̂01 = Estimate of value added measure of teacher of interest to ELA
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After looking at the expectations, it is also helpful to compute the variance.

However, we must first write Model 1 in composite form to make the compu-

tation of the variance more clear. The composite model is simply formed by

replacing the λs in Level 1 with the equivalent equations from Level 2.

Yij = β00 + β10Ti + ε0i + β10Mathij + β11TiMathij + ε1iMathij + εij

var(Yij) = var(β00 + β10Ti + β10Mathij + β11TiMathij + ε0i + ε1iMathij + εij)

= var(ε0i + ε1iMathij + εij) (After removing the constants)

= var(ε0i + ε1iMathij) + var(εij) (Because of independence)

= var(ε0i) +Math2ijvar(ε1i) + 2Mathijcov(ε0i, ε1i) + var(εij)

= σ2
0 +Mathijσ

2
1 + σ2 (Since cov(ε0i, ε1i) = 0)

As shown above, Model 1 addresses the lack of independence that existed in

Model 0 by running the regression for each individual student, ensuring that test

scores from the same student are all used simultaneously. While this method of

multilevel regression is more accurate than Model 0, it does have some draw-

backs. First, this method does not account for correlation between test scores

of different subjects from the same student. Although it does account for cor-

relation between same subject test scores from the same student (as was the

goal in fixing the problem of independence found in Model 0), Model 1 does not

address the correlation of a student’s test scores in different subjects. In Level

2, there are two separate equations used, one for Math scores and one for ELA

scores. Thus, there is no connection between the two equations, i.e., no connec-

tion between the two different subjects, even if the scores came from the same

student. Another drawback of this method is that it gives equal weight to each

student, regardless of the number of test scores available from that student. A

student who has 8 observations (test scores) is given equal weight as a student

who only has 4 observations.
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2.4 Multilevel Regression - Method 2

In an attempt to address the drawbacks of Model 1, the second method of

multilevel regression, Model 2, uses similar equations from the two separate

levels of Model 1, but combines the equations into a composite model to allow

correlation between the components of Model 1.

Composite Model

Yij = [β00 + β10Ti + β10Mathij + β11TiMathij ] + [ε0i + ε1iMathij + εij ]

with εij ∼ N(0, σ2) andε0i
ε1i

 ∼ N(
0

0

 ,
 σ2

0

σ01 σ2
1

)

The two levels in this method are very similar to those in Method 1, with the

variables and parameters equivalently defined. This method uses Maximum

Likelihood Estimation to estimate the 8 parameters, the βs and the σs. The

term in the bottom left corner of the variance components matrix, σ01, is key.

Model 2 includes a covariance term between math and ELA, which accounts for

the correlation between tests in Math and English Language Arts from the same

student. Since Model 2 accounts for this correlation, the distribution matrix of

the error terms ε0i and ε1i must include the covariance term σ01. This error

structure does make the coefficients harder to estimate.

Recall that ε0i represents the person to person variability associated with dif-

ferences in the intercept in the math scores equation, meaning the deviation of

student i from the mean test scores after accounting for the teacher. ε1i signifies

differences in slope, meaning the deviation of student i from the mean differ-

ences in test scores after accounting for the teacher. The intercept and slope are

negatively correlated, which implies that an improved model is one that gives

multivariate structure to the error terms.

13



We can also look at the expectation and variance of the model.

E(Yij) = β00 + β10Ti + β10Mathij + β11TiMathij

The expectation exhibits the important parameters and what they signify, as

shown in Section 2.2.

var(Yij) = var(β00 + β10Ti + β10Mathij + β11TiMathij + ε0i + ε1iMathij + εij)

= var(ε0i + ε1iMathij + εij) (After removing the constants)

= var(ε0i + ε1iMathij) + var(εij) (Because of independence)

= var(ε0i) +Math2ijvar(ε1i) + 2Mathijcov(ε0i, ε1i) + var(εij)

= σ2
0 +Mathijσ

2
1 + 2Mathijσ01 + σ2

The additional allowance for correlation between students’ scores in Math and

ELA in Method 2 leads to the correlation in error structure, seen both here

with the existence of σ01 in the variance as well as in the variance components

matrix on the previous page.

2.5 Restricted Maximum Likelihood Estimation

The method of least squares was explained in a previous section, however, that

method of estimation is not sufficient when estimating parameters from the two-

level model, especially when estimating the variance components. This is where

restricted maximum likelihood estimation is useful.

To begin, restricted maximum likelihood estimation (REML) takes the regres-

sion residuals from the fixed effects section of the model and considers what the

statistical model is for those residuals. Then, we perform maximum likelihood
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estimation on the residuals; the results are estimates of the variance compo-

nents, which are the estimates of interest. REML adjusts the estimates of the

variance for the fact that we are using residuals. Conceptually, the variance is

supposed to measure how far data points are from the population line. Instead,

the variance components measure how far the points are from the sample line,

which leads to the underestimation of parameters. This is why REML is used.

REML produces unbiased estimates of variance components and is more useful

in this situation since maximum likelihood estimates are biased. The way the

estimates are adjusted towards unbiasedness is by using a denominator of n− p

for the error variance, where p is the number of fixed effects parameters, as

stated by Oehlert and shown below [8].

MLE of σ2:

σ̂2 =

∑
(Xi − X̄)2

n

where

σ2 = E(X − µ)2 ≈ 1

N

N∑
i=1

(Xi − µ)2

We can also compute the following expectation

E(Σ(Xi − X̄)2) = E[Σ(Xi − µ+ µ− X̄)2]

= E(Σ[(Xi − µ)2 + (µ− X̄)2 + 2(Xi − µ)(µ− X̄)])

= ΣE(Xi − µ)2 + n · E(µ− X̄)2 + 2E[(µ− X̄)Σ(Xi − µ)]

= ΣE(Xi − µ)2 + n · E(µ− X̄)2 − 2E(X̄ − µ)2

= Σσ2 + n · σ
2

n
− 2σ2

E(Σ(Xi − X̄)2) = (n− 1)σ2

and we know

E(σ̂2) =
n− 1

n
σ2
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The above expectation shows that the MLE is biased (it underestimates σ2 on

average). Due to this underestimation, we use

σ̃2 =

∑
(Xi − X̄)2

n− 1

⇒ E(σ̃2) = σ2

The point is that MLE’s are often biased because they maximize the likeli-

hood based on parameter estimates instead of true parameters. As seen above,

E(
∑

(Xi− X̄)2) < E(
∑

(Xi−µ)2). Thus, we use REML because it adjusts the

estimate of the variance, making it unbiased.
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Chapter 3

Application

3.1 New York Model

Thus far, a value added model containing only two of the possible variables

representing characteristics that influence education has been presented. The

following is an actual model used in school districts in New York, as discussed in

the technical report published by the Wisconsin Center for Educational Research

[2].

Y1i = ζ + λy0i + λaltyalt0i + β′Xi + γ′Zi + α′Ji + εi (3.1)

Y1i: Measured student achievement

ζ: intercept parameter

y0i, y
alt
0i : true prior achievement (same and other subject)

λ, λalt: slope parameters

β′, γ′: slope parameters

Xi: vector of student characteristics of student i

Zi: vector of student i’s classroom characteristics

Ji: vector of teacher indicators
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α: vector of teach value-added effects

εi: error in predicting student achievement, given the explanatory variables

3.2 Multilevel Regression

Level 1

The first level of regression addresses student level variables. In this level, the

parameters λ and β will be estimated, as the coefficients of pretest scores and

demographic variables, respectively. The equation

Y1i = λY0i + λaltY alt
0i + βXi + αCi + εi

can be written in vector form as

Yt = Yt−1λ+Wδ + ε

where Yt represents post test scores, Yt−1 represents same-subject and alternate-

subject pre-test scores, λ is a vector of coefficients of those pre-test scores, W is

comprised of the student and classroom variables, δ is a vector of those variables’

coefficients, and ε is the vector of error terms. As seen in Section 1.3, the method

of least squares would result in biased estimates in the form ofλ̂
δ̂

 =

Y ′t−1Yt−1 Y ′t−1W

W ′Yt−1 W ′W

−1 ×
Y ′t−1Yt
W ′Yt


which is the same for as

b = [XTX]−1XTY

Due to accuracy errors stemming from measurement error, the following is the

measurement error corrected regression, as explained in Fuller’s Measurement

Error Models [5].The adjusted estimates of the coefficients in the vectors λ and

δ are

18



λ̂
δ̂

 =

Y ′t−1Yt−1 −
N∑
i

semit−1 Y ′t−1W

W ′Yt−1 W ′W


−1

×

Y ′t−1Yt
W ′Yt

 (3.2)

where semit−1 is the variance-covariance matrix of measurement errors of

test scores for student i at time t− 1.

When considering the explanatory variables, the variable’s effects are consid-

ered random if the levels of the variable included in the model can be thought

of as a sample drawn from a larger population of potential levels that could

have been selected [7]. The extra variability is accounted for by estimating the

coefficients using the adjusted estimates of λ and δ, which include semit−1.

Level 2

In the second level, the regression will produce estimates of γ, as the parameter

for classroom level variables in equation 3.1. Using the estimations from Level

1, we can create an estimate for the variable q1i by letting q1i = Y1i − λ̂Y0i −

λ̂altY alt
0i − β̂Xi as estimated in equation 3.2. Then, q1i becomes the response

variable for this second level of regression.

q1i = ζ + γZi + wi

where wi = αJi + εi but is simply treated as the error term in Level 2 modeling.

The second level of regression will result in estimates for γ, again, incorporating

the estimates from the first level.

Level 3

After controlling for student level and classroom level variables, the third stage

will take that information into account while estimating teacher influence, α.

We know

19



q1i = Y1i − λY0i − λaltY alt
0i − βXi and q1i = ζ + γZi + wi

which results in our level 3 model:

wi = αJi + εi

where wi = Y1i − ζ − λY0i − λaltY alt
0i − βXi − γZi and α is the measure of in-

terest. All of the necessary parameters and pieces are estimated in the previous

two levels of regression. In Level 3, we use those estimates to find wi, which

produces the α value of interest.

While it was not explicitly stated in the technical report that explained the

formation of this model, it is clear from the idea and usage of the multilevel

regression that an important component is the variance matrix and how it de-

scribes the dependence and correlation between the estimations of parameters.
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Chapter 4

Conclusion

As shown above, method of least squares estimation is not an adequate way to

create a value added model for teacher assessment. Thus, multilevel regression

is used. Model 1 of multilevel regression attempts to address the issues regard-

ing independence faced by using basic linear regression. However, Model 2 does

a better job of dealing with the dependence in measured variables. While con-

troversy does exist around Value Added Modeling, concerning whether teacher

pay or job security should be based on student test scores, and furthermore,

whether standardized test scores are truly an adequate metric for what or how

much a student has learned, multilevel regression is an appropriate method for

creating a value added model.
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