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Abstract

Gene ontology (GO) terms describe functions of genes and may occur in
different amounts due to differing conditions. The hypergeometric distri-
bution can be used to determine whether or not a GO term is overrepre-
sented. Two approaches that apply the hypergeometric distribution are
the term-for-term and parent-child methods. The term-for-term approach de-
tects overrepresentation of GO terms individually; however, some terms
are falsely highlighted as being overrepresented due to the complex rela-
tionships between terms which leads to inaccurate biological interpreta-
tions. The parent-child method addresses these issues by taking into account
the relationships of GO terms with one another, allowing for more accurate
analyses.
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Chapter 1

Introduction

Differential expression of genes is part of a process in which cells from
a species attempt to adapt to changed environments. Microarray experi-
ments serve to measure discrepancies in gene expression for cells raised in
differing conditions compared to cells raised in normal conditions[1].

Suppose researchers want to identify the difference in the level of gene
expression between normal yeast cells and nutrient-deprived yeast cells.
The genes from the two types of cells will form two different samples, and
the difference in gene expression in the two samples can be compared by
using microarrays. The genes that are differentially expressed by t-tests
will form the study set while the population set will consist of the genes
that are of interest or all the genes in the yeast cell.

Gene ontology (GO) terms provide a universal language for researchers
to use that categorizes each indiviual gene and its related function. When
many or all of the GO terms are combined, a directed acyclic graph forms
to show the relationships between the GO terms and their connections to
surrounding terms, illuminating parent and child relationships. The graph
demonstrates how GO terms are not independent of each other, and in fact,
each term is dependent on many other terms[2]. The true-path-rule states
that if a gene annotates to a certain GO term, then that gene will also an-
notate to all of the parent terms, or less specific terms, of that GO term[3].
For example, regulation of immune response is the child of immune response.
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All genes that annotate to regulation of immune response will also annotate to
immune response. The existence of the true-path-rule can create issues when
statistical tests are used to determine whether or not a gene ontology term
is overrepresented, or occurs more often than expected by chance.

The hypergeometric distribution is used to determine if a GO term is
overrepresented in a study set[3]. The hypergeometric distribution assumes
that each element that is taken into consideration is independent of all
other elements[4]. However, complications arise when determining over-
representation of more than one GO term. It is reasonable to use a simple
hypergeometric distribution for just one GO term; however, determining
overrepresentation of the next GO term is not independent from the first
GO term because it may be the parent or child of the previous GO term. If
one GO term is overrepresented, its children terms may also have a higher
chance of being overrepresented.

Two methods that use the hypergeometric distribution to find overrep-
resentation of GO terms, analyzed by Grossmann et al. [2007] are the term-
for-term and parent-child approach. While the term-for-term approach does
not account for the dependency issues between parent and child GO terms,
the parent-child approach does. The term-for-term approach analyzes each
GO term separately from all other terms and applies the basic form of the
hypergeometric distribution. However, since the parent-child method takes
the relationship between parent and child terms into account, the hyper-
geometric distribution that is used is slightly altered by conditioning the
term of interest on its parents. A comparison of these two methods shows
that the parent-child method is superior to the term-for-term approach since
it accounts for the interrelatedness of GO terms[3].

The remainder of this paper is organized as follows: In Chapter 2, back-
ground information will be given on gene ontology terms and microarrays.
In Chapter 3, the hypergeometric distribution will be explained. Over-
representation of GO terms and the simulation done by Grossmann et al.
[2007] will be covered in Chapter 4 followed by the issues of multiple test-
ing in Chapter 5. Finally, the biological significance of choosing between
the parent-child and term-for-term approach will be addressed in the conclu-
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sion.





Chapter 2

Background

2.1 Gene Ontology

Gene ontology is an attempt to provide a uniform record of all known genes
and their functions by annotating the genes to certain gene ontology cate-
gories (or terms)[2]. Having such a catalog allows for examination of the
function of genes throughout different experimental conditions, by provid-
ing researchers a specific language to use when examining genes for the
particular goals of the study. Examples of gene ontology terms are DNA
replication, DNA binding, immune response and so forth.

There are three main subontologies of GO terms: biological process, molec-
ular function, and cellular component. All genes annotate to at least one term
in each subontology[2].

The first subontolgy, biological process, describes the biological outcome
that usually involves a chemical or physical transformation[2]. Some exam-
ples of terms that fall under biological process include cell growth and mainte-
nance and translation. The terms that fall under biological process describe
the biological outcome.

The next subontology, molecular function, describes the chemical com-
ponent of a biological process such as the specific bindings to ligands[2].
Examples of terms that fall under molecular function include enzyme and
adenylate cyclase.
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The last subontology, cellular component, describes where the biological
process takes place[2]. Examples include the ribosome and the nuclear mem-
brane.

All GO terms are connected in a network, such as a directed acyclic
graph[2]. The graphs identify the connections between the parent and child
terms. The parent terms are broader, whereas the child terms describe spe-
cific aspects of the parent term. For example, regulation of immune response
is a child of immune response. A child term can be a parent for a different
term and a parent can be a child of a different term. For example, response
to stress is the child of response to stimuli and the parent of response to wound-
ing. GO terms may also have more than one parent[2]. DNA ligation is the
child of DNA replication, DNA repair, and DNA recombination.

The complex relationships between the GO terms can make analyses of
overrepresentation of particular GO categories much more difficult.

2.2 Microarrays

Genes are segments of DNA that code for proteins. The formation of pro-
tein occurs through two processes: transcription and translation. Transcrip-
tion is where DNA is transcribed, and mRNA, the complementary strand
of DNA, is formed. During translation, mRNA is used to produce an amino
acid chain that eventually becomes a protein[5].

The purpose of using DNA microarrays is to look at the expression lev-
els of many genes at the same time under particular experimental conditions[1].
Different gene expressions occur when specific genes are turned on or off at
different times. One purpose of using microarrays is to identify a subset of
genes that are differentially expressed under two conditions by comparing
every gene of interest[1].

When using DNA microarray, the genes of interest which contain many
individual DNA sequences, are printed on a chip. In order to compare the
genes of the two different samples, first mRNA is isolated and cDNA is
produced by reverse transcription. The cDNA is labeled with different flu-
orescent dyes for the two samples and are merged and matched onto their
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respective locations to the DNA on the chip. The intensity of the fluores-
cent dyes between the two samples identifies which genes are differentially
expressed since the amount of dye varies for each gene in the two sam-
ples. The intensity of the dye can convey how much that DNA sequence is
replicated (and therefore producing mRNA and later amina acids). If the
intensity of the dye is strong, then it can tell whether any of the terms occur
more than expected or if the terms are being overrepresented[1].





Chapter 3

Hypergeometric Distribution

The hypergeometric distribution describes the probabilities associated with
sampling randomly without replacement from a finite population where
all elements have an equal chance of being drawn[4]. Because elements are
not being replaced, each selection influences the number of individuals of a
certain type that are left in a population, making each selection dependent
on the previous selections, unlike the binomial distribution which is based
on independent trials.

3.1 Distinct Elements

In order to understand the hypergeometric distribution, first consider a
population with a certain number of unique elements. Suppose elements
are being drawn one by one randomly without replacement. Let N be the
population size and let n be the sample size where n<N. Next, let (N)n be
the number of different possible orderings of n out of N elements[4].

(N)n = N(N − 1)(N − 2)...(N − n+ 1) (3.1)

Choosing is the process of selecting elements from a group of elements
where order does not matter. Ordering, however, does take into account
which element is chosen first, second, etc. From Equation (3.1), we have N
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different ways to select the first element. After the first unique element has
been drawn, we only have N −1 left and after the second element has been
drawn we only have N − 2 unique elements left and so forth. For the last
draw, we will have N − n+ 1 elements left. For example, suppose we have
20 distinct elements and we want to order all 20 of them. The last draw will
only have 20-20+1=1 element left; therefore, there is only one way to select
the last element if all elements are being drawn.

An example: Suppose you have 20 different elements. Let the elements
be different colored balls (red, blue, green, purple...). How many ways are
there to order 3 out of the 20 elements without repeating any colors? Here
N=20 and n=3.

(20)3 = 20(20− 1)(20− 2)

= 20(19)(18)

= 6840

There are 6840 ways to select 3 different colored balls out of 20, where
order matters.

3.2 Elements of the Same Type

The number of ways of choosing n out of N where order doesn’t matter is
denoted as

(
N
n

)
called N choose n[4].

(
N

n

)
=

N !

n!(N − n)!
(3.2)

In Equation (3.2), N! gives all the ways to order N things, as shown in
Equation (3.1). Consider the N elements broken into the first n and the next
(N − n). Because order does not matter, we can choose the same n items
first in n! different ways. So, we divide by n! because within N! there are
n! repeats of the items of interest (the chosen ones) and (N − n)! repeats of
the items that are not of interest (the unchosen ones). A repeat occurs when
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the same items are drawn but in a different order.
The number of ways to choose n elements from N elements is

(
N
n

)
and

the number of ways of ordering the elements is n![4]. Multiplying the two
together will give the number of different possible orderings of n out of N
elements:

(N)n =

(
N

n

)
n! (3.3)

Another way of writing the equation for
(
N
n

)
is by rearranging the equa-

tion above: (
N

n

)
=

(N)n
n!

(3.4)

Now instead of having all different elements, let the population consist
of only green, G, and blue, B, balls, where G+B=N is the total number of
balls in the population. One way of getting g green and b blue balls such
that g+b=n is by drawing g green balls in the first g trials and then drawing
b blue balls in the next b trials. Consider selecting n balls from N:

P (g green followed by b blue balls) = (
G

N
)(
G− 1

N − 1
)...(

G− g + 1

N − g + 1
)(

B

N − g
)(

B − 1

N − g − 1
)..

.. (
B − b+ 1

N − g − b+ 1
)

=
(G)g(B)b

(N)n
(3.5)

Note that Equation (3.5) gives the probability for some explicit order
or only one of the ways to draw g green and b blue balls. This means
that the P (1 green, b blue, (g − 1) green) will also be the same as Equa-
tion (3.5). However, there are many different possible ways of drawing the
balls. In order to find the probability of g green and b blue in any order, the
previous equation needs to be multiplied by

(
n
g

)
, the number of different

combinations[4]. We can think about the number of different combinations
the following way: we arrange the n items by picking the g spots for green
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and filling in the remaining (n − g) or b spots for blue. This will give the
equation:

P (g green and b blue balls in any order) =

(
n

g

)
(G)g(B)b

(N)n

=
n!

g!b!

(
G
g

)
g!
(
B
b

)
b!(

N
n

)
n!

=

(
G
g

)(
B
b

)(
N
n

) (3.6)

Equation (3.6) gives the total number of possible unordered samples
with g green and b blue balls out of all possible unordered samples of size n.
Multiplying

(
G
g

)
by
(
B
b

)
will give the number of possible unordered samples

with g green and b blue balls.
In a more general form: If N denotes the total population size, consist-

ing of M marked elements and N −M unmarked elements, the the proba-
bility of drawing k marked elements in a sample size of n will be [4]:

X = number of marked elements when selecting n items from a population of size N

X ∼ Hypergeometric(M,N, n)

P ( X = K) =

(
M
k

)(
N−M
n−k

)(
N
n

) (3.7)

Example: Suppose an urn consists of 50 balls. Out of the 50 balls, 20
are green and 30 are blue. If 10 balls were drawn randomly, what is the
probability of having exactly 5 green balls?

P (X = 5) =

(
20
5

)(
50−20
10−5

)(
50
10

)
= 0.215

The probability of drawing 10 balls from 50 balls with exactly 5 green
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balls is 0.215.





Chapter 4

Overrepresentation of Gene
Ontology Terms

Suppose that the goal of an experiment is to find the genetic factors that dif-
ferentiate yeast cells in a normal environment from yeast cells in a changed
environment. In order to answer the question of the experiment, gene ex-
pressions from yeast cells in a normal environment can be compared to
gene expressions from yeast cells in the changed environment using mi-
croarrays. Our population set will consist of the genes on the microarray
chip (i.e., those measured in our experiment), which may contain all the
genes in the yeast cell. To determine which genes will be contained in our
study set, we need to find the genes that are differentially expressed be-
tween the control group (genes from normal cells) and the experimental
group (genes from changed cells). A t-test is a test of means; for each gene,
the average gene expression from the control group will be compared to the
average gene expression from the experimental group to see if they are sig-
nificantly different (i.e., whether the difference in averages are bigger than
would be expected given the inherent variability in the samples). There are
multiple replicates for both the control and experimental group. From the
replicates, the average of the gene expression level for each gene in the con-
trol and experimental group can be calculated and compared. A t-test will
be used for each gene to assess the differential expression and produce a
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p-value. The study set will be defined as all the genes that were considered
to be significant by the t-test (e.g., p-value ≤ 0.05).

Let our control group be all the genes in a yeast cell raised in a normal
environment and our experimental group be all the genes in a yeast cell
raised in a nutrient-deprived environment. Suppose that the population
set contains all the genes in a yeast cell, G genes in total. The microarray
chip will also consist of G genes. In order to compare the nutrient deprived
condition with the normal condition, all the samples will be used to do one
t-test per gene. We will get G p-values, and the n genes that are differ-
entially expressed (i.e., have significant p-values) will become part of our
study set.

After the study set is determined, it is important to see if there are any
GO terms in the study set that are significantly overrepresented. Overrep-
resentation occurs when the number of genes that annotate to a specific
GO term is higher than expected by chance when considering the number
of genes annotated to the GO term in the population. For example, suppose
1% of all genes in the population annotate to the GO term vitamin synthe-
sis, yet we find that 5% of the genes in our study set annotate to vitamin
synthesis. If this increase in percentage for vitamin synthesis in our study
set cannot be attributed to chance, then the GO term, vitamin synthesis, is
significantly overrepresented. We use the hypergeometric distribution to
model chance behavior of selecting genes from the population to be in the
study set because we can model chance selection of genes into the study
set using the same ideas of selecting balls from an urn without replace-
ment. However, testing for overrepresentation of GO terms is not always
straightforward.

4.1 Term-for-Term

One method of analyzing overrepresentation is the term-for-term approach.
The term-for-term approach is the simplest method for calculating overrep-
resentation of a single GO term. When using this approach, each GO term
is analyzed individually to see if it is significantly overrepresented by using
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the hypergeometric distribution. The hypergeometric distribution is used
to compare the number of genes that annotate to a specific GO term in the
study set versus the number of genes we would expect to annotate to that
specific GO term in a randomly drawn subset of the population, which is
the same size as the study set[3].

Let P be the population of size m that consists of all genes on the mi-
croarray that each annotate to at least one GO term, S be the study set of
size n of genes that are differentially expressed, as defined previously, and
t be the GO term of interest. Further notation gives Pt as the set of genes
of size mt in the population that annotate to the GO term of interest, t, and
St as the set of genes of size nt in the study set that annotate to t. Let Σ

be the subset of size n that is drawn randomly from the population. Σt are
the genes in Σ that annotate to t in the random subset and let the number
of genes in Σt be denoted by σt. The probability of getting exactly k anno-
tations in the random subset from the population can be calculated by the
hypergeometric distribution defined in Chapter 3 [3]:

P (σt = k) =

(
mt

k

)(
m−mt

n−k
)(

m
n

) (4.1)

Equation (4.1) gives the likelihood of obtaining k genes which annotate
to t in a randomly chosen subset of size n from the population P. However,
we are actually interested in getting nt annotations or more becase we are
looking for our data, nt, or more extreme, the p-value. The probability of
getting nt or more genes that annotate to t if we sample n genes randomly
from our population can be calculated by the cumulative hypergeometric
distribution [3]:

P (σt ≥ nt) =

min(mt,n)∑
k=nt

(
mt

k

)(
m−mt

n−k
)(

m
n

) (4.2)

In Equation (4.2), we are calculating the probability of drawing nt genes
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or more that annotate to t by finding the number of ways of choosing k
genes that annotate to t from the total number of genes in the population
that annotate to t (i.e., mt) and the number of ways of drawing the remain-
ing genes in the study set (n − k) from the genes that don’t annotate to t
in the population (m −mt). Then, the relevant probability is calculated by
dividing by the number of ways of choosing the number of genes in the
study set (n) from the number of genes in the population (m). We only sum
up k ranging from nt to the minimum of mt, the number of genes in the
population that annotate to t, and n, the number of genes in the study set
because it is not certain which one is smaller. Both mt and n are bounds
on σt, the number of genes that annotate to t in the random subset from
the population. σt will never be greater than mt because mt is all of the
genes in the population that annotate to t, and the random subset is being
drawn from all of the genes in the population. σt will never be greater than
n because n is also the size of the random subset.

Since the term-for-term approach analyzes each GO term of interest in-
dividually, it does not take into account inherent relationships between the
GO terms. The true-path-rule states that when a gene annotates to a cer-
tain GO term, it also annotates to the parents of that specific term[3]. For
example, physiological response to wounding is the child of response to wound-
ing. This also means that response to wounding is the parent term of physi-
ological response to wounding. By the true-path-rule, all the genes that anno-
tate to physiological response to wounding also classify under the GO term
response to wounding. Because the term-for-term approach does not take
into account parent and child GO terms, this causes an inheritance prob-
lem, whereby the descendant terms of a specific GO term have a higher
chance of being significantly overrepresented if the parents of that term are
overrepresented[3]. If the children terms are significantly overrepresented,
then there is also a higher chance that the parents are significantly overrep-
resented. This is problematic because terms that are not overrepresented
show up inaccurately as such.
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4.2 Parent-Child

4.2.1 One Unique Parent

A method that measures for overrepresentation of gene terms is the parent-
child method. The parent-child method takes into account the parents of the
GO terms, which addresses the inheritance problem. This is done by altering
the term-for-term approach slightly. First consider the situation where the
GO term of interest, t, has only one parent, pa(t). Instead of randomly draw-
ing a general subset of size n from the population like the term-for-term ap-
proach, the parent-child method has the same number of genes that annotate
to the parent of t in the random subset as in the study set (σpa(t) = npa(t)).
The random subset is created by drawing a subset of size npa(t) from the
genes that annotate to the parent of t in the population, and the genes that
don’t annotate to the parent of t are disregarded. So unlike the term-for-term
method, the number of genes that annotate to pa(t) are the same in both the
study set and the subset of the population for the parent-child method. Since
conditioning on the same number of genes that annotate to the parent of t
in the study set and the random subset accounts for the inheritance problem
by looking for overrepresentation within the constraints of related terms,
there will be less of an influence of the parent term on the terms being ana-
lyzed for significance, thus lowering the problem of the inheritance effect[6].
The probability of drawing exactly nt genes that annotate to t, conditioned
on the fact that the number of genes that annotate to pa(t) are the same
in both the subset and study set can be calculated by the hypergeometric
distribution[3]:

P (σt = nt|σpa(t) = npa(t)) =

(
mt

nt

)(mpa(t)−mt

npa(t)−nt

)(
mpa(t)
npa(t)

) (4.3)

Equation (4.3) gives the probability of drawing the same number of
genes in our random subset that annotate to t (σt) as in our study set (nt)
conditioned on the fact that the number of genes that annotate to the par-
ent of t are the same in both the subset and the study set (σpa(t) = npa(t)).
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This can be achieved by finding the number of ways of selecting the nt
genes from mt, the number of genes in the population set that annotate to
t, and selecting the number of remaining genes in our study set (npa(t)−nt)
from the remaining number of genes in the population set ( mpa(t) − mt).
The relevant probability is divided by selecting the number of genes in the
study set that annotate to pa(t) (i.e., npa(t)) from the number of genes in the
population set that annotate to pa(t) (i.e., mpa(t)).

Once again, we are interested in finding the probability of our data or
more extreme (the p-value) in order to determine whether or not the over-
represetation of t is due to chance. This means that we want to find the
probability of randomly drawing nt or more genes that annotate to the GO
term of interest, conditioned on the fact that the number of genes that an-
notate to pa(t), the parent of t, are the same in both the random subset and
the study set. The p-value will be given by:

P (σt ≥ nt|σpa(t) = npa(t)) =

min(npa(t),mt)∑
k=nt

(
mt

k

)(mpa(t)−mt

npa(t)−k
)(

mpa(t)
npa(t)

) (4.4)

In Equation (4.4), we are finding the probability of selecting nt or more
genes that annotate to t. The number of ways of choosing k genes from the
number of genes that annotate to t in the population (mt) and the number
of ways of selecting the remaining genes that annotate the parent of t in
the study set after drawing k genes (npa(t) − k) from the remaining genes
that annotate to the parent of t in the population (mpa(t) − mt) is divided
by the number of ways of selecting the number of genes in the study set
that annotate to the parent of t (npa(t)) from the number of genes in the
population that annotate to the parent of t (mpa(t)). The sum only goes
from nt to the minimum of npa(t) and mt because like Equation (4.2), we do
not know which one will be greater. In general, the number of genes that
annotate to the parent of t will be greater, but if we have a smaller study
set, then the number of genes that annotate to the parent in the study set
will be smaller than the number of genes that annotate to t in the populaton
(mt). The number of genes that annotate to t in the random subset (σt) is
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bounded by the number of genes that annotate to t in the population (mt)
because it can never be greater since Σ, the random subset, is drawn from
the population. σt will also never be greater than npa(t), because we are
drawing npa(t) genes in the random subset.

4.2.2 Multiple Parents

Previously, in Equation (4.4), we assumed that the GO term of interest has
only one unique parent; however, typically each GO term has more than
one parent[6]. For example, physiological defense response and physiological
response to wounding are both parents of inflammatory response. Consider a
term of interest, t, and let one of the parents be t′ and pa(t) be all the parents
of t. In order to take into account all the parents of t, the genes belonging
to the set of parents of the term of interest in our study set is redefined as
genes that can annotate to any of the parents of t. This is called the parent-
child-union[6]. The number of genes that annotate to pa(t) now becomes:

npa(t) = |
⋃

t′∈pa(t)

St′ | (4.5)

In Equation (4.5), St′ is the set of genes that annotate to a particular
parent of t and the parents of t is defined as the set of genes in the union
of all St′ . npa(t) is redefined as the number of genes in the study set that
annotate to any of the parents of t. Like npa(t), mpa(t) is now the number
of genes in the population set that annotate to any of the parents of t, and
σpa(t) is the number of genes in our random subset of the population that
annotate to any of the parents of t.

The parent-child-intersection defines the set of parents of the term t as the
intersection of the sets of genes that annotate to a particular parent of t[3].
Mathematically, this becomes:

npa(t) = |
⋂

t′∈pa(t)

St′ | (4.6)
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In Equation (4.6), St′ is still the set of genes that annotate to a particular
parent of t; however, unlike Equation (4.5), the parents of t are now defined
as the intersection of all St′ . npa(t) is redefined as the number of genes in the
study set that annotate to all the parents of t. Likewise, mpa(t) is now the
number of genes in the population set that annotate to all of the parents of
t and σpa(t) is the number of genes in our random subset of the population
that annotate to all of the parents of t.

To help understand the parent-child-union and parent-child-intersection
method, consider the following example. Let P1, P2, and P3 be gene on-
tology terms and the parents of the GO term of interest, t. Suppose gene
1 annotates to P1, P2, and P3, and gene 2 only annotates to P1 and P2.
Both gene 1 and gene 2 would be included in the parent-child-union method
since this method includes all the genes annotated to any of P1, P2, and P3.
However, only gene 1 would be included in the parent-child-intersection
method since this method only includes genes that annotate to all P1, P2,
and P3.

The probability of getting nt or more genes for both the parent-child-
union and parent-child-intersection method is the same equation as the parent-
child method with one unique parent:

P (σt ≥ nt|σpa(t) = npa(t)) =

min(npa(t),mt)∑
k=nt

(
mt

k

)(mpa(t)−mt

npa(t)−k
)(

mpa(t)
npa(t)

) (4.7)

However, the number of genes that annotate to the parents of t in the
study set, population, and random subset (npa(t),mpa(t),σpa(t), respectively)
are now defined according to the parent-child-union or the parent-child-intersection
in Equations (4.5) and (4.6).

Example: Let the study set contain 100 genes where 3 of the genes anno-
tate to the term of interest, t. That is, of the 100 genes which were significant
in the experiment, 3 of them annotated to t. Suppose 35 of the 100 genes
in the study set annotate to the parents of t. Let the population consist of
1000 genes where 400 of the genes annotate to the parents of t and 12 of
the genes annotate to the term t. This means that out of all the genes in the
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population, we would only find 1.2% that annotated to our term of interest;
however we found 3% in our study set.

study set population

annotate to t: nt = 3 mt = 12

annotate to pa(t): npa(t) = 35 mpa(t) = 400

total: n = 100 m = 1000

We can use both the parent-child and term-for-term approach to calculate
the p-value and to see if the 3% was just due to chance. That is, we can find
the probability of getting at least 3 genes that annotate to t in a subset from
the population.

Term-for-term approach:

P (σt ≥ 3) =

min(n=100,mt=12)∑
k=3

(
12
3

)(
988
97

)(
1000
100

)
= 0.9151 (4.8)

Parent-child-union approach:

P (σt ≥ 3|σpa(t) = npa(t) = 35) =

min(npa(t)=400,mt=12)∑
k=3

(
12
3

)(
388
32

)(
400
35

)
= 0.93667 (4.9)

Note: Both the results of the term-for-term and parent-child approaches
are not significant. That is, an overrepresentation of 3% as compared to
1.2% is not significant.

Unlike Equation (4.8), Equation (4.9) is asking for the probability of get-
ting at least 3 genes that annotate to t if we know that 35 annotate to the
parents of t after removing the non-parents from the population. The term-
for-term approach will tend to have a smaller probability than the parent-
child approach since the denominator will tend to be greater in Equation
(4.8) than Equation (4.9). Even though the numerator in Equation (4.8)
is greater than the numerator in Equation (4.9), the denominator is more
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dominant and will affect the outcome more. It makes sense that Equation
(4.8) produces a smaller probability than Equation (4.9) because they are
both calculating the probability of seeing our data or more extreme, or the
p-value. If the p-value is small, there is a higher chance that the terms are
significantly overrepresented; however, we only want the terms that are
truly overrepresented to show up as such. Equation (4.9) should be cho-
sen over Equation (4.8) because the parent-child approach conditions on the
parents due to the inheritance problem and is more conservative. This means
that the parent-child approach is measuring the impact of term t within the
constraints of related terms.

In order to show that the parent-child approach is a more accurate method
than term-for-term approach for determining overrepresentation, Grossmann
et al. [2007] generated study sets with one specific GO term purposefully
overrepresented and compared the number of false positives and false neg-
atives using both the term-for-term approach and the parent-child approach.

4.3 False Positives

4.3.1 Simulating Data

Let the one specific GO term be known as tover(S). The population set con-
sists of genes that can be annotated to tover(S), Pt, and genes that cannot
be annotated to tover(S). To create artificial study sets where a GO term is
overrepresented, a certain percentage, also called term proportion was ran-
domly drawn from Pt, and a certain percentage, also called population pro-
portion was drawn from genes in the population that cannot be annotated
to tover(S)[6]. P-values can then be calculated for each term in the study set
by both the term-for-term approach and parent-child approach to see if the
terms were significantly overrepresented as was shown previously using
the hypergeometric distribution.

For example: Let the specific GO term of interest be immune response,
the term proportion be 0.75, and the population proportion be 0.10. This means
75% of all genes that can be be annotated to immune response from the pop-
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ulation are randomly drawn. The subset may contain genes that can be
directly annotated to immune response or annotated to a descendant of im-
mune response such as regulation of immune response. Next, 10% of the pop-
ulation of genes that could not be annotated to immune response are ran-
domly drawn. As a result, the study set contains genes that either can or
cannot be annotated to immune response with each group represented by set
proportions from their larger populations. A p-value, which calculates the
probability of getting our data or more extreme, for every GO term can then
be obtained by both the term-for-term and parent-child method to see if the
term immune response and its children are overrepresented.

Grossmann et al. [2007] generated 1115 study sets using genes from
S. cerevisiae where one GO term was purposefully overrepresented. The
term-for-term and parent-child methods were compared using different com-
binations of term proportions of 0.75, 0.50, and 0.25 and population proportions
of 0.10 and 0.20. In all the different combinations of term and population pro-
portions the parent-child method was superior to the term-for-term method
in that the term-for-term method highlighted more terms that were actually
not overrepresented as being overrepresented. The comparison between
the two methods can be shown by using receiver operating characteristic
(ROC) curves which is explained later in Chapter 4.3.2.

To further highlight the problems of the term-for-term approach, Gross-
mann et al. [2007] once again used genes from S. cerevisiae and purposefully
overrepresented the GO term DNA repair (GO:0006281). The study set was
created by using a term proportion of 0.5 and a population proportion of 0.1.
The term-for-term approach correctly showed that DNA repair was signifi-
cantly overrepresented; however, it also showed that three of the children
of DNA repair were significantly overrepresented since the term-for-term ap-
proach does not take into account dependencies between the parent and
children terms. This is problematic because although the children terms
were not suppose to be overrepresented, they still showed up as such. This
may lead researchers that are examing genes from S. cerevisiae to only ex-
amine DNA repair and the three children terms and to disregard the other
children terms that did not show up as significantly overrepresented; how-
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ever the other children terms of DNA repair may be just as important[3].

4.3.2 Computing False Positive Rates and False Negative Rates

A false positive occurs when a gene term that is not purposefully overrep-
resented shows up as such, and a false negative is when a gene term that
is purposefully overrepresented does not show as being overrepresented.
The artificial study sets created by Grossmann et al. [2007] can be used to
calculate the false positives and false negatives for each study set. ROC
curves, which will be explained at the end of this section, can be used to
compare the number of false positives between the parent-child approach
and the term-for-term approach.

Only the terms that can be annotated to the specific GO term of interest,
tover(S), are used in the calculation of false positive and false negative[6].
For example, the child term of immune response, regulation of immune reponse,
is in the same subontology group and can also annotate to immune response.
The terms that are used in the calculation of the false positive and false
negative rates are labeled as Ttest(S). In the example mentioned above con-
ducted by Grossmann et al. [2007], all children terms of DNA repair are in
Ttest(S). Any term that shows up as being significantly overrepresented
that is not intentionally overrepresented counts as a false positive. In the
example where only DNA repair is purposefully overrepresented , any term
other than DNA repair, such as the three children terms, counts as a false
positive if it shows up as being significantly overrepresented. A false nega-
tive is defined as a term that is intentionally overrepresented and does not
show up as such. DNA repair would be considered a false negative if it does
not show as being significantly overrepresented. In more simplified terms:

#False positives = # of terms ε Ttest(S) which are overrepresented but are not t (4.10)

#False negatives = {0, 1} (4.11)

Grossmann et al. [2007] defines false positive rates more specifically
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to emphasize the effect of the inheritance problem. The subgroup, Ttest(S),
is defined more conservatively to highlight the inheritance problem, in that
more terms that are not significantly overrepresented will have a greater
chance of showing up as such, when using the term-for-term approach than
the parent-child approach. Ttest(S) now only consists of the strict descen-
dants of tover(S). This new subgroup can be called Tdesc(S). The false posi-
tives in Tdesc(S) can then be counted at a p-value cutoff, π.

FPRdesc(π) =

∑
SεS |tεTdesc(S) : pt(S) < π|∑

SεS|Tdesc(S)|
(4.12)

Above, we sum up all the terms that are significantly overrepresented
with a p-value less than π in Tdesc(S) over all independent study sets. As
in Equation (4.10), terms are considered to be false positives when they are
not purposefully overrepresented. Note that the term that is purposefully
overrepresented is not included in Tdesc(S).

Grossmann et al. used ROC curves to compare the parent-child method
and the term-for-term method for each artifical study set that consisted of
different term proportions and population proportions that was mentioned in
Chapter 4.3.1. ROC curves are graphed with the false positive rate ver-
sus the true positive rate by using π cutoffs which range between 0 and 1.
When π is 0, there are no false positives or false negatives since the prob-
ability of significance is 0. When π is at 1, all terms are significant, and
the false positive rate is 1 since all p-values less than 1 are considered to
be significant. The best method is the one that gives a higher true positive
rate for any false positive rate. It can be seen from the ROC curves that
the term-for-term approach has a much higher false positive rate and falsely
highlights more descendants as being overrepresented than the parent-child
method[6]. This is expected since the parent-child approach accounts for de-
pendencies between the parent and child GO terms while the term-for-term
approach assumes that the GO terms are independent from one another.





Chapter 5

Multiple Testing Issues

In the first part of this work, we have demonstrated how to deal with
dependence issues involving parent GO terms. Independence across GO
terms does not hold because the parent and child terms are dependent on
one another due to the inheritance problem that was discussed previously.
If the parent term is overrepresented, then the probability that its children
terms are also overrepresented increases, and vice versa.

Additionally, we must consider multiple testing issues that as the num-
ber of tests increases, the number of false significances or false positives,
will also increase[7]. For example, when α = 0.05, this means that 5% of
the null terms will show up as being differentially expressed just by chance,
when in reality they are not. If we ran 20 tests, none of which were sig-
nificant, we would expect 1 false positive due to chance. However, if we
decide to run 200 null tests, then we would expect to see 10 false positives
due to chance; therefore, as the number of tests increases, the number of
false positives will also increase.

The combined false positive rates or Type I error rates from many dif-
ferent tests is the family wise error rate (FWER), which is used to adjust for
multiple testing. The FWER is the probability that at least one of the null
hypotheses will be rejected when all the null hypotheses are actually true
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or the probability of making at least one Type I error[8].

FWER = P (of making at least 1 Type I error)

= 1− P (of making no Type I errors)

= 1− [P (ith test is not a Type I error)]N

= 1− (1− α)N (5.1)

In Equation (5.1), N is the number of null tests. Note that the above
equation only holds true if the tests are independent; however, this is not
a valid assumption in testing for overrepresentation of GO terms, since the
second term may be the parent or child of the first term.

Two ways to fix multiple testing issues are the Bonferroni method and
the Westfall-Young correction method.

5.1 Bonferroni Method

In the Bonferroni correction method, the p-value of each individual hypoth-
esis test is adjusted in order to lower the FWER when all the tests are put
together[8]. The adjusted p-value for just two null tests N = 2 is derived as
the following [9]:

Ai = rejecting ith null (making a Type I error)

FWER = P (making at least 1 Type I error)

= P (A1

⋃
A2)

= P (A1) + P (A2)− P (A1

⋂
A2)

≤ P (A1) + P (A2)

≤ 2α (5.2)

Which extends to N tests as:

FWER ≤ Nα

corrected α for an individual test = α/N (5.3)
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If we want the FWER to be less than Nα, we need to adjust the signif-
icance level for each individual test to α

N . This means that if we are con-
ducting 200 different tests with α = 0.05, only individual tests that have
a p-value less than 0.00025 will be considered significant. As N increases,
the Bonferroni correction becomes more stringent, and we will be unable
to reject any true relationships[10].

5.2 Westfall-Young Method

In the Westfall-Young correction method, one study set with k terms with k
p-values (one for each term) is randomly resampled to remove the struc-
tures between genes. k “pseudo” p-values are calculated for each term
by the term-for-term method or the parent-child method after randomly re-
sampling. So if there were 200 resamplings, then each term will have 200
“pseudo” p-values. The adjusted p-value is calculated by seeing how many
of the original p-values are smaller than the minimum of the “pseudo” p-
values divided by the number of resamplings[8].

min(k “pseudo” p− values) = min(p)i where i is the i
th resample

adjusted p− value =
#of times the true p− value ≤ min(p)i

#of resamplings
(5.4)

In Equation (5.4), the minimum of the k p-values is used as the cutoff to
not make a FWER. So if one p-value is greater than the minimum of the k
p-values, then we will have at least one Type I error.

5.3 Comparison of the Two Methods

Grossmann et al. [2007] used both the Bonferroni correction and the Westfall-
Young correction method to compare the term-for-term and parent-child ap-
proaches. 2000 randomly generated study sets of size 250 were created to
remove the structure between genes and resampled 5000 times. The FWER
plots for the term-for-term, parent-child-union, and parent-child-intersection



32 Multiple Testing Issues

approaches showed that Westfall-Young method in combination with ei-
ther the parent-child-union or parent-child-intersection approach was the best
method since the Bonferroni correction tends to be too conservative[3].



Chapter 6

Conclusion

Analyses of GO terms with the hypergeometric distribution can easily be
flawed if the inheritance problem is not accounted for. The inheritance problem
describes how, if the parent GO term is overrepresented, there is a higher
chance that its children terms will also show up as being overrepresented.
This can also be examined conversely, meaning that if the children are over-
represented then the parents will also have a higher chance of being over-
represented.

Grossmann et al. [2007] showed that the parent-child method is superior
to the term-for-term approach since the parent-child method takes dependen-
cies between the parent and child terms into account when calculating for
overrepresentation. From the ROC graphs, we can see that the parent-child
method produces fewer false positives than the term-for-term approach in
all varying simulated term proportions and population proportions. In the sim-
ulated studies, the parent-child method showed fewer children as being sig-
nificantly overrepresented when compared to the term-for-term approach
since the parent-child method takes into account the inheritance problem.

In actual studies, where the inheritance problem causes the parents to
be overrepresented because the children terms are overrepresented, the
reasearchers tend to examine the children terms, which will also allow
them to examine the parent terms. However, if we consider the other sce-
nario where some of the children terms show up by chance as being over-
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represented because the parent term is overrepresented (also due to the
inheritance issue), then the researcher may only examine the few children
terms that showed up as overrepresented and ignore all other child terms.
This direction is more problematic since the researcher may be missing cru-
cial information by neglecting the children terms that were not shown as
overrepresented, though they may be just as important as the other chil-
dren terms.

The simulated experiments by Grossmann et al. [2007] showed that
the parent-child method is a better method than the term-for-term approach
since it highlights fewer children as significantly overrepresented of the
purposefully overrepresented GO term. Although the children terms were
not shown as being overrepresented, this does not mean that they are not
important. All the parent-child approach is saying is that there is not enough
information to show that the children terms are significant which is a su-
perior outcome than producing misleading information that can cause in-
correct biological interpretation resulting from the use of the term-for-term
approach[3].
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