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Abstract

Use of RNA sequencing (RNA-Seq) to study organisms' genomes has become widespread
in scienti�c research. The development of this technology has led to a substantial �eld of
research into the statistical and computational methods needed to process and analyze RNA-
Seq data, and one of the most important steps is normalizing the data so that measurements
from di�erent samples can be compared. However, statistical research on normalization is
ongoing, and as yet no consensus has been reached on how to correctly normalize RNA-
Seq data. In this thesis we examine how gene expression data can contain asymmetry, and
investigate the performance of normalization methods in the case of asymmetric di�erential
gene expression.

0.1 Acknowledgments

Thank you to Professor Jo Hardin for all her help with research and thesis work, and for
always giving great advice. Thank you to Professor Dan Stoebel for providing the biological
motivation and background. And thank you to Professor Vin de Silva for overseeing Senior
Seminar and answering questions about thesis.



Contents

0.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction 1

2 RNA-Seq and Di�erential Expression Analysis 3

2.1 Overview of gene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Step 1: Measuring the quantity of mRNA . . . . . . . . . . . . . . . . . . . 5

3 Normalization 7

3.1 The need for normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Overview of normalization techniques . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Review of Normalization Comparisons . . . . . . . . . . . . . . . . . . . . . 16

4 Symmetry and Di�erential Expression 18

4.1 Symmetric and Asymmetric Expression . . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Generalizing DESeq normalization to deal with asymmetry . . . . . . 21

4.2 Asymmetric DE and the FDR . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusions 27

6 Appendix 31

6.1 The False Discovery Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Di�erential expression analysis procedures . . . . . . . . . . . . . . . . . . . 32

6.2.1 DESeq and DESeq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



List of Figures

2.1 mRNA fragments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sequenced mRNA fragments (reads), colored according to which gene they

come from. There are three genes (blue, green, brown) in this example. . . . 6
2.3 Reads mapped back to the reference genome. There are three genes (blue,

green, brown) in this example. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 The �rst three rows of a read count matrix from an RNA-Seq experiment with

three conditions (A, B, and C) and two samples per condition. . . . . . . . . 7

4.1 Symmetric di�erential expression. Blue = over-expressed, orange = under-expressed. 20
4.2 Asymmetric di�erential expression. Blue = over-expressed, orange = under-expressed. 20

ii



List of Tables

4.1 Average (SE) empirical FDR for symmetric, partially asymmetric, and com-
pletely asymmetric simulated data with �ve di�erent normalization methods. 25

6.1 Discoveries and false discoveries when testing m null hypotheses [3]. . . . . . . . 31

iii



Chapter 1

Introduction

The introduction of microarrays at the beginning of this century provided the ability to
study many genes in an organism under di�erent biological conditions, with a dramatic
reduction in expense and time from previous methods [27]. More recently, high-throughput
sequencing has become an a�ordable and e�ective way of examining gene behavior and has
been applied to study a wide range of biological settings. For example, very speci�c questions
about transcriptomes and splicing can now be addressed [18], and the study of techniques
for the analysis of high-throughput sequencing data continues to be a hot topic, involving
researchers from biology, statistics, computer science, and machine learning.

High-throughput sequencing with RNA, commonly referred to as RNA-Seq, involves map-
ping sequenced fragments of RNA. In RNA-Seq, the RNA is cut into many small fragments.
These fragments are then sequenced, and aligned back to a pre-sequenced reference genome
or transcriptome [2,18,35], or in some cases assembled without the reference [35]. The num-
ber of reads mapped to a gene is used to quantify its expression, providing information about
how that gene functions under the experimental conditions. This RNA-Seq technology o�ers
several advantages over microarrays that have contributed to its enormous popularity in re-
cent years, to the extent that in many places it has replaced microarrays [32]. For example,
a drawback of microarray studies, which use nucleic acid hybridization, is that they can only
be performed on known sequences. RNA-Seq, on the other hand, can be used in de novo
transcript assembly and so does not require prior sequence knowledge for all studies [27,32].
Furthermore, the nature of microarray measurements can impose upper and lower limits on
the measured values as a result of probe saturation and noise respectively [32], leading to
di�culty in accurately quantifying extreme levels of expression. This problem is somewhat
addressed by RNA-Seq, although it has been pointed out that since a total number of RNA
fragments are produced in any given sample from an RNA-Seq experiment, very highly ex-
pressed genes in that sample can take up most of those fragments and result in a reduced
number to be shared among the other genes [24].

While the observational units in an RNA-Seq study need not be genes, in this thesis
we will follow the example of others, such as Anders and Huber [1], and use gene as a
general term to refer to the experimental units. This is a suitable simpli�cation because
one of the most common uses of an RNA-Seq experiment is to investigate the di�erential
expression of an organism's genes under di�erent biological conditions [18], and statistical
and computational methods for di�erential expression analysis are the focus of this work. A
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gene is said to be di�erentially expressed across di�erent biological conditions if there is a
di�erence in its true expression under these conditions; as there will always be a di�erence
in the observed expression of a gene in di�erent samples, statistical models are built that
make assumptions about the underlying true expression and are used to perform hypothesis
tests to detect signi�cant di�erences in observed expression. Gene expression is measured in
RNA-Seq using the number of reads (sequenced transcripts) aligned to each gene under each
biological condition [35]. However, a naive comparison of read counts for a given gene under
the di�erent conditions is problematic for two reasons. First, the number of reads aligned
to a given gene in a given sample can be considered a discrete random variable [1], and so
read count comparisons must take into account the variability of these random variables;
an observed di�erence in count could simply be due to random chance. Second, the total
number of reads can vary across samples [18], and so a large di�erence in a gene's read count
between di�erent conditions may simply be the result of di�erent coverage, rather than of
di�erential expression. Therefore, normalization of read counts is required before di�erential
expression analysis can be performed [2,18].

In the past several years, a diverse range of methods have been developed to perform
di�erential expression analysis. These methods use statistical and computational techniques
to test for di�erential expression. Analysis generally begins with a read count matrix, which
stores the read count for each gene under each condition; it is generally assumed that the pre-
vious data-gathering and data-organizing steps have been performed before these methods
are applied. As our focus is on the methods and not the technical steps required to produce
the data, we shall also assume throughout this thesis that a read count matrix has been
properly produced for the experiment at hand. Following data collection, the pipeline con-
tinues with normalization, followed by di�erential expression analysis using the normalized
data or information provided by the normalization procedure.

There is a vast array of both normalization and di�erential expression procedures avail-
able. While some normalization methods were either developed together with a di�erential
expression analysis procedure (e.g., DESeq [1]) or are closely associated with one (such as
TMM/edgeR [23, 24]), many others stand alone. In general, most normalization procedures
can be applied independently of the choice of di�erential expression analysis procedure, even
those which are closely tied to a speci�c package. A comprehensive overview of normalization
techniques is presented in this thesis. Popular di�erential expression analysis methods for
RNA-Seq data include the R packages DESeq [1] and its successor DESeq2 [15], edgeR [23], and
limma with the voom function (henceforth referred to as limma-voom) [11]. DESeq, edgeR,
and DESeq2 model the read count distribution for each gene and each condition as negative
binomial, then use parameter estimates for the negative binomial distributions to carry out
hypothesis testing. limma-voom uses the voom transformation to convert RNA-Seq data into
a form usable by methods (like limma) which were originally developed for microarrays.

Because of the importance of di�erential expression analysis, the reliability of existing
methods continues to be an important subject of research and has received much attention
in recent literature. Many studies [7, 10, 20, 21, 25, 26, 28] have been devoted to the com-
parison of di�erent methods, with various results. However, a common theme in many of
these comparisons is that existing methods fail to perform correctly in some, or even all,
situations. For example, Rocke et al. [26] �nds inated false positives in negative-binomial
based methods like DESeq2, and edgeR; interestingly, while DESeq is also a negative-binomial
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method, the original DESeq procedure is actually conservative [25] in that it has too few false
positives.

As suggested by these examples, problems identi�ed have to do with the number of false
positives produced by a method. When \too many" false positives are produced, the results
of di�erential expression analysis are not trustworthy, and so it is of considerable interest to
control the rate at which false positives occur. The popular choice in genomics [30] is the
false discovery rate (FDR), an error rate developed by Benjamini and Hochberg [3] which
is the expected proportion of type I errors out of all discoveries (genes called signi�cant by
the di�erential expression testing). As discussed by Rocke et al. [26], one way that existing
methods can fail to control the false discovery rate is through biased parameter estimation.
Another cause has been identi�ed by Soneson and Delorenzi [28] as incorrect normalization
of RNA-Seq data in the case of asymmetric di�erential expression, which can occur when
most di�erentially expressed genes are more highly expressed in one experimental condition
than another. In this thesis, we will explore the need for normalization and examine a
number of normalization techniques that are found in the literature. We will consider how
these normalization techniques deal with asymmetric di�erential expression (if they do),
and their performance in the case of asymmetry. In particular, we will investigate the
impact of asymmetry on control of the false discovery rate when using di�erent normalization
techniques.

Chapter 2

RNA-Seq and Di�erential Expression

Analysis

Of great interest in biology and medicine is the behavior of biological processes at a molecular
level. These processes are intimately linked with nucleic acids, which come either in the form
of DNA (deoxyribonucleic acid) or RNA (ribonucleic acid), and both forms play important
roles. Many organisms encode their genetic information in the form of DNA, and this
information is accessed through gene expression. A simpli�ed view of gene expression is that
each gene codes for a polypeptide, which is then incorporated into a protein that is involved
in biological processes regulated by that gene. This ow of information, from nucleic acids
to proteins, is referred to as the central dogma of molecular biology.

Integral in gene expression is RNA, which plays many di�erent roles in the cell; there
is messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), to name
just a few. The entire collection of RNA molecules is referred to as the transcriptome, while
the set of genes is the genome. As both genes and RNA transcripts play crucial roles in
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an organism, their study can lead to greater understanding of the processes that govern
an organism. For example, as discussed by Wang, Gerstein, and Snyder [35], the study of
the transcriptome is essential for understanding the genome and for investigating biological
processes at a molecular level.

One approach to studying the roles of genes in an organism is to examine the function of
genes under di�erent experimental conditions [2,18]. For example, a drug trial might compare
the function of genes in the control groups vs. the treatment group. A biologist studying
the bacterium E. coli may be interested in investigating how the bacterium's genes behave
di�erently under di�erent concentrations of a regulatory protein. To compare the function
of genes under the di�erent experimental conditions, we look for signi�cantly di�erent levels
of expression under those di�erent conditions, by testing for di�erential gene expression [18].

Previous technology for investigating transcriptomes and di�erential expression have in-
cluded microarrays and low-throughput sequencing [35]. However, a number of challenges
exist with these methods [35], and the preferred approach for such analysis is becoming
high-throughput RNA sequencing (RNA-Seq) [2, 35], which works by creating millions of
small RNA fragments and determining the base-pair sequence of these fragments. In this
chapter, we give an overview of the background behind RNA-Seq experiments and handling
RNA-Seq data.

2.1 Overview of gene expression

For the information encoded in a gene to be expressed, the gene must �rst be transcribed
into the form of mRNA. Once in this form, the information carried by the mRNA is then
translated into polypeptides. As mRNA is the intermediate step in the relation between genes
(parts of the DNA) and proteins (the form in which they are expressed), we can measure
the amount of gene expression by measuring the amount of mRNA produced under di�erent
biological conditions [35]. In particular, we can ask whether the amount of expression for
each gene is signi�cantly di�erent across the di�erent experimental conditions.

De�nition 2.1 Di�erential Expression. Suppose we perform an experiment with c ex-
perimental conditions A1; :::; Ac on an organism with g genes in its genome. We say that a
gene i 2 f1; :::; gg is di�erentially expressed across the experimental conditions if there
is a di�erence in the true expression of gene i under the di�erent conditions.

In practice, of course, the true expression of a gene under a speci�c condition is not
known, nor is it even clear how we should think about it. Di�erent methods and software
packages make di�erent choices in modeling the underlying expression of each gene, and for
these methods the true expression would be the true value of the modeling parameter. In
DESeq, for example, expression is modeled with an underlying expression strength parameter,
and the amount of mRNA produced in the experiment is used to create estimates and
hypothesis tests of the expression strength parameter for each condition [1]. More details
on how DESeq models gene expression and performs hypothesis testing can be found in the
Appendix (Section 6.2.1).

While the perspective on the underlying gene expression changes for di�erent di�eren-
tial expression analysis packages, the approach to testing for di�erential expression does
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not change: a method determines a gene to be di�erentially expressed when its observed
expression is signi�cantly di�erent under the di�erent experimental conditions, and we mea-
sure expression through the amount of mRNA produced [18]. The question is then how to
measure the quantity of mRNA for each gene, and after doing so, how to use these mea-
surements to determine which genes are di�erentially expressed. An overview of these steps
can be found in [35] and in [2]. Moreover, existing R packages for performing analysis of
RNA-Seq expression data are designed with a certain workow. A summary of the basic
steps follows in De�nition 2.2.

De�nition 2.2 The di�erential expression analysis procedure. Suppose we perform
an experiment to examine di�erential expression in an organism under c di�erent conditions.
The process to determine which genes are di�erentially expressed has the following general
outline:

1. Data collection: measure expression of each gene under each condition

2. Data normalization: account for di�erences between samples in the data collection
procedure

3. Estimate parameters: using the model for gene expression, we estimate the parameters
from the data

4. Hypothesis testing: using estimated model parameters, test each gene for di�erential
expression

While in general R packages assume that Step 1 in De�nition 2.2 has already been per-
formed, it is useful to briey describe the data-gathering process of an RNA-Seq experiment
and this will be the topic of the remainder of this chapter. The focus of this thesis is on
correctly performing Step 2 (Data Normalization), and details on di�erent methods for car-
rying out normalization can be found in Chapter 3. Details on performing Steps 3 and 4 can
be found in the Appendix (Chapter 6).

2.2 Step 1: Measuring the quantity of mRNA

In this section, we explain the data gathering process, which is Step 1 in De�nition 2.2. We
�rst cover how to measure the amount of mRNA for each gene and each sample, then how
that information is stored. The material for this section is due to [2,18,35]. We �rst discuss
the creation of sequenced mRNA fragments (called reads), then cover the form in which the
data is stored.

The amount of mRNA produced by a gene under a given experimental condition is
measured using high-throughput sequencing technology. The following steps provide a non-
technical overview of the main components of the RNA-Seq data gathering procedure. We
begin with a collection of mRNA transcripts, the results of transcription of our organism's
genome, followed by:
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1. Chop up the mRNA into small fragments, as depicted in Figure 2.1.

Figure 2.1: mRNA fragments.

2. Sequence each of the mRNA fragments; the process of sequencing coverts them to
cDNA (DNA originating from mRNA). A sequenced fragment is called a read. Each
read corresponds to a gene on the genome, so we can think of coloring each read
according to which gene it comes from. Figure 2.2 depicts the sequenced reads.

Figure 2.2: Sequenced mRNA fragments (reads), colored according to which gene they come
from. There are three genes (blue, green, brown) in this example.

3. Map each read back to a pre-sequenced reference genome, as shown in Figure 2.3.

AACTGTCCAGTC TTCCAG GCGGGAATA reference genome

reads

Figure 2.3: Reads mapped back to the reference genome. There are three genes (blue, green,
brown) in this example.

4. The number of reads mapped to each gene in the reference genome is recorded in the
read count matrix, as shown in Figure 2.4.

The mRNA sequencing is performed for each sample in the experiment. Because we are
interested in measuring gene expression by the amount of mRNA produced, we count the
number of reads aligned to each gene in each sample. The results can be stored in a matrix,
which is referred to as the read count matrix.

De�nition 2.3 The read count matrix. For each gene i, let kij denote the number of
reads aligned to gene i under sample j. The read count matrix is the matrix [kij], that is,
whose (i; j) entry is kij.

An example read count matrix from a hypothetical experiment with three conditions and
two samples per condition is displayed in Figure 2.4. The (1; 5) entry in Figure 2.4, for
example, is 47. So 47 reads were aligned to Gene 1 in Sample 5, and we can see from the
example matrix that Sample 5 was collected under condition C.
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Gene
Condition A Condition B Condition C

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1 37 42 67 19 47 29
2 2 3 4 11 2 2
3 2257 3300 2789 2692 5647 5737
...

...
...

...
...

...
...

Figure 2.4: The �rst three rows of a read count matrix from an RNA-Seq experiment with
three conditions (A, B, and C) and two samples per condition.

Chapter 3

Normalization

The normalization step of RNA-Seq analysis involves transforming the read count matrix in
some way so that the comparison of counts between di�erent samples is valid. Though the
analysis of microarray data has involved complex normalization techniques essentially since
its inception (see, for example, [4]), with the advent of RNA-Seq technology it was initially
believed that normalization would not be necessary [35]. As we shall see in the following sec-
tion, however, normalization is an indispensable part of RNA-Seq analysis. Indeed, Bullard
et al. [5] found that the normalization procedure used in a di�erential expression pipeline had
the largest impact on the results of the analysis, even more than the choice of test statistic
used in hypothesis tests for di�erential expression.

3.1 The need for normalization

Because there is inherent variability in the experimental collection of RNA-Seq data, even
when two samples are collected under exactly the same biological conditions there may
be di�erences in the sample which need to be removed in the analysis process through
normalization. One cause of variability is the fact that di�erent genes have di�erent lengths.
If fragments are roughly the same size, this means that longer genes will tend to have more
reads aligned, which introduces bias into the expression measurements [19]. A second factor
contributing to the need for normalization is library size/sequencing depth of each sample.
Some samples can have more reads than others (a larger library size), either by having more
highly di�erentially expressed genes, or by being sequenced at a di�erent depth (di�erent
baseline levels of expression for the non-di�erentially expressed genes across the conditions).
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A good example of library size and sequencing depth is found in Li et al. [12] and we present
an adapted version here.

Example 3.1 Sequencing depth and library size discrepancies. Suppose that we
perform an experiment with 1000 genes and two conditions A and B, with 100 of the genes
di�erentially expressed, and one sample per condition. Each of the 900 non-di�erentially
expressed genes has a count of 50 in condition A and a count of 100 in condition B, so the
sequencing depth of the sample under condition A is half that of the sample under condition
B. However, the 100 di�erentially expressed genes have counts of 1000 under condition
A and 100 under condition B. This gives a total of 145,000 reads under condition A and
100,000 reads under condition B, and hence the sample performed under condition A has a
larger library size but a smaller sequencing depth.

As demonstrated in Example 3.1, we cannot simply compare the number of reads aligned
to a gene across conditions without adjusting for other factors. In the example, 900 genes
in one sample had half the number of reads as in the other sample, but this was the result
of a di�erence in sequencing depth rather than di�erential expression. On the other hand,
quantifying the di�erence in sequencing depth is di�cult because the sample under condition
A appears to be sequenced more deeply as it has a larger library size. The implication of
this example is that the salient information for normalization is found in the subset of
genes which are not di�erentially expressed, and that di�erentially expressed genes hinder
normalization. This insight has been used in many, though not all, normalization procedures.
The following section contains a summary of a wide range of normalization procedures,
covering the methods most commonly used and investigated in the literature, as well as
some less-common methods and others that are more recent.

3.2 Overview of normalization techniques

A substantial number of normalization techniques are available and used by di�erential ex-
pression methods. In this section we present an overview of several that appear in the
literature and that are meant to be representative of the range of existing methods.

Total Count: Total count normalization deals with the most observable di�erence in
RNA-Seq samples: their library sizes. In total count normalization [6], read counts are nor-
malized by dividing each count by the total number of reads in its sample. The goal of total
count normalization is to account for di�erences in library size by simply dividing by library
size in each sample.

RPKM: RPKM (reads per kilobase per million mapped reads) normalization [17] is an
adaptation of total count normalization that attempts to normalize by gene length as well
as the total number of reads in each sample. As the name suggests, in RPKM normalization
each read count is normalized by dividing by the number of reads in the sample (in millions)
and the gene length (in kilobases).
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FPKM: FPKM (fragments per kilobase per million mapped fragments) normalization
[34] is almost exactly the same as RPKM normalization, with the change of using cDNA
molecules rather than RNA reads; each cDNA molecule corresponds to two reads, each start-
ing at a di�erent end of the fragment.

Quantile: Before the use of RNA-Seq experiments was common, a huge body of work
was developed for the analysis of microarray data. Quantile normalization is the result of
attempting to apply a normalization used in microarray analysis to RNA-Seq data. The
basic algorithm is as follows, and is designed to make use of the fact that data vectors
with the same distribution will have their quantiles plotted on the diagonal, by forcing the
normalized data to have quantiles on the diagonal and hence have the same distribution [4]:

1. Order each column of the read count matrix; this causes each row to contain the same
quantiles of each sample.

2. Replace each entry in the sorted read count matrix with the mean of that row.

3. Undo the sorting on the read count matrix, so that the entries are now back in the
original order.

Using this algorithm, the read count matrix has been normalized so that each sample is
forced to have the same distribution over all the genes. Other measures such as the median
could be used in place of the mean of the quantiles.

Upper Quartile: Upper quartile normalization [5] is similar to quantile normalization
but focuses on one speci�c quantile (the 75th percentile). In upper quartile normalization,
each read count is divided by the 75th percentile of the read counts in its sample, where genes
with read counts of 0 across all samples are excluded. Zyprych-Walczak et al. [36] also re-
port a variant of Upper Quartile normalization in a rather complicated form that ultimately
reduces to scaling each Upper Quartile normalization factor by the geometric means of the
Upper Quartiles, so that the product of the normalization factors is 1.

Median: Median normalization [6] is essentially the same as Upper Quartile normaliza-
tion, except that gene counts are scaled by the median of counts in their sample rather than
the 75th percentile.

DESeq: The DESeq normalization strategy attempts to �nd a size factor for each sample,
such that the ratios of size factors of di�erent samples represent the ratio of their respective
sequencing depths. Let kij be the number of reads aligned to gene i under sample j. The
estimated size factor ŝj for sample j is given by

ŝj = mediani

8>>><
>>>:

kij�
mQ
v=1

kiv

�1=m

9>>>=
>>>;
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wherem is the total number of samples, across all conditions. The denominator

�
mQ
v=1

kiv

�1=m

serves as a pseudo-reference sample to which each sample can be compared. As discussed
in [1], the rational behind the size factor estimation is that a good estimate for the ratio of
sequencing depths of two samples should be the median of the ratios of their counts. This
is generalized to multiple samples through the use of the pseudo-reference sample, which
allows for transitivity in the calculated size factor ratios. In this thesis, for simplicity we will
introduce the notation

eij = kij

 
mY
v=1

kiv

!�1=m

and we will refer to the eij as the relative expression values.

TMM: TMM (Trimmed Mean of the M-values) [24] is a normalization strategy with
a very similar approach to the DESeq size-factor estimate. TMM sets one of the samples
as a reference sample, then compares the counts in each sample to the reference sample
to estimate the ratio of sequencing depths between each sample and the reference. The
procedure involves trimming genes twice, using both the fold-changes and expression levels
between samples; the goal is to remove genes that are di�erentially expressed, so that the
mean can be taken over genes that do not show di�erential expression. For these genes, we
expect that the ratio of counts in one sample to the reference sample is represented by the
ratio of the sequencing depths.

Let kij again denote the number of reads aligned to gene i under sample j. Let �ij be
the true gene expression level of gene i under sample j, Li the length of gene i, and Nj the

total number of reads for sample j

�
=
P
i

kij

�
. Fixing one of the samples r as the reference

sample, we de�ne gene-wise log fold changes

M r
ij = log2

kij=Nj

kir=Nr

and absolute expression levels

Ar
ij =

1

2
log2

�
kij
Nj

�
kir
Nr

�
:

For sample j, the M r
ij and A

r
ij values are trimmed independently (the default is 30% for the

M r
ij and 5% for the Ar

ij) to produce a set of genes G for which neither the M r
ij nor A

r
ij value

was removed. Using this set G, we calculate the scaling factor TMM
(r)
j for sample j via a

weighted mean:

log2(TMM
(r)
j ) =

P
i2G

wr
ijM

r
ijP

i2G

wr
ij
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where

wr
ij =

Nj � kij
Njkij

�
Nr � kir
Nrkir

:

Note that in the calculation of the scaling factors, we divide by the library size of each
sample. Thus, the TMM

(r)
j scaling factors tell us the relative size of samples after we have

normalized by library size, and to normalize so that read counts are directly comparable

between samples we would divide each sample by TMM
(r)
j �

Nj

Nr
where Nr is the library size

of the reference sample.

Cu�Di�: Introduced by Trapnell et al. [33] as part of the Cu�Di� 2 software, the Cu�Di�
normalization method is a slight modi�cation of the DESeq method. The Cu�Di� approach
calculates two di�erent normalization factors: an internal scale is used when comparing
samples taken under the same biological conditions, while an external scale is used to compare
samples across di�erent biological conditions.

Calculation of the internal scale is simply a restriction of the DESeq normalization method
to the read count sub-matrix for each set of replicates; in an experiment with two conditions
A and B and three replicates per condition, for example, the DESeq method would be ap-
plied to both groups of replicates separately, taking three columns of the matrix with each
application.

The external scale is calculated after the internal scale; in the case of 3 samples per
condition and two conditions, the result would be two sets of three size factors. Let ŝj denote
the internal size factor for sample j. We then use the internal size factors to normalize each
column (divide by the corresponding internal size factor). For each gene and each condition,
we average the internal-scaled counts for the replicates in that gene and condition; let ki;A
and ki;B denote these averages for gene i in the case of two conditions. That is, with kij
again denoting the (i; j) entry of the full read count matrix,

ki;A =
1

mA

X
j:�(j)=A

kij
ŝj

and likewise for ki;B, where mA is the number of samples performed under condition A and
�(j) denotes the condition under which sample j was performed. We then use the ki;�(j)
values to produce external size factor estimates

�j = mediani

8><
>:ki;�(j)

0
@Y

�(v)

ki;�(v)

1
A
�1=c

9>=
>;

where c is the number of conditions. We can compare internal-scaled counts across di�erent
conditions using the external scale.

Median Ratio: Similarly to how Cu�Di� normalization extends the DESeq normaliza-
tion procedure, Median Ratio normalization (MRN) [16] is designed to be a more robust

11



adaptation of the TMM method. As in the TMM method, de�ne kij to be the number of
reads aligned to gene i under sample j and Nj the number of reads in sample j (its library
size). And like the TMM method, the MRN method separates library size normalization and
normalization of the samples after dividing by library size. Here, as in [16], we will describe
MRN in the special case where there are two experimental conditions A and B, although
the method can be generalized to more than two conditions.

MRN begins by taking the mean of library-normalized counts for each gene within each
condition:

kiA =
1

mA

X
j:�(j)=A

kij
Nj

would de�ne this mean for condition A, and the de�nition is analogous for condition B.
Then, we calculate the ratio �i of these two means for each gene i:

�i =
kiB

kiA
:

We de�ne � to be the median of these ratios across all genes. The intuition is that between
two samples of the same experimental condition, the di�erence in sequencing depth can be
determined directly by the di�erence in library size since there are no genes which can be
di�erentially expressed within the same biological condition. Then, normalization by library
size puts samples within the same condition on the same scale. Any remaining di�erences
in normalized read counts within a replicate group are then due to randomness, and so we
can remove some of that natural variability by averaging across samples within a replicate
group. Then, � represents the relative sizes of samples under each condition after accounting
for library size; to get the normalization factor for the original read count matrix, we include
the library size:

ej =

(
Nj if �(j) = A

� �Nj if �(j) = B

Then, dividing each column of the original read count matrix by its corresponding normaliza-
tion factor will allow for direct comparison of reads across di�erent samples and conditions.
The �nal step is to make the product of the normalization factors be 1 by dividing by their
geometric mean, which does not change the relationship between them but ensures that the

normalized read counts will be on a similar scale as the originals. Let ~f =

�
mQ
v=1

ev

��1=m
where m is the total number of samples across all conditions. Then, the �nal normalization
factor for sample j is

fj =
ej
~f

PoissonSeq: We mentioned above that the information for normalization is found in
the non-di�erentially expressed genes. The TMM explicitly aims to remove di�erentially
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expressed genes through trimmed means, while methods like Upper Quartile normalization,
DESeq, and MRN address the issue by examining a quartile of the data, or a transformed
version of the data, that is expected to be reasonably representative of the non-di�erentially
expressed genes. In the PoissonSeq method [12], developed as part of the PoissonSeq

package, the idea of using the non-di�erentially expressed genes is taken a step further by
directly performing a goodness-of-�t test to try to �nd a subset of non-di�erentially expressed
genes.

Let Kij be the random variable for the number of reads aligned to gene i under sample j.
It is assumed in the PoissonSeq package that Kij � Poisson(�ij), although for the purposes
of the normalization technique the most salient point is using �ij to denote the expectation of
Kij, and the actual distribution ofKij is less important for normalization than for performing
tests for di�erential expression. We model �ij using

log(�ij) = log(dj) + log(�i) + i;�(j)

where dj is the sequencing depth for sample j, �i is the level of expression of gene i, and
i;�(j) represents how associated the expression of gene i is with the condition �(j) of sample
j. If i is 0 for all conditions, then there is no association between the expression of gene
i and the biological conditions and hence gene i is not di�erentially expressed in the study.
Under the null hypothesis that there is no association between gene i and the condition of
sample j, i;�(j) = 0.

We estimate the expression level of gene i as �̂i =
mP
v=1

kiv where m is the total number

of samples across all conditions. Since sequencing depth can be compared across samples
using non-di�erentially expressed genes, given a set S of non-di�erentially expressed genes
we can compute an estimate for the sequencing depth of sample j by the proportion of reads
aligned to non-di�erentially expressed genes that come from sample j:

d̂j =

P
i2S

kij

P
i2S

�
mP
v=1

kiv

� =

P
i2S

kijP
i2S

�̂i
:

For genes in S, i;�(j) = 0 and so log(�ij) = log(dj�i). Hence, an estimate for E(kij) is

d̂j�̂i and we can create a goodness-of-�t statistic for each gene i:

GOFi =
mX
v=1

(kij � d̂j�̂i)
2

d̂j�̂i
:

We ultimately want a good estimate of dj, which means we want to identify S. To do so, we
start with an initial estimate of dj using the entire set of genes as S, then calculate GOFi
statistics and take the middle (1�2") �100% and re-calculate d̂j. We then alternate between
estimating S and dj until convergence. By default, PoissonSeq uses " = 0:25. The �nal

sequencing depths estimates d̂j are then scaled so that their product is 1.

DEGES: This normalization approach [9], which stands for Di�erentially Expressed
Gene Elimination Strategy, has a very similar approach to PoissonSeq. It alternates between
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estimating normalization factors and using those normalization factors to determine which
genes are di�erentially expressed. In the original paper, TMM was used for normalization
and the baySeq [8] package was used for identifying di�erentially expressed genes. This was
later expanded in the TCC package [31], which now allows the user to choose among several
di�erent methods for the normalization and di�erential expression testing steps. For this
reason, we will describe the algorithm without relying on a speci�c strategy for normalization
or testing.

1. Using all genes in the experiment, calculate normalization factors for each sample. For
example, if we used DESeq normalization here, we would calculate the median of the
relative expression values across all genes.

2. Using the normalization factors from Step 1, perform di�erential expression hypothesis
testing and identify a set of non-di�erentially expressed genes.

3. Re-calculate normalization factors using the set of genes identi�ed in Step 2.

The algorithm alternates between Steps 2 and 3 a prespeci�ed number of times, the idea
being to iteratively improve normalization. The �nal normalization factors can then be used
in an o�cial di�erential expression analysis.

Negative Control Genes: As we have discussed, the information needed for normal-
ization is contained in the read counts of the non-di�erentially expressed genes. If one can
identify a priori a set of negative control genes which will not be di�erentially expressed,
these could be used for normalization purposes. For example, Bullard et al. [5] investi-
gates the use of housekeeping genes, speci�cally POLR2A, to perform normalization, and
the Remove Unwanted Variation method (below) also provides speci�c techniques for using
negative control genes. The term \gene" can also be loosened here, as more recent studies
have examined the possibility of using spike-in controls [22], which are designed to not be
di�erentially expressed across any biological conditions.

Remove Unwanted Variation: Adapted from previous work on normalization of mi-
croarray data, the Remove Unwanted Variation [22] (RUV) method aims to remove variation
between samples that is not the result of the biological covariates of interest. The notation
associated with this method will di�er from that used in the other normalization procedures
described above, as the method is su�ciently complicated that it is easiest to communicate
by being consistent with the original paper.

Suppose an RNA-Seq experiment is performed with J genes and n samples, and p co-
variates of interest. We will restrict our examination of this method to the classic case of a
di�erential study with two conditions. In this case, p = 2.

� Let Y 2 Mn�J be the read count matrix (note that this is the transpose of the matrix
given in De�nition 2.3), so Yij corresponds to the number of reads aligned to gene j in
sample i.

� Let X 2 Mn�p denote the design matrix for the experiment. In our restricted case, the
design matrix has a column for the intercept and each entry in the second column is
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an indicator for whether the sample corresponding to that row is under condition A or
condition B.

� Let W 2 Mn�k be a matrix related to k factors of unwanted variance (this method
requires choosing a speci�c value of k beforehand).

� Let � 2 Mk�J be the coe�cients corresponding to the factors of unwanted variance in
W .

� Let � 2 Mp�J be the coe�cients which represent the relationship between each gene
and each covariate of interest.

� Let O 2 Mn�J be a matrix reecting sequencing depth o�sets; the authors suggest
using Upper Quartile normalization, though of course other methods would also work
in its place.

Then, we assume the log-linear model

logE[Y jW;X;O] = W� +X� +O: (3.1)

The RUV method provides three di�erent sub-procedures to approach normalization
given this model, with varying assumptions. RUVg assumes that a set of negative control
genes (which can be spike-in controls) is known. RUVr uses the residuals of a �rst-pass �t
to the log-linear model in Equation 3.1 and does not require knowledge of negative control
genes, though does assume that the factors of unwanted variation are uncorrelated with
the biological conditions. RUVs creates negative control samples by comparing samples
within replicate groups, and also relies on negative control genes and the factors of unwanted
variation being uncorrelated with the biological conditions in the experiment. The di�erence
between RUVs and RUVg is that RUVs is designed to be more robust to the choice of negative
control genes, and the authors state that the method can still perform reasonably even when
the entire set of genes is used.

The three RUV paths are reasonably similar, and so for sake of brevity only one (RUVg)
will be described in this thesis; notation is borrowed from Risso et al. [22]. We begin by
assuming that there is a set of Jc negative control genes. When the matrices in Equation
3.1 are restricted to these negative control genes, we will use the subscript c.

1. De�ne Zc = log Yc�Oc, so that we have accounted for o�sets in the experimental data.
This should make samples of di�erent sequencing depths comparable. Then let Z�c be
the column-centered version of Zc. After accounting for sequencing depth, the only
variation of negative control genes across samples is from factors of unwanted variation.
By subtracting the mean of each column, the measurement of the expression of each
gene in Z�c is centered at 0, which also allows the intercept term to be 0 in �c. Since
none of the genes are associated with the biological covariates of interest, the other
coe�cients in �c will be 0 as well, yielding Z�c = W�c.

2. Next, perform the singular value decomposition of Z�c , so Z
�
c = U�V T where � is the

rectangular diagonal matrix of singular values of Z�c .
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3. For a given number k of factors of unwanted variation, we are interested in determining
the impact of those factors so we reduce to only the k largest singular values. Denote
by �k the n�Jc matrix obtained from � by setting all singular values but the k largest
to 0. We estimate W by Ŵ = U�k where we have removed columns of 0s to ensure
that Ŵ 2 Mn�k. Under the assumption that the factors of unwanted variation for the
negative control genes span the same space as the factors of unwanted variation for all
genes (in the linear algebra sense, since columns ofW are factors of unwanted variation
and W� is a linear combination of the columns of W ), then Ŵ will estimate W .

4. Substituting Ŵ back into Equation 3.1, and with knowledge of the design matrix X,
GLM regression can be used to estimate the remaining parameters � and �, and then
di�erential expression analysis can be performed. Though the authors do not recom-
mend obtaining normalized counts separately from the di�erential expression analysis
procedure, it is possible to use RUVg to normalize by performing OLS regression of
Z = log Y �O on Ŵ . The residuals of this regression are the normalized read counts.

3.3 Review of Normalization Comparisons

Several papers have investigated the di�erent normalization procedures described in the pre-
vious section. A general consensus is that Total Count normalization and RPKM/FPKM
normalization should not be used. Dillies et al. [6] found that length bias was still present
after RPKM normalization, and Total Count normalization led to bias when the data had a
few highly expressed genes. Similarly, Oshlack and Wake�eld [19] found that while normal-
ization by gene length accounts for length bias in the number of reads aligned to each gene,
it also introduces a length bias in the read count variance. As demonstrated in Figure 2b
of [19], dividing by gene length causes longer genes to have too low variance. As in Dillies
et al., Bullard et al. [5] also found that Total Count normalization performed poorly as a
result of bias from a small number of genes with a large number of reads. Maza et al. [16]
also �nd problems with using FPKM, although did �nd reasonable performance using Total
Count normalization. Lin et al. [14] examined both Total Count and RPKM, �nding poor
performance which they attributed to the fact that half of the reads for the male Drosophila
in their experiment were aligned to only 45 genes, while in the females half of the reads were
aligned to only 186 genes. In contrast, Li et al. [13] found that all conventional normalization
methods they examined, including RPKM, performed equivalently.

Quantile normalization generally seemed to do roughly as well as other normalization
methods, with perhaps slightly worse performance due to an increase in variability. Dillies
et al. [6] found that the assumption that all samples should have the same read count
distribution causes increased within-condition variability (see, for example, their Figure 1b).
Lin et al. [14] found reasonably comparable performance between Quantile normalization and
other normalization procedures, though like most of the normalization procedures Quantile
normalization was not able to detect extreme values well. Bullard et al. [5] found similar
results to Dillies et al., with Quantile normalization potentially introducing slightly more
variation in the data but otherwise producing comparable results.

Many of the other normalization methods have similar motivation and generally produce
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reasonably similar results. Upper Quartile, Median, DESeq, and TMM are based on the
same idea of using a quantile or measure of center on the data, or a transformed version of
the data, to get at the information in the non-di�erentially expressed genes: Upper Quar-
tile uses the 75th percentile, Median and DESeq use the median, and TMM uses a trimmed
mean. These appear to be some of the most popular methods to examine in papers that
compare normalization procedures, and oftentimes they are compared to modi�cations of
the original methods. The Cu�Di� and MRN strategies described above are respectively
based on DESeq and TMM, so one can consider them to be in the same class as Upper
Quartile, Median, DESeq, and TMM. Overall, the literature has found that this class of
methods performs comparably, and papers that compare them usually �nd that DESeq and
TMM perform best. This was the conclusion of Dillies et al. [6], whose study included Up-
per Quartile, Median, DESeq, and TMM and concluded that DESeq and TMM performed
better than the others as they were the only methods to combine power and error control.
Maza et al. [16] also found equivalent performance of DESeq and TMM, which did somewhat
better than Median and Upper Quartile normalization. Maza et al. also compared these
methods with the MRN method they developed, and found that MRN performed best (an
unsurprising conclusion given that this result is reported by the paper in which they intro-
duced the MRN method). Similarly, Lin et al. [14] demonstrated decent performance with
Upper Quartile, Median, TMM, and DESeq, and saw best performance by DESeq and TMM.
Zyprych-Walczak et al. [36] compared DESeq, Upper Quartile, and TMM from this class of
methods and agree that DESeq performs well, and better than Upper Quartile. Interestingly,
they also found that TMM performed worst out of all the methods they evaluated, which is
a di�erence between their results and those of other authors. In contrast with other studies,
Rapaport et al. [20] found no di�erences in normalization performance of di�erent methods.
Their paper examined the overall di�erential expression analysis procedure for the packages
Cu�Di�, edgeR (which uses TMM), DESeq, PoissonSeq, baySeq (which uses Upper Quartile
by default), and limma (which uses TMM). Likewise, Risso et al. [22] found that all con-
ventional normalization methods performed equivalently with Upper Quartile normalization
(and did not perform as well as RUV), and Li et al. [13] found no di�erence in any standard
normalization methods.

The PoissonSeq and DEGES methods both attempt to �nd a subset of non-di�erentially
expressed genes, while the use of negative control genes attempts to use knowledge about
which genes should be non-di�erentially expressed, and RUV relies on negative control genes
in two of its variants (RUVg and RUVs). Bullard et al. [5] argue that the use of negative
control genes is not a feasible strategy in general, since without prior investigation it is im-
possible to know for sure which genes will not be di�erentially expressed. This di�culty may
soon be obviated by the use of spike-in controls as they are designed to function as negative
control genes in any sample, though Lin et al. [14] were unable to use these spike-ins with
RUVg as the spike-ins were too variable across samples. RUVg is also sensitive to the choice
of negative control genes, and so RUVs was proposed as a more robust way to perform RUV
normalization when the data included replicate samples [22]. For the methods which attempt
to determine non-di�erentially expressed genes for use in normalization, the developers of
DEGES found that it performed better than the individual normalization methods that can
be used in Steps 1 and 3 of DEGES [9]. PoissonSeq performed better than every method
compared by Zyprych-Walczak et al. except for DESeq [36], while again Rapaport et al. [20]
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found PoissonSeq did just as well as the other methods under consideration in their paper.
The literature discussed above has compared many di�erent normalization procedures

for RNA-Seq data. However, each paper examines a di�erent subset of methods, and more
recently developed methods appear in fewer such comparisons. This makes synthesizing the
results of di�erent studies and normalization procedures di�cult, especially as some have
directly contradictory results. Overall, it appears that Total Count and RPKM/FPKM
normalization do not perform well and should be avoided. The core group of standard
methods and their extensions - Upper Quartile, Median, DESeq, TMM, Cu�Di�, and MRN
- are reasonably similar, and in particular TMM and DESeq often produce decent results.
More involved normalization procedures that search for non-di�erentially expressed genes
(PoissonSeq and Cu�Di�) may perform better for data in circumstances where the dis-
tribution of read counts makes it di�cult to retrieve information on the non-di�erentially
expressed genes, but appear less often in the literature. All of these normalization proce-
dures may ultimately prove unnecessary if a set of negative control genes can be identi�ed,
either using housekeeping genes or spike-in controls. Finally, all methods described so far
in this paragraph perform normalization with only one number for an entire sample (e.g.,
the DESeq size factor estimates). More advanced techniques such as RUV allow for normal-
ization at the gene level instead of the sample level, and attempt to account for more than
one factor of unwanted variation, but there does not appear to be a large body of literature
analyzing the performance of newer methods like RUV. As discussed in Bullard et al. [5],
normalization is an essential step in the di�erential expression analysis process, and if it is
not performed correctly the ability to detect di�erentially expressed genes can be severely
compromised. With this in mind, the remainder of this thesis will focus on the ability to
perform normalization when there is asymmetric di�erential expression.

Chapter 4

Symmetry and Di�erential Expression

4.1 Symmetric and Asymmetric Expression

In Example 3.1, the di�erentially expressed genes were all much more highly expressed in
one condition than the other. This leads to a type of asymmetry in the read count data,
as the expression of the di�erentially expressed genes is not balanced between conditions.
For our purposes, we will introduce the terms up-regulated and down-regulated. A word of
warning: in the usual biological context, these terms often refer to the departure of a gene
from its \normal" levels of expression. In this thesis, however, we will use the terms only as

18



relative descriptors, having meaning only in the context of the other experimental conditions
and in relation to them.

De�nition 4.1 Up-regulation and down-regulation. We say a gene i is up-regulated
in condition A relative to condition B if we expect the expression of gene i under condition
A to be higher than under condition B. Conversely, we say that gene i is down-regulated
in condition A relative to condition B if we expect the expression of gene i under condition
A to be lower than under condition B.

With our de�nitions of up- and down-regulation, we can de�ne symmetric di�erential
expression using the underlying regulation of genes.

De�nition 4.2 Symmetric and asymmetric expression. Consider an experimental
condition A. If the proportion of genes which are up-regulated under A relative to the
other experimental conditions is equal to the proportion which are down-regulated relative
to the other experimental conditions, then we say that the di�erential expression under A is
symmetric in the experiment. Otherwise, it is asymmetric.

There are two important notes about De�nition 4.2. First, symmetry (or asymmetry) of
the di�erential expression is meaningful only at the level of each condition in an RNA-Seq
experiment. In experiments of three or more conditions, it is possible to have symmetric
expression of one condition and asymmetric expression of another. For example, consider an
experiment with three conditions A, B, and C, and 1000 genes. In 100 genes, condition A is
more highly expressed than conditions B and C, which are equally expressed. In a distinct
set of 100 genes, condition B is more highly expressed than conditions A and C, which are
equally expressed. In the other 800 genes, expression is equal across the three conditions.
In this toy example, A is over-expressed in half of the di�erentially expressed genes, and
under-expressed (relative to B, that is) in the other half. So di�erential expression under A
is symmetric in this experiment, as is di�erential expression under B. However, genes under
condition C are never more highly than in other conditions, but are sometimes less highly
expressed. This means that di�erential expression under condition C is asymmetric in this
experiment.

On the other hand, in the special case of two experimental conditions, symmetry in one
condition does imply symmetry in the other. Suppose we have two conditions, A and B.
Notice that if a gene is more highly expressed under A, by default it must be less highly
expressed under B, and vice-versa. Hence to have symmetric di�erential expression under
A, we must have an equal proportion of over- and under-expressed genes under each condi-
tion. In Figures 4.1 and 4.2, we can see respective examples of symmetric and asymmetric
di�erential expression. In these �gures, we have a simple experiment with 10 genes and 2
di�erent conditions, A and B. We make a diagram to denote the relative expression of the
genes under the two conditions. A box is colored orange if the gene is more highly expressed
under that condition, blue if it is less highly expressed, and not colored if the level of expres-
sion is equal under the two conditions. As we can see, in the symmetric case (Figure 4.1)
the proportion of over-expressed genes is equal to the proportion of under-expressed genes in
each condition, and with two conditions, symmetric expression under one condition implies
symmetric expression under the other condition. Similarly, asymmetry in one condition must
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imply asymmetry in the other.

Gene Condition A Condition B
1
2
3
4
5
6
7
8
9
10

Figure 4.1: Symmetric di�erential expres-
sion. Blue = over-expressed, orange =
under-expressed.

Gene Condition A Condition B
1
2
3
4
5
6
7
8
9
10

Figure 4.2: Asymmetric di�erential expres-
sion. Blue = over-expressed, orange =
under-expressed.

For many of the normalization methods described in the previous chapter, symmetric
di�erential expression is a necessary condition to guarantee that they work completely cor-
rectly. For example, DESeq normalization �nd the median of the relative expression values
eij to estimate the size factor for each sample. This works exactly when

medianifeij : i not DEg = medianifeijg;

that is, when the non-di�erentially expressed median is represented by the median of the
entire sample. This requires that for di�erentially expressed genes, eij lie above and below the
median of the non-DE eij with equal probability. And since having a higher eij is the result
of up-regulation in that gene, this condition is equivalent to having the same proportion of
up- and down-regulated genes (symmetric di�erential expression).

Part of the issue of asymmetric di�erential expression is that even if the di�erential
expression in one condition is symmetric relative to the others, it is the relationship be-
tween normalization factors that is important and normalization factors must be calculated
for each sample. Thus, calculating normalization factors \correctly" for some samples and
\incorrectly" for others means that the relationship between the estimates will not be rep-
resentative of the relationship between the true normalization factors. This further implies
that normalization factor estimation works correctly only when all normalization factors are
estimated well.

It is not reasonable to assume that di�erential expression is perfectly symmetric, and this
issue can be avoided by using only non-di�erentially expressed genes for normalization. One
can attempt to identify non-di�erentially expressed genes as in PoissonSeq and DEGES,
the latter of which was speci�cally developed to address the issue of asymmetric di�erential
expression. It is also useful to see what changes would need to be made to the standard
normalization techniques (the group which includes DESeq and TMM) to allow them to work
with asymmetric di�erential expression. Since DESeq generally performs as well or better
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than these standard techniques, and uses a simpler method than others such as TMM, in the
next section we will develop a theoretical generalization of DESeq to asymmetric di�erential
expression.

4.1.1 Generalizing DESeq normalization to deal with asymmetry

Suppose that di�erential expression is asymmetric under condition A, and let j be a sample
under this experimental condition. The DESeq normalization process uses the size factor

estimate to approximate the median value med0;j of eij = kij

�
mQ
v=1

kiv

��1=m
for the non-

di�erentially expressed genes. However, as we have seen, the size-factor estimate works
completely correctly only in the case of symmetric di�erential expression for the condition
�(j) of sample j. Under the assumption that di�erential expression is asymmetric under
A = �(j), then we must modify our approach to size factor estimation.

Let �above;j denote the expected proportion of genes for which eij > med0;j and �below;j
denote the expected proportion of genes for which eij < med0;j. As discussed in the previ-
ous section, the condition of symmetric expression is equivalent to the statement �below;j =
�above;j. On the other hand, if there is asymmetric di�erential expression under condition
�(j), then we can capture both the direction and magnitude of the asymmetry with a pro-
portion of asymmetry �j:

De�nition 4.3 Proportion of Asymmetry. The proportion of asymmetry in sample
j is given by

�j = �above;j � �below;j: (4.1)

The interpretation of the quantity �j is straightforward. First, as �j is the di�erence of
two proportions which sum to 1 (�above;j + �below;j = 1), then �j 2 [�1; 1]. We also cannot
technically have j�jj = 1, as this would imply that we expect all eij to lie to one side of
med0;j which can only happen when all genes are di�erentially expressed and in that situa-
tion med0;j is meaningless. Furthermore, j�jj captures the lower bound on the proportion of
genes which are di�erentially expressed; the expected di�erence between �above;j and �below;j
is 0 if no genes are di�erentially expressed. If �j < 0, then more genes are up-regulated
under condition �(j) , and similarly if �j > 0 then more genes are down-regulated under
condition �(j).

Given our de�nition of the proportion of asymmetry, it is now clear how to use �j to
get back med0;j. As �above;j is the proportion of genes having eij > med0;j and �below;j is the
proportion having eij < med0;j, and �above;j = �below;j +�j, then

med0;j = E

�
q
i;
(1��j)

2

feijg

�
(4.2)

where q
i;
(1��j)

2

denotes the (1 � �j)=2 quantile. Given knowledge of �j, this then leads

to a natural size factor estimate that generalizes the DESeq estimate, as under symmetric
expression �j = 0 and hence the relevant relative expression normalization quantile becomes
the median.
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De�nition 4.4 General size factor estimate. The general size factor estimate for a
sample j with proportion of asymmetry �j is

ŝj = q
i;
(1��j)

2

feijg: (4.3)

The generalized size factor estimate proposed in De�nition 4.4 provides the framework
for improving the DESeq normalization procedure, but requires the ability to estimate �j.
Though this estimation has proved di�cult, the generalized framework still proves useful
for understanding how the DESeq method can fail in the presence of asymmetric di�erential
expression (use of the wrong quantile), and provides a way to correctly estimate size factors
if a good estimate of �j is derived. Furthermore, we note that if a di�erent method is used
to accurately estimate the normalization factors, one can determine their corresponding
quantiles in the eij values for each sample. This would allow determination of �j, which
would be unnecessary for normalization (since it has already been correctly performed) but
may still be helpful as a summary statistic of the di�erential expression data.

Finally, we present a generalization to the DESeq method that would allow correct es-
timation of size factors in the case of asymmetric (even globally asymmetric) di�erential
expression, provided a speci�c assumption holds.

De�nition 4.5 Mean-constant assumption. Suppose we have an experiment with mul-
tiple replicates per condition. Let sj denote the true size factor for sample j. The mean-
constant assumption is that the geometric means of the true size factors within each
replicate group are the same. For example, in an experiment with two conditions A and B
we have 0

@ Y
j:�(j)=A

sj

1
A

1=mA

=

0
@ Y

j:�(j)=B

sj

1
A

1=mB

:

where mA and mB are respectively the number of samples under conditions A and B.

Note that the mean-constant assumption is similar to some of the assumptions needed
by RUVs normalization. Both need replicates for each condition, and the mean-constant
assumption assumes a constant geometric mean which is a slightly more restrictive case of
the normalization factors being uncorrelated with the biological conditions of the experiment.
However, without requiring negative control genes we can use this assumption to estimate
size factors.

Given this assumption, size factors calculated within replicate groups (without using
samples from a di�erent condition) should have the same relationship as the true di�erences
in sequencing depth. This is because size factor estimation relies on dividing by a pseudo-
reference sample that is calculated as a geometric mean of read counts across conditions.
When there is di�erential expression in a gene, read counts from the other condition can make
the eij value too high or too low, but restricting size factor estimation to within replicate
groups ensures that there will be no di�erential expression between the samples. Thus we
estimate the size factor sj with the internal size factor ŝj of Cu�Di� normalization. For
the purposes of this thesis, we will refer to this normalization strategy as Mean-Constant
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Internal (MCI) normalization. We note that because all comparisons are between samples in
the same replicate group and hence are not subject to di�erential expression, the method will
work as long as the mean-constant assumption holds, even in the case of globally asymmetric
di�erential expression (j�jj = 1).

While the mean-constant assumption imposes additional constraints on the data, MCI
normalization allows more freedom in the experiment than other normalization procedures
when the assumption does hold. For example, the DEGES and PoissonSeq methods will
not work without a set of non-di�erentially expressed genes to detect whereas MCI allows
for global di�erential expression. Negative control genes could be forced in a sample through
the use of spike-in controls, but MCI does not require them and will work without controls,
which is bene�cial when experiments do not have controls or they are too variable to be
used for normalization. Finally, MCI is independent of the di�erential expression testing
procedure and can be used in multiple hypothesis testing methods, whereas the authors of
RUV normalization do not recommend using RUV-normalized counts in a di�erent testing
procedure.

4.2 Asymmetric DE and the FDR

So far, we have discussed a number of di�erent normalization techniques and comparisons of
them that are found in the literature. We have also delved into the meaning of asymmetric
di�erential expression and seen why normalization strategies like DESeq will have di�culty
as the proportion of asymmetry increases. In this section we will evaluate the performance
of di�erent normalization techniques under varying amounts of asymmetry, using a selec-
tion of normalization procedures representative of the variety of normalization procedures
available. First, we include the MCI procedure discussed in the previous section as it is
deliberately designed to address asymmetric di�erential expression. Since PoissonSeq and
DEGES actively aim to identify a set of di�erentially expressed genes, they are included
because their approach has promise even in the case of asymmetric di�erential expression.
We choose DESeq as a representative of the standard class of normalization procedures, as
it generally performs as well or better than the other methods in its class and is the basis
for MCI. Finally, as we will use simulated data, we include normalization with the true
sequencing depths since these are known in the simulation; this procedure will be referred
to as Oracle normalization. To assess the performance of these di�erent methods, we will
evaluate the ability to correctly control hypothesis testing error rates when using the results
of the methods in downstream di�erential expression testing.

When conducting a di�erential expression analysis, the general approach is to perform
at least one hypothesis test per gene for a statistically signi�cant di�erence in expression
between conditions. The DESeq and DESeq2 packages are fairly representative of existing
di�erential expression methods and have proven popular in experiments, so the DESeq2

package will be used to perform di�erential expression analysis hypothesis testing (details
on how the testing procedure works can be found in the Appendix, Section 6.2.1). With
thousands of genes in a genome, such an analysis needs to consider multiple testing issues.
Suppose, for example, that we perform each hypothesis test at a signi�cance level �. Then,
we would expect � � 100% of the true null hypotheses to be rejected; since most hypotheses
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could be null, we would expect that most of our \di�erentially expressed" genes in that case
would be false positives.

To deal with this issue, it is common to control the false discovery rate (FDR) [3], which is
the expected proportion of rejections which are false positives. The idea behind controlling
the FDR is that we are willing to accept false positives as long as most (for a speci�ed
value of \most") of the discoveries are trustworthy. In many RNA-Seq setting, the FDR is
controlled using the Benjamini-Hochberg (BH) procedure [3], which we will also use in this
thesis. The speci�cs of the false discovery rate and FDR control via BH are not necessary
for understanding the main body of this thesis. They are, however, helpful for a thorough
understanding of the issue at hand and so are included in the Appendix, Section 6.1.

The purpose of this section is to demonstrate the e�ect of asymmetric di�erential expres-
sion on false discovery rate control when using the normalization procedures listed at the
beginning of this section: DESeq, MCI, PoissonSeq, DEGES, and Oracle (true normaliza-
tion factors). To evaluate the e�ect of asymmetry, we will perform a simulation using each
of these normalization methods in conjunction with the DESeq2 testing procedure. DEGES
will be used by applying the TCC package with the default settings for the calcNormFactors
function. PoissonSeq will be used with the default settings for the PS.Est.Depth function.

Simulation: To evaluate the performance of di�erent normalization procedures, they will
be tested on simulated data with di�erent amounts of asymmetry and di�erential expression.
Performance is measured by the ability to control the FDR at a speci�ed level. To perform
the simulations, we have adapted the simulation code used by Law et al. [11] with the
following parameters:

Number of genes: 1000

Number of conditions and samples: 2 conditions (A and B), 10 replicates per
condition

Sequencing depths: drawn independently from U(0:5; 2) distribution. The relative
sequencing depth of two samples is the ratio of their corresponding entries in the
random sample. The sequencing depths are divided by the geometric mean of the
depths for their condition, to ensure that the mean-constant assumption holds.

Di�erential expression genes and asymmetry: four di�erent proportions of dif-
ferentially expressed genes (10%, 20%, 30%, and 50%). We simulate data under 3
(a)symmetry scenarios: symmetry (half of the DE genes are up-regulated in A and
the other half in B), partial asymmetry (three-fourths of DE genes are up-regulated
in A, the rest are up-regulated in B), and \complete" asymmetry (all DE genes are
up-regulated in A). Each combination of proportion of expression and amount of
asymmetry is simulated.

Fold change for DE genes: 2 (di�erentially expressed genes are simulated to have
twice the baseline expression in the up-regulated condition than in the down-regulated
condition).
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Normalization methods: as listed above, we use Oracle, DESeq, MCI, PoissonSeq,
and DEGES

FDR control for hypothesis testing: use level of 0.05, and use the Benjamini-
Hochberg procedure to control.

Number of runs: each combination of proportion of expression and amount of asym-
metry is used to generate 50 sets of data. The mean empirical false discovery rate
(observed proportion of false discoveries) is recorded for each normalization method,
along with the sample standard deviation of the 50 eFDR measures.

Scenario Method 10% 20% 30% 50%

Symmetric

Oracle 0.0730 (0.0253) 0.0584 (0.0148) 0.0481 (0.0126) 0.0317 (0.00728)
DESeq 0.0734 (0.0263) 0.0587 (0.0155) 0.0474 (0.0118) 0.0311 (0.00748)
MCI 0.0723 (0.0290) 0.0580 (0.0152) 0.0478 (0.0122) 0.0319 (0.00713)

PoissonSeq 0.0740 (0.0255) 0.0579 (0.0155) 0.0491 (0.0110) 0.0340 (0.00994)
DEGES 0.0733 (0.0261) 0.0581 (0.0148) 0.0473 (0.0114) 0.0323 (0.00756)

Partial

Oracle 0.0802 (0.0257) 0.0576 (0.0170) 0.0446 (0.0114) 0.0307 (0.00817)
DESeq 0.0984 (0.0295) 0.1143 (0.0214) 0.1629 (0.0200) 0.2867 (0.00980)
MCI 0.0802 (0.0268) 0.0572 (0.0170) 0.0450 (0.0114) 0.0312 (0.00807)

PoissonSeq 0.0837 (0.0293) 0.0615 (0.0161) 0.0632 (0.0138) 0.2109 (0.0600)
DEGES 0.0813 (0.0255) 0.0564 (0.0170) 0.0442 (0.0114) 0.0314 (0.00748)

Complete

Oracle 0.0684 (0.0205) 0.0565 (0.0184) 0.0484 (0.0138) 0.0312 (0.00744)
DESeq 0.1421 (0.0332) 0.2929 (0.0235) 0.4590 (0.0141) 0.4998 (0.00392)
MCI 0.0680 (0.0182) 0.0568 (0.0187) 0.0486 (0.0138) 0.0314 (0.00756)

PoissonSeq 0.0747 (0.0221) 0.0821 (0.0212) 0.1202 (0.0265) 0.5264 (0.0332)
DEGES 0.0675 (0.0187) 0.0555 (0.0176) 0.0501 (0.0141) 0.5957 (0.260)

Table 4.1: Average (SE) empirical FDR for symmetric, partially asymmetric, and completely
asymmetric simulated data with �ve di�erent normalization methods.

`
Results: The results from our simulations are shown in Table 4.2. There are two impor-

tant trends that must be kept in mind when interpreting the data. First, we notice that even
with the Oracle normalization method, the empirical false discovery rate is not controlled at
the desired level of 0.05 when the proportion of di�erentially expressed genes is 10% or 20%.
This is a result of a separate issue in the DESeq2 package. Rocke et al. [26] demonstrate
that even with no di�erentially expressed genes, the DESeq2 package leads to inated false
positives, and they suggest this to be the result of awed dispersion estimation in the DESeq2
model. Second, the empirical false discovery rate decreases as the proportion of di�erentially
expressed genes increases. As discussed in the Appendix, Section 6.1, if we specify a level
� for FDR control, the Benjamini-Hochberg procedure actually controls at �m0

m
where m0

m

is the proportion of null hypotheses. As the proportion of di�erentially expressed genes in-
creases, the proportion of null hypotheses must necessarily decrease, hence the decrease in
observed FDR. Because of these di�erences, an evaluation of the normalization procedures
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is obtained by comparison with the empirical FDR under the Oracle procedure; since the
Oracle procedure uses the true sequencing depths for normalization, and the sequencing
depths are the only source of unwanted variability in the data, no normalization procedure
can hope to produce better results than the Oracle procedure.

Examining the results for the symmetric scenario, we can see that all methods perform
equally well. This is good veri�cation that in the case of symmetric di�erential expression
the methods work as intended, which we expect. As we increase the amount of asymmetry
in the data, however, some of the normalization methods lose control of the false discovery
rate. As expected, DESeq is the �rst method to lose control. Even with partial asymmetry
and a relatively small proportion of di�erentially expression, DESeq normalization exhibits
higher empirical false discovery rates. The results with partially and completely asymmetric
data demonstrate that the proportion of asymmetry is the driving factor in errors with DESeq

normalization. Since partially asymmetric data is simulated to have a lower proportion of
asymmetry than completely asymmetric data, we expect to see better performance of DESeq
normalization for partially asymmetric data vs. completely asymmetric data with the same
proportion of di�erentially expressed genes. This is indeed the case, and in fact we can
match up partially asymmetric and completely asymmetric simulations that should have
the same proportion of asymmetry. For example, the partially asymmetric simulation with
30% di�erential expression has 22:5% of all genes up-regulated in condition A and 7:5%
up-regulated in condition B. The discrepancy between up-regulation and down-regulation
(15 percentage points) is similar to 10% di�erence in completely asymmetric expression with
10% di�erentially expressed genes. Unsurprisingly, the mean empirical false discovery rates
are similar for DESeq normalization under these cases (0.1629 vs. 0.1421). Note that these
percentage point di�erences are not the exact proportions of asymmetry. The proportion
of asymmetry is de�ned by the expected di�erence in the amount of relative expression
values eij lying above and below the median value for the non-di�erentially expressed genes.
However, even with completely asymmetric expression one might expect that some truly
up-regulated expressed genes would not be observed to have eij above the median.

All simulations indicate that as long as the mean-constant assumption holds, MCI per-
forms accurately no matter the proportion of asymmetry or the proportion of di�erentially
expressed genes. In all cases, MCI tracks with the Oracle method and produces almost
identical mean empirical FDR values. This is expected, as the data were simulated under
the mean-constant assumption that is the basis of the MCI method. Hence the simulations
provide con�rmation that the MCI method is the correct approach in the case of equivalent
geometric means of the sequencing depths between conditions.

The �nal two methods considered, PoissonSeq and DEGES, both aim to identify a set
of non-di�erentially expressed genes and use these genes to perform normalization. At low
to medium proportions of di�erential expression and asymmetry these methods both work
well, but both reach breakdown points as the proportion of asymmetry is increased. For
PoissonSeq, we see decent (although not perfect) performance with completely asymmetric
di�erential expression and proportions of di�erentially expressed genes of 10% and 20%.
However, PoissonSeq failed to control the false discovery rate with complete asymmetry
and 30% or more di�erentially expressed genes. DEGES performed better than PoissonSeq,
with the mean empirical FDR very close to that of the Oracle method until 50% di�erential
expression is reached. At this point, FDR control is completely lost and DEGES performs no
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better than PoissonSeq and DESeq. Furthermore, we must keep in mind that with global,
completely asymmetric di�erential expression it would be impossible to use the DEGES and
PoissonSeq methods as there would be no non-di�erentially expressed genes to identify.

These simulations identify the need for correct normalization when there is asymmetric
di�erential expression, and demonstrate that when the mean-constant assumption holds, the
MCI method is well-suited to provide sequencing depth normalization.

Chapter 5

Conclusions

The use of RNA-Seq experiments to study organisms' genomes is becoming ubiquitous,
and the explosion in the use of sequencing technology has led to a related explosion in the
development of statistical methods for processing and analyzing RNA-Seq data. As previous
research has demonstrated [5], proper normalization is an essential step in the analysis
pipeline. The need for normalization arises from the inherent variability in the collection of
RNA-Seq data, and a variety of normalization methods have been devised to combat this
variability. The methods discusses in Chapter 3 cover a range of approaches to normalization
and include those methods discussed most in the literature. As we saw in the same chapter,
this literature has not reached a consensus on which normalization method to use, though
there do seem to be common opinions on which normalization methods should not be used.
The importance of normalization and the lack of consensus on how to perform it indicate
that normalization warrants further study.

In this thesis, we examine the e�ect of asymmetry on the performance of several represen-
tative normalization methods. We have seen that asymmetric di�erential expression can lead
to loss of control of the false discovery rate as the proportion of asymmetry increases. One
potential approach to normalization that in theory would not be a�ected by asymmetry is the
use of negative control genes such as spike-in controls. These controls would have constant
expression across samples, and so would provide the essential information each normalization
method attempts to obtain. However, in the case that spike-in controls are not available or
are too variable to allow for normalization, there is a need for methods capable of dealing
with asymmetric di�erential expression. To this end we propose the Mean-Constant Internal
(MCI) normalization method, which uses Cu�Di� internal size factor estimates to compare
across conditions under the mean-constant assumption. Through a simulation study, we
have demonstrated that MCI normalization performs comparably with Oracle normalization
(perfect knowledge of the true sequencing depths) and outperforms even normalization meth-
ods which attempt to detect a set of negative control genes through di�erential expression
testing. Unfortunately, the mean-constant assumption is fairly stringent, and future work
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would investigate the possibility of relaxing this assumption and still achieving acceptable
performance.
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Chapter 6

Appendix

6.1 The False Discovery Rate

Following the notation of Benjamini and Hochberg [3], suppose there is a family of m in-
dependent hypotheses to be tested, m0 of which are truly null. We represent the di�erent
possible outcomes in Table 6.1.

Declared Declared Total

non-signi�cant signi�cant

True null hypotheses U V m0

Non-true null hypotheses T S m�m0

m�R R m

Table 6.1: Discoveries and false discoveries when testing m null hypotheses [3].

De�nition 6.1 The false discovery rate. From Table 6.1, the proportion of discoveries
which are false is V=R, and the false discovery rate is de�ned to be

FDR = E(V=R)

where V=R = 0 whenever R = 0. In other words,

FDR = E(V=RjR > 0)P (R > 0):

To control the FDR at a desired level �, Benjamini and Hochberg proposed the following
step-up procedure (henceforth referred to as BH) [3].

De�nition 6.2 BH procedure. Let p1; :::; pm be the p-values resulting from tests of the
m hypotheses, and p(1); p(2); :::; p(m) the p-values in increasing order. The BH procedure

�nds the largest index i such that

p(i) � �
i

m

and then p(1); :::; p(i) are declared signi�cant, and their associated hypotheses rejected. Equiv-
alently, each p-value p(i) is adjusted by setting p(i) = minfm

j
p(j) : j � ig, then all p-values

below the cuto� � are rejected.
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Benjamini and Hochberg proved that this procedure controls the FDR at

FDR � �
m0

m
� �

and furthermore that the cuto� T = maxfp(i) : p(i) � � i
m
g can be less stringent than the

cuto� given by FWER control, since FWER control implies FDR control but a procedure
controlling the FDR need not necessarily control the FWER [3].

In the two decades since the introduction of the FDR, a number of alternative ap-
proaches have been suggested, including related errors like Storey's positive false discovery
rate (pFDR) [29], and adaptive methods for controlling the FDR while attempting to max-
imize power, such as the one proposed by Storey and Tibshirani [30]. Other methods and
procedures attempt to control FDR in more complicated scenarios. The common goal of all
these varied methods is to maintain error control in di�erent situations while conserving as
much power as possible.

While more advanced methods than the BH procedure are demonstrably better at control-
ling FDR, in the sense of maintaining control while increasing power (the method proposed
in [30] is one such example) the most common choice appears to still be BH, and is in fact
the default in the DESeq package. For this reason, FDR control performed in simulations in
this thesis will be done using BH.

6.2 Di�erential expression analysis procedures

In this section, we present basic details of performing di�erential expression analysis with
the DESeq and DESeq2 packages. While not a necessity for understanding the normalization
procedures discussed in the main body of this thesis, a summary of these methods allows us
to see what happens to normalized counts further down the pipeline of di�erential expression
analysis. In this section, we will examine Steps 3 - 4 of De�nition 2.2. As these steps are
highly dependent on the speci�c method used to perform analysis, they will be examined in
the context of each method considered.

6.2.1 DESeq and DESeq2

Both DESeq and its successor DESeq2 are based on a negative binomial probability model
of the read count data. In the early stages of RNA-Seq analysis a Poisson model seemed
the natural choice for read count data, but turned out to have too small a variance (with
variance equal to the mean), and so the negative binomial model was developed instead as
an over-dispersed Poisson: if � is the expectation of a negative binomial distribution, then
the variance can be written as �+ ��2 with dispersion parameter �.

The foundation of the DESeq and DESeq2 methods is the same; the remainder of this
section is entirely due to [1] and [15]. Suppose that there are two experimental conditions,
A and B, and each sample has been collected under one of the two conditions. Let Kij be a
random variable for the number of reads aligned to gene i under sample j, and let �(j) be the
condition of sample j. Then KiA =

P
j:�(j)=A

Kij and KiB =
P

j:�(j)=B

Kij represent the number

of reads aligned to gene i under conditions A and B respectively. The DESeq and DESeq2
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models assume that Kij follows a negative binomial distribution: Kij � NB(�ij; �
2
ij), with

mean �ij and variance �2ij. It is assumed in both DESeq and DESeq2 that

�ij = qi;�(j)sij:

Here qi;�(j) is the expression strength of gene i under the condition �(j) of sample j. The
term sij is the size factor for gene i and sample j, which reects the sequencing depth of
gene i under sample j. The default in DESeq and DESeq2 is that sij = sj, that is, that size
factors are the same within each sample. Both packages estimate size factors under this
assumption, but DESeq2 does o�er the option to input size factor estimates on a per-gene
per-sample basis from other packages. In other words, the expected number of reads aligned
to gene i in sample j is determined by the probability of a read being aligned to gene i in
sample j, and the total quantity of reads in sample j.

Estimating expression strength. The expression strength parameter qi;�(j) is esti-
mated as

q̂i;�(j) =
1

m�(j)

X
j:�(j)

kij
ŝj

where m�(j) is the number of samples performed under condition �(j), kij is the observed
number of reads aligned to gene i under sample j, and ŝj is the size factor estimate for
sample j.

Size factor estimation. As mentioned above, the size-factor estimates provided by
DESeq and DESeq2 are estimates of sj, so that each gene has the same size factor for a given
sample. A description of the size factor estimation process is found in the main body of this
thesis.

DESeq

Variance estimation. In the DESeq model, it is assumed that

�2ij = �ij + s2jvi;�(j):

In the variance, vi;�(j) is a per-gene raw variance parameter for condition �(j). The variance
in the number of aligned reads is determined by the mean as well as the quantity of reads
aligned and the raw variance. Details of the variance-estimation process can be found in [1].

Hypothesis testing. Since each Kij is assumed to follow a negative binomial distri-
bution, then KiA and KiB are also negative binomially distributed. Furthermore, assuming
that the read counts are independent across samples, then KiA � NB(�iA; �

2
iA) where

�iA =
X

j:�(j)=A

�ij and �2iA =
X

j:�(j)=A

�2ij:

Similarly, KiB � NB(�iB; �
2
iB).
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Interest lies in testing whether each gene i is di�erentially expressed between conditions
A and B. Because expression is measured with the expression strength parameter qi;�(j) then
the relevant hypothesis is

H0 : qiA = qiB:

Under the null hypothesis, DESeq estimates a pooled expression strength parameter q̂i0,
which is then used to estimate the distributions of KiA and KiB under the null hypothesis:

�̂iA =
X

j:�(j)=A

ŝj q̂i0 and �̂2iA =
X

j:�(j)=A

(ŝj q̂i0 + ŝ2j v̂i;�(j)) (6.1)

with analogous expressions for �̂iB and �̂2iB. Using these estimated distributions and the
assumption of independence, then the probability of observing any pair of counts (a; b) for
KiA and KiB respectively is Pi(a; b) = P (KiA = a)P (KiB = b) where each probability is
calculated under the null distributions given in Eq. 6.1. By using the null distributions,
p-values can be calculated to test H0 for each gene. Let kiA and kiB be the observed values
of KiA and KiB seen in the experimental data, and let kiS = kiA+kiB. DESeq calculates the
p-value pi for gene i by considering all pairs (a; b) of nonnegative integers such that a+b = kiS
and Pi(a; b) � Pi(kiA; kiB), out of the total set of pairs (a; b) such that a+ b = kiS:

pi =

P
a+b=kiS

Pi(a;b)�Pi(kiA;kiB)

Pi(a; b)

P
a+b=kiS

Pi(a; b)
: (6.2)

With the p-values pi in hand for each gene, then hypothesis testing proceeds as normal.
In particular, DESeq makes use of the BH method to adjust the p-values and account for
multiple tests.

DESeq2

Variance estimation. In the DESeq2 model, we have

�2ij = �ij + �i�
2
ij

where �i is the dispersion parameter for gene i. The details of dispersion estimation can be
found in [15], but we will present an overview of the main steps:

1. Individual, maximum likelihood estimates are made for the dispersion of each gene.

2. A dispersion trend is �t.

3. The MLE dispersions are combined with the estimates from the trend �t to create �nal
dispersion estimates.
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Linear models. Whereas DESeq used discrete, count-based hypothesis testing to test
for di�erential gene expression, DESeq2 uses linear models with a logarithmic link to relate
the expression strength parameter qij to the samples. Speci�cally,

log2(qij) =
X
r

xjr�ir

where the xjr are entries in the experiment's expanded design matrix (one column for each
level of each explanatory variable and a column for the intercept) and the �ir are coe�cients.
That is: for each gene i, we have a vector qi = [qi1; qi2; :::; qim]

T where each entry is the
expression strength parameter for gene i under one of the samples. If X is the design
matrix, with each column corresponding to an experimental condition (or the intercept),
and �i is a vector of coe�cients, then

log2(qi) = X�i:

For example, consider a simple experiment to examine di�erential gene expression be-
tween two conditions, A and B. Six samples are performed, with the �rst three under
condition A and the second three under condition B. Then,2

6666664

log2(qi1)
log2(qi2)
log2(qi3)
log2(qi4)
log2(qi5)
log2(qi6)

3
7777775
=

2
6666664

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

3
7777775
2
4�i0�i1
�i2

3
5

By comparing the coe�cients �i1 and �i2 in this example, we can compare the expression
strength parameters for samples performed under the two di�erent conditions: �i1 � �i2
gives the logarithm of the ratio of expression strength parameters of samples performed
under condition A to those of samples performed under condition B.

For this reason, contrasts are referred to as log fold changes (LFCs), and to determine if
there is di�erential expression between two conditions we test whether their LFC is 0 (which
would imply that the ratio of the expression strength parameters is 1 and hence there is no
di�erential expression). In general, we can write a contrast of interest as

�ci = cT�i

where c is the column vector specifying the contrast. In the above example, for instance, to
get �i1 � �i2 one would use the contrast vector cT = [0 1 � 1].

Hypothesis testing. To test for pairwise di�erential expression between two conditions
for a given gene i, we test whether the corresponding contrast is equal to 0:

H0 : �
c
i = 0 H1 : �

c
i 6= 0:

This is performed using a Wald test, in which

�ci
SE(�ci )

is compared to a standard normal. As in DESeq, the resulting p-values are adjusted using
the BH method.
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