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Abstract

This paper details SVM and how they are built. I apply different model-
building algorithms based on Bradley Efron’s paper, Estimating the Error
Rate of a Prediction Rule: Improvement on Cross-Validation (1983). In his
paper, Efron examines the error rate different prediction rules. Though Efron
applied this analysis of prediction rules to regression models, I apply these
models to SVM and examine their performance and accuracy in measuring
error rates.
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Chapter 1

Introduction

The main focus of this thesis is SVM (SVMs). SVM are a method of classi-
fication. A classification algorithm is an algorithm in which given a certain
amount of information, a model is built that is used to predict the classifica-
tion of future data that is input into the model. An example of how a model
of this nature might work might be that a doctor wants to predict whether or
not somehow has heart disease based on two variables, their height and their
weight. I know that these variables aren’t necessarily the best predictor of
heart disease in an individual but they will suffice for a simple example. To
begin with we have two classes, in one class are the people with heart disease,
in the other class are people without heart disease. We would take informa-
tion on patients who we already know either have or don’t have heart disease
and use them for the model. An SVM would take the information on these
patients, such as their height, weight, and whether or not they have heart
disease, and train a model. The model would then use this prior knowledge
to predict whether or not future individuals will have heart disease based
on these different attributes of the two classes. For instance, if the model
assesses that many of the people that did not have heart disease were above
a certain height, then the program would be more likely to classify a future
observation above that height as not having heart disease, though it would
take into account weight as well.

What’s the usefulness of this type of classification algorithm you might
ask. Well when predicting observations we do not always know the classifica-
tion of the individual and so a classification algorithm can provide valuable
information. In the context of the example, this information might be useful
for a doctor in deciding treatment for a patient especially in urgent situations.
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The truly useful part about SVM is that we can use a lot more than just two
variables to create very detailed models and the real world applications can
provide a number of benefits.

Breaking down the following chapters, the second chapter of this thesis
details SVMs and the how they are technically derived. The third chapter
discusses the typical method of evaluating the error rate of SVMs. The
fourth and fifth chapters addresses Efron’s paper that was mentioned in the
abstract, and focuses on the derivation and rationale behind the prediction
algorithms he proposed in his paper. The sixth chapter is a summary of the
results of the prediction algorithms applied to a real world data set. And
finally the seventh chapter reviews the findings of the applications and reflects
on whether Efron’s prediction algorithms are suited for use with SVM.
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Chapter 2

Support Vector Machines

For someone who has very little familiarity with classification algorithms
there is not a clear point at which to begin. However, with SVMs the concept
of hyperplanes is basis of the model and is where this chapter will start before
eventually explaining how this ties into SVMs.

2.1 Hyperplanes

A hyperplane in a p-dimensional space is a flat subspace of p − 1 dimensions.
In a two dimensional space, the hyperplane is a line and is defined by the
equation

β0 + β1X1 + β2X2 = 0 (2.1)

for parameters β0, β1, and β2. In a three dimensional space, the hyperplane
is a plane and is given by the equation

β0 + β1X1 + β2X2 + β3X3 = 0 (2.2)

for parameters β0, β1, β2, and β3. Defining the hyperplane means that any
X = (X1, X2, X3)

T that satisfies (2.2) is a point on the hyperplane. Equation
2.2 can be extended to p-dimensions. For p-dimensions, the equation

β0 + β1X1 + β2X2 + ...+ βpXp = 0 (2.3)

defines the appropriate hyperplane. Similarly to how it was described earlier,
defining the hyperplane means that if a point X = (X1, X2, ..., Xp)

T satisfies
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(2.3), then X lies on the hyperplane. If X, on the other hand, does not satisfy
(2.3) and instead,

β0 + β1X1 + β2X2 + ...+ βpXp > 0 (2.4)

then we know X lies to one side of the hyperplane. Alternatively, if

β0 + β1X1 + β2X2 + ...+ βpXp < 0, (2.5)

then we know X lies on the other side of the hyperplane. The p−1 dimensional
hyperplane can thus be viewed as dividing a p-dimensional space into two
subspaces.

In terms of the application of hyperplanes to classification, suppose that
there are n observations with p characteristics represented by the n x p
matrix M.

M =


x1
.
.
.
xn

where x1 =


x11
.
.
.
x1p


T

, ..., xn =


xn1
.
.
.

xnp,


T

(2.6)

from which xi for i ∈ {1, n} belongs to one of two classes, {−1, 1} or in other
words, y1, ..., yn ∈ {−1, 1} where −1 and 1 represent two distinct classes.
These data are considered to be the training observations and our goal is to
create a decision rule based on our training observations that correctly pre-
dicts the class of additional observations. One way to separate these training
data is to create a hyperplane that separates the training observations ac-
cording to their class, i.e. the xi that are members of −1 are separated from
xi that are members of 1 as seen in the left subfigure of Figure 2.1. If we
assume we are able to construct a separating hyperplane, it would look some-
thing like any one of the hyperplanes in the right figure of Figure 2.1. We
can say that the solid dots to the left of the separating hyperplane belong
to one of the classes, yi = −1 and the open dots to the right belong to the
other class such that yi = +1.

Thus a separating hyperplane is such that

β0 + β1Xi1 + β2Xi2 + ...+ βpXip > 0 if yi = 1, (2.7)

and
β0 + β1Xi1 + β2Xi2 + ...+ βpXip < 0 if yi = −1. (2.8)
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Separa:ng&Hyperplane&

Figure 2.1: Left: Single Hyperplane Right: Multiple Hyperplanes Solid Point:
Class 1 Open Point: Class 2

These two equations can also be rewritten in the form

yi(β0 + β1Xi1 + β2Xi2 + ...+ βpXip) > 0 (2.9)

for all i = 1, ...., n.
We want to define a function that will correctly classify our test obser-

vations. The idea behind this is that the observation will be assigned to
a class depending the side of the hyperplane it falls on. Consider a new
observation x∗. The test observations are classified based on the function,
f(x∗) = β0 +β1x

∗
1 +β2x

∗
2 + ...+βpx

∗
p. If the function returns a negative value

for a given test observation, it is classified into −1. If the function returns a
positive value then we assign to 1. The magnitude of f(x∗) is also useful as
well as the further f(x∗) is from 0, the further x∗ is from the the hyperplane
and thus the more confident we can be about its classification. On the con-
trary, if f(x∗) is close to 0, then we know that x∗ is close to the separating
hyperplane and therefore we are less certain about its classification.

2.2 Maximal Margin Hyperplane

In the case that the observations can be perfectly separated into two groups,
there are an infinite number of separating hyperplanes, the right subfigure in
Figure 2.1 shows just a handful. The next question that arises after learning
that a separating hyperplane can be used to classify the test observations and
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Maximal&Margin&Classifier&

Margin&

Maximal&Margin&Classifier&

Support&Vectors&

Figure 2.2: Left: Margin Diagram Right: Support Vectors Diagram

that there are an infinite number of them, is how to decide which hyperplane
is the best. One of the previous facts we stated provides some of the intuition
behind the method used to identify the best hyperplane. In the previous
section we expressed that if f(x∗) is far away from 0, we are more confident
about the classification. Thus we would like to find the f(·) or the hyperplane
that creates the greatest distance between the different classes.

This hyperplane is known as the maximal margin hyperplane, which is the
separating hyperplane furthest from the training observations. The smallest
(perpendicular) distance from the training observations to the hyperplane is
known as the margin and the maximal margin hyperplane is the hyperplane
which has the largest margin. Classifying the test observations based on the
side to which they lie using the maximal margin hyperplane is known as the
maximal margin classifier. When examining a maximal margin hyperplane,
we see that there are test observations that lie along the margin, these obser-
vations are known as support vectors and are actually the only observations
that factor in when creating the hyperplane.

After defining what the maximal margin classifier is, the next step is to
construct it, which we do by solving the following optimization problem,

maximize M
β0,β1,...,βp

(2.10)

subject to
p∑
j=1

β2
j = 1, (2.11)

6



yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥ M ∀ i = 1, ..., n. (2.12)

where M is the margin.

The equations required for the optimization problem ensures certain as-
pects of the maximal margin classifier. Equation 2.10 ensures that the dis-
tance between the separating plane and the nearest observations is as large
possible. Equation 2.12 makes sure that each observation falls on the correct
side, while equation 2.11 makes sure the hyperplane is unique.

2.3 Lagrange Multipliers

The optimization problem in equations 2.10 - 2.12 can be solved using La-
grange multipliers. However when we go to solve this problem, we realize
that the (2.11) constraint is actually rather difficult and not something that
can easily be solved with any software that we have. Let w = (β1, β2, ..., βp).
To simplify, the constraint 2.11 can be rewritten as

‖w‖ = 1 (2.13)

As we mentioned earlier, this is difficult to work with so we transform
our conditions such that they guarantee the same properties but are more

suitable for optimization. In order to do this, we select M̂ such that M̂
‖w‖ = M .

We can then write the optimization problem as:

maximize
β0,β1,...,βp

M̂

‖w‖
(2.14)

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥ M̂ ∀ i = 1, ..., n. (2.15)

Though we only have two constraints now, we still have a non-convex
objective function in equation (2.14). Due to the properties of Lagrange
multipliers and our conditions we can add an arbitrary scaling constraint on
w such that the functional margin with respect to the training set must be
1:

M̂ = 1. (2.16)
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It then becomes clear that in order to maximize 1
‖w‖ we must minimize

‖w‖2, which gives us the following modified optimization problem:

minimize
β0,β1,...,βp

1

2
‖w‖2 (2.17)

subject to yi(β0 + β1xi1 + ...+ βpxip) ≥ 1 ∀ i = 1, ..., n. (2.18)

With conditions (2.17) and (2.18), the optimization problem is now a lot
more manageable. We will solve this optimization problem. The following
is a simple example with two points and two classes. It is primarily drawn
from Baxter (2004).

Example Suppose we have two points in two dimensions that fall into two
distinct classes and we want to find the optimal separating plane which in
this case is a line. Let these two points be:

ẋ1 = A1 = (a, b), ẋ2 = B1 = (c, d) (2.19)

where a, b, c and d ∈ R.
To start with, for any constraint-based optimization, the following con-

ditions known as the Krush-Kuhn-Tucker conditions (KKT) must be met.
The KKT Conditions are required when optimizing a nonlinear program-
ming problem with inequality constraints. The Lagrange method doesn’t
accomplish this when the problem doesn’t have strict equality constraints.
The KKT conditions guarantee the solution we find is indeed optimal. In the
example we are working out, the optimization problem doesn’t actually have
any inequality constraints, so the KKT conditions aren’t necessary. However,
it is still useful to show how they would be used since the process would be
the same if we did have inequality constraints. Important to note is that in
this case based on the way w is defined, w = (β1, β2). But in cases in higher
dimensions w will have additional parameters. The KKT conditions are as
such:

∂

∂w
L(w, β0, λ) = w −

∑
i

λiyiẋi = 0 (2.20)

∂

∂β0
L(w, β0, λ) = −

∑
i

λiyi = 0 (2.21)

yi[〈w, (ẋ1, ẋ2)〉+ β0]− 1 ≥ 0 (2.22)

8



λi ≥ 0 (2.23)

λi(yi[〈w, (ẋ1, ẋ2)〉+ β0]− 1) = 0 (2.24)

Using equations (2.17) and (2.18) from earlier, we see that the function
f and the constraint g can be written as:

f(w) =
1

2
‖w‖2 (2.25)

gi(w, β0) = yi[〈w, ẋi〉+ β0]− 1) = 0 (2.26)

With Lagrange multipliers we know gi(w, β0) can be expanded to:

g1(w, β0) = [〈w, ẋ1〉+ β0]− 1 ≥ 0 (2.27)

g2(w, β0) = −[〈w, ẋ2〉+ β0]− 1 ≥ 0 (2.28)

As a results we can write the Lagrange as:

L(w, β0, λ) = f(w)− λ1g1(w, β0)− λ2g2(w, β0) (2.29)

Plugging in the equations for f(w) and gi(w, β0) we write the Lagrangian
as:

L(w, β0, λ) =
1

2
‖w‖2 − λ1([〈w, ẋ1〉+ β0]− 1)− λ2(−[〈w, ẋ2〉+ β0]− 1)

=
1

2
‖w‖2 − λ1([〈w, ẋ1〉+ β0]− 1) + λ2([〈w, ẋ2〉+ β0]− 1)

(2.30)
The resulting gradient can be written in the form:

∇L(w, β0, λ) = ∇f(w)− λ1∇g1(w, β0)− λ2∇g2(w, β0) = 0 (2.31)

The gradient of the Lagrange gives us the following system of equations
when we take their partial derivates:

∂

∂w
L(w, β0, λ) = w − λ1ẋ1 + λ2ẋ2 = 0 (2.32)

∂

∂β0
L(w, β0, λ) = −λ1 + λ2 = 0 (2.33)

∂

∂λ1
L(w, β0, λ) = [〈w, ẋ1〉+ β0]− 1 = 0 (2.34)
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∂

∂λ2
L(w, β0, λ) = [〈w, ẋ2〉+ β0] + 1 = 0 (2.35)

If we take equations (2.34) and (2.35) we can write that:

〈w, ẋ1〉+ β0 − 1 = 〈w, ẋ2〉+ β0 + 1

〈w, ẋ1〉 − 1 = 〈w, ẋ2〉+ 1

〈w, ẋ1〉 − 〈w, ẋ2〉 = 2

〈w, [ẋ1 − ẋ2]〉 = 2

(2.36)

Let the two points we mentioned earlier be:

ẋ1 = A1 = (0, 0), ẋ2 = B1 = (2, 2) (2.37)

Plugging in the values we have for points ẋ1 and ẋ2, we can find the
equation for the vector w.

〈(w1, w2), [(0, 0)− (2, 2)]〉 = 2

〈(w1, w2), (−2,−2)〉 = 2

−2w1 − 2w2 = 2

2w1 = −(2w2 + 2

w1 = −(w2 + 2)

(2.38)

We can now combine equations (2.32) and (2.33) along with our points
in order to solve for w. Equation (2.33) tells us that λ1 = λ2 so we can write
equation (2.32) as:

(w1, w2)− λ1(0, 0) + λ2(2, 2) = 0 (2.39)

(w1, w2)− λ1(0, 0) + λ1(2, 2) = 0 (2.40)

(w1, w2) + λ1(2, 2) = 0 (2.41)

Thus we have that:
w1 + 2λ1 = 0 (2.42)

and
w2 + 2λ1 = 0 (2.43)

These two equations imply that:

w1 = w2 (2.44)
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Plugging this back into equation (2.38) we get that:

w1 = w2 = −1 (2.45)

As a result, we can see from equations (2.42) and (2.43) that:

λ1 = λ2 = .5 (2.46)

Recall equation (2.35), with the values that we have for w and the point
ẋ1 we can express is as:

[〈−1, (0, 0)〉+ β0]− 1 = 0

β0 − 1 = 0

β0 = 1

(2.47)

We can see from our derivation that equations (2.20), (2.21), (2.22) and
(2.24) from the KKT conditions hold. We can also see that equation (2.23)
is satisfied since:

λ1 = λ2 = .5 ≥ 0 (2.48)

Accordingly we see that all the KKT conditions are met, which means
that we know our solution is the optimal solution for the given problem. The
equation of the hyperplane for our maximal margin classifier is the line 1 +
1
2
x1 + 1

2
x2 = 0. This simple example demonstrate the basic method by which

the Lagrangian is solved. The following section describes Kernel Function,
which are incorporated into the Lagrangian for more complex problems.

2.4 Kernel Functions

The following description of kernel function and their uses in SVM was mainly
drawn from Berwick (2008). In the previous section we discussed linear
decision boundaries. Although we didn’t discuss it explicitly, in some cases
we might not be able to fit the data perfectly, but we can still fit the vast
majority of the points using a linear decision boundary. However, there is
also the possibility that a linear decision boundary isn’t appropriate at all.
As can be seen in the left figure in Figure 2.3, there is no line that will fit the
observations relatively well. Using kernel functions we can find a non-linear
decision boundary that fits the observations much better as you can see in
the right figure in Figure 2.3.
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Finding a non-linear decision boundary is where kernel functions come
in handy. They help to dramatically simplify the process by mapping obser-
vations in the original feature space into a higher dimensional space. The
intuition is that if we increase the number of dimensions by enough, aside
from when there are observations with the same x-values and opposite clas-
sifications, there will always a be a plane that will be able to separate the
observations. We then map the linear high dimensional hyperplane back
into the original feature space and that resulting projection is our non-linear
decision boundary.

Kernel functions have the form:

K(~xi, ~xj) = φ(~xi) · φ(~xj) (2.49)

where φ(x) maps x into a higher dimensional space. Consider the follow-
ing example:

~x =

(
x1
x2

)
, ~y =

(
y1
y2,

)
(2.50)

and
φ(~x) = (x1, x2, x

2
1 + x22) (2.51)

We now have a function that will map our observations from their original
2-dimensional space to a 3-dimensional space. The the kernel function would
then look like:

K(~x, ~y) = φ(~x) · φ(~y)

= (x1, x2, x
2
1 + x22) · (y1, y2, y21 + y22)

= x1y1 + x2y2 + (x21 + x22)(y
2
1 + y22)

= x1y1 + x2y2 + x21y
2
1 + x21y

2
2 + x22y

2
1 + x22y

2
2

(2.52)

The amazing part about kernel functions is that we don’t need to know
φ, the equation (2.51) can be written as a function of the dot product of the
data in the original space. In Figure 2.4 you can see that the 2-D figure
on the left is not linearly separable. However, when mapped into three
dimensions, which is shown in the figure on the right, you can find a plane
that separates the data into the two appropriate classes. When mapped
back down, the decision boundary will be circular and look very similar to
the decision boundary presented in Figure 2.3These two figures demonstrate
how the transformation described earlier might look visually.
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Figure 2.3: Non-Linearly Separable Observations Red: Class 1 Blue: Class 2

Figure 2.4: Non-Linearly Separable Observations Red: Class 1 Blue: Class 2
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There are 3 main kernel functions that are used frequently.

Linear Kernel:
K(~x, ~y) =

∑
j=1

xij · yij, (2.53)

Polynomial Kernel:

K(~x, ~y) = (1 +
∑
j=1

xij · yij)d (2.54)

Radial Kernel:
K(~x, ~y) = exp(−γ

∑
j=1

(xij − yij)2) (2.55)

The kernel selected varies according to which one best fits the data, and
in the most commonly selected one out of the three is the radial kernel.

When examining the kernel functions, it is clear that 2 of the 3 require
parameters.The question that usually arises after examining this is how do
you know which parameters give the best model. The answer is that it firsts
depends on the data given and the process of finding the best parameter
once you have the data is called tuning and is used to narrow down which
parameters are the best for the model. To do this we use a technique called
cross-validation (Which is discussed in the following chapter) in order to
determine under which parameter does the model perform the best. The
technique of cross-validation introduces a concept known as the cost variable
for SVMs. The cost variable is the weight we assess creating a larger margin
at the price of increasing training error, which ultimately means you don’t
have to perfectly separate the points. The larger cost we have, the fewer
the number of misclassifications as they are penalized more heavily. Addi-
tionally, cross-validation is used in order to determine the parameters for the
kernel functions as well. The following chapter will help to explain how this
is done. Thus, through the process of cross-validation the parameters are
fine tuned and the best model is put forward.

Ultimately, including the kernel function into the Lagrange for the opti-
mization problem of fitting a hyper plane in a higher dimensional transformed
space, we arrive at the following equation which is used in order to determine
the optimal decision boundary for SVM.

L(w, β0, λ) =
1

2
‖w‖2 − w

∑
i

λiyiK(ẋi, ẋi′) = 0 (2.56)
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The resulting optimization problem is more complex than the small one
that was walked through earlier. However, the intuition is the same. The
same process is used in which the Lagrange Multiplier is derived and used
to solve for the unknown parameter values for the hyperplane. The terms
that are included in the optimization are no longer just the x1 and x2 that
were used in the example in Chapter 2. Mapping the observation to a higher
dimensional space might seem like an extensive task. The kernel trick saves
us a lot of time in this process due to the fact that we don’t have to know
the equations that map the observation but instead can examine functions of
the dot products. As a result, the kernel trick proves to be invaluable in the
process of creating SVM and solving the optimization problem with equation
2.56 is the way in which a SVM is built.
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Chapter 3

Cross-Validation

3.1 Error Rates

Error Rates in machine learning algorithms are very important as they inform
the model builder of the expected accuracy of future predictions. The error
rate is measured by: (Number of Misclassifications)

(Number of Test Observations)
. A lower error rate results in

a greater level of confidence in future predictions predicted correctly. In order
to compute the error rate for a given set of observations you must know the
response variable of these observations. In most cases the only observations
for which we know the response variable are in our sample. However, we
should not treat the error rate found using the training data as the actual
test error rate due to the fact that the model will be inherently fit towards
the training observations and return an error rate that is lower than the true
future error rate.

3.2 Cross-Validation

Cross-Validation addresses the overfitting issue by designating some of the
training data for model building and another portion for testing. In cross
validation the training set of data is partitioned into K groups. The algo-
rithm for K-Fold Cross-Validation can be written as such:
1. Partition the data set into K groups
2. Remove one of the groups from the data set and build the SVM on the
remaining K-1 groups
3. Run the held-out observation through the model and compare the pre-
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dicted classification to the actual classification and keep track of misclassifi-
cations.
4. Repeat Steps 2 and 3 for each of the K groups
5. Average the misclassification error for all of the K models that were built.

The resulting error rate can then be used as an estimation for the true
error rate of the model.

3.3 Cross-Validation for Model Optimization

Cross-Validation isn’t only limited to helping find the true error rate of a
model, but can also be used to fine tune parameters for a given model. In the
context of SVM, for most models, the cost parameter is tuned. This process
is very similar to K-Fold Cross-Validation for estimating error rates, however
for each of the K-Folds, we assign a different parameter value. Whichever
parameter value returns the lowest error rate is selected for the model at
hand. If we have a model with one parameter λ, the algorithm for that
model can be written as such:
1. Partition the data set into K groups
2. Assign each of the groups a different for λ
3. Remove one of the groups from the data set and build the Support Vector
Machine on the remaining K-1 groups with the λ value for the held out group
as the parameter value
4. Predict the classification of the held out group by using the model built on
the remaining K-1 groups and compare to the actual classifications for those
observations. Keep track of misclassifications and divide by the number of
observations in the left out sample.
5. Repeat Steps 3 and 4 for each of the K groups
6. Select the λ value that returned the model with lowest error rate.

Through this process, we can find the parameter value that is best fit for
the model and data at hand. As was mentioned earlier this is very useful
with kernel functions. As you can see, there are different parameters for
both the polynomial and radial kernels, (2.54) and (2.55). When building
a Support Vector Machine with either polynomial or radial kernels, we fine
tune these parameters in order to find the best model. We then can use
Cross-Validation again to find the estimated error rate of the model with the
optimal parameters.
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Chapter 4

Prediction Rules Using SVM

4.1 Support Vector Machine Bagging

When building decision rules, there are a number of factors that influence the
effectiveness of the given model. Two of the most important factors are bias
and variance. While bias is calculated by the average error between predicted
values and the actual values of these points, the variance is the difference
between predictions for the same point for different models. The variance
of a model is very important to observe because it means that if we have
a high variance we might get a very different model based on our samples.
This is not ideal since it implies that even if the model performs well on
training data, it might not make accurate predictions on other observations
since it is fit so closely to the training data. One way to reduce this variance
is to lower the cost variable, which was mentioned earlier, that is used in
the model. Another option would be to create multiple models, and average
across the models. By taking the average prediction, you would significantly
reduce the variance as it would no longer be dependent on a single model.
The following sections go into more detail on how this is done and expands
on how it is used in regards to prediction rules for SVM.

4.1.1 Bootstrapping

When we sample from a population we are hopefully getting a group of
observations that is representative of the entire population. The only thing
that would be better than getting one sample from the population would be
to get more than one sample from the population. With additional samples
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from the population, statisticians and researchers could build a better model
based on a larger sample size. These models in essence would be better since
there is a certain amount of variability from sample to sample, even with
random sampling and taking multiple sample helps to reduce this variability.
The only issue with resampling from the population is that in almost all
cases, statisticians and researchers aren’t able to gather additional samples
from the population. In these situations, the next best option is to bootstrap.

Bootstrapping is the process of resampling from the sample that’s been
taken from the population. What this entails is that if we have a sample, let’s
call it W, of n observations, we randomly sample from W with replacement
until we have n observations. The idea of resampling can be visualized as
reaching into a bag of marbles, pulling out one marble, writing down the color
of the marble, returning the marble to the bag and repeating the process until
you have gathered enough observations. The bag of marbles would be your
sample, and each marble you take out and take note of is an observation for
the bootstrapped sample. The idea is that if the sample is representative of
the population, by resampling from the sample, the new samples will also be
representative of the actual population and by examining these additional
samples, statisticians and researchers will be able to reduce the variability in
their model.

4.1.2 Out of Bag Error Rate

When bootstrapping, on average approximately one third of the observations
that were in the original sample do not make it into the bootstrapped sample.
These observations are known as out of bag observations and actually turn
out to be very helpful. Since these observation are left out, the sample and
model that is built using these samples are only built using roughly two
thirds of the available observations. Thus we are able to use the out of bag
observations to test the accuracy of our model. The resulting error rate that
is computed by summing the total number of misclassified predictions and
dividing by the total number of predictions is known as the out of bag error
rate.

4.1.3 SVM Bagging

An additional benefit of multiple different ”samples” is the fact that different
models can be built using these samples. By building models for each of the
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bootstrapped samples and taking the average or aggregate response, one can
build a classification algorithm with a lot less variance than an algorithm
which relies on just one sample. In the case of Support Vector Machine
Bagging, the models would all be SVMs and the predicted outcome for the
classification would be the majority response variable across the various mod-
els. The procedural points for this method would be to
1. Bootstrap sample B times
2. For each of the B bootstrap samples, build a Support Vector Machine
3. Take the majority response from the B models and label as the classifica-
tion for the bagging model

Once the model is built, the OOB error rate is used to approximate the
true error rate of the model.

4.2 Support Vector Machine Randomized Boot-

strap Bagging

Relating very closely to SVM Bagging, Support Vector Machine Random-
ized Bootstrap Bagging (SVM RBB) is almost identical expect that there
is a small modification in the sampling procedure. The intuition behind
SVM RBB is that when resampling from our sample, the class of an ob-
servation is certain. If we let ȳi be the complement of yi, then this can
be written as πi(yi,x) = 1, πi(ȳi,x) = 0. However, there is always the
possibility that due to some error the classifications we have aren’t com-
pletely accurate. SVM RBB assigns some of the probability mass to the
complementary response to account for potential uncertainty. Efron (1983)
uses πi(yi,x) = .9, πi(ȳi,x) = .1 Thus each time an observation is selected
during the process of bootstrapping, its classification is determined using a
Bernoulli(.9) distribution, where the new classification remains the same as
the old classification if a 1 is returned and the new classification become the
complementary classification if a 0 is returned. This is done for all observa-
tions that are sampled during the bootstrapping process. Then just like SVM
Bagging, the B samples are used to build B models that are used to create
the algorithm. The OOB Error Rate is used to determine the approximate
error rate of the model.
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Chapter 5

The .632 Estimator

5.1 The .632 Estimator

The .632 Estimator is different than the prediction rules described in Chapter
4. While the prediction rules included in Chapter 4 detail the algorithm for
creating a learning method, the .632 Estimator provides an estimate of the
error rate for a bagging algorithm. Most of the following information is taken
from Efron (1997). The .632 estimator differs from the previous algorithms
in that it itself is not an actual classification method. What it does instead is
provide an estimate of what the true error rate will be for an algorithm which
uses bootstrapping. While other methods of predicting error rate have low
bias, they can have high variance which is not desirable when estimating error
rates. The .632 Estimator tries to factor this in by including Leave-One-Out
Cross Validation (LOOCV) in its calculation of the error rate.

The formula for producing the .632 Estimator is:

Err(.632) = .368× err + .632× Err(1). (5.1)

Where

Err(1) =
1

N

N∑
i=1

1

|C−1|
∑
b∈C−1

L(yi, f
b(xi)) (5.2)

and err is the training error rate. Err(1) represents the extra-sample pre-
diction error. L in this context is a loss function and not be confused with
a Lagrangian. The function measures whether the bth model correctly pre-
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dicts the ith predicted value given the ith observation. The calculation is
derived from generating B bootstraps. One observation is selected and all
of the models from bootstrapped samples that do not include that specific
observation are used to test the left out observation. The samples without
the given observation are identified by |C−1|. What this means is that |C−1|
is the set of samples that do not contain that observations. The intuition be-
hind the .632 estimator is that the LOOCV error greatly reduces the amount
of variance, however this estimator still has issues with bias due to the rep-
etition of observations in the bootstrapped samples. To attempt to balance
out the variance problems with training error and the bias problem with
leave-one-out bootstrap error, the percentages of .368 and .632 are assigned
respectively. The .632 number comes from the fact that bootstrap sample
contains close to .632 of the points of the original sample.

Though the definition of the .632 Estimator provided in this chapter is
relatively succinct, it encompasses the essential components of the estimator.
By taking the LOOCV error rate and weighing it along with the training error
rate, we expect to calculate a more accurate error rate. In Efron (1983) Efron
explains that this estimator is the most accurate estimation of the true error
rate of the bagged model, and I will examine if this is true with SVMs as
well.
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Chapter 6

Applications

In this section, I apply the prediction rules and the .632 Estimator described
in Chapters 4 and Chapter 5 to two data sets. In Efron (1983), Efron exam-
ines how the estimated error rates perform with Linear Regression Models.
I, however, use SVMs as the base of the algorithms and seek to see how they
perform in regard to the actual error rate. I run the analysis a number of
times to get an idea of how much variability we might see when performing
this type of analysis. By conducting this application, I want to see if there
are any interesting trends or findings and examine how the results might
compare to what Efron found in his paper.

6.1 Gapminder

6.1.1 Data Set

One of the data sets used for the application portion was downloaded from
GapMinder. GapMinder data is an online collection of various information
on countries across the world. GapMinder data is tracked over a period of
years and can be used to assess changes in economical and social aspects
of countries.The data that I downloaded for this application includes the
following variables:

• CO2 emission levels

• Residential electricity consumption

• Income Share Held by the Highest 10 percent
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• Adult Literacy Rate of Females above 15 years old

• Billionaires per million inhabitants

• Percentage of Unemployed People above 15 years Old

• Agricultural Land as Percentage of Total Land Area

• Agricultural Value Added as Percentage of GDP

• Total Number of Agriculture Workers

• Children out of Primary School

• Aid Received as Percentage of GNI

• Tuberculosis Mortality as Percentage of Child Mortality per 100,000
Population per Year

• Female Children out of Primary School

I downloaded the data into RStudio using the googlesheets package. After
downloading the data using the GoogleSheets API I joined all the sheets and
selected only data from the most recent year for each respective category. Its
important to note that this is not the same year for each category because
some data stopped being collected prior to others. I did this with the hope
that with improvements in technology and communication, there would be
a higher chance that the data would be available. One problem with Gap-
Minder data is that since the observational units are countries, a lot of the
data is not available and thus are listed as NA. To address this, I removed
variables that had either all NAs for all countries or a large number of NAs,
which I categorized as more than half. For the remaining variables I set all
the NAs equal to 0, which I know isn’t the best solution, but was the most
reasonable solution given the data set. The predicted variable was whether
a country is a developed country or not. This variable was not included in
the Gapminder data set and so it was added to the model. Whether or not
a country was classified as developed was based on how the term is defined
by the CIA. The CIA provides a list of countries regarded as developed and
this list was used to determine which countries in the Gapminder data set
were classified into developed and undeveloped.
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For the process of analysis, I randomly sampled 60 observations out of the
180 available observations to use as my sample. I purposely chose a number
that was significantly less than the available 180 observations to reflect that
when sampling we often are not getting the majority of the population. By
sampling in this way, we could use the remainder of the observations to
calculate the actual error rate. Once I had this sample, examined it with
2 Prediction Rules and used the .632 Estimator to approximate what the
error rates would be. I repeated this analysis 50 times in order to capture
potential variability depending on sampling.

6.1.2 Results

As mentioned earlier, I simulated the analysis 50 times in order to get a more
complete range of potential values for the error rates. I also calculated the
actual error rate to assess how close they are to our estimated error rate.
The following results summarize what I found.

For SVM Bagging,the error rate ranged from 0.06649 to 0.26540 with the
1st and 3rd Quartiles at 0.14410 and 0.19460, respectively. The mean of the
bagging error rates was 0.16820 and the median was close to this at 0.16920.

For SVM Randomized Bootstrap Bagging, the error rate ranged from
0.3586 to 0.4844 with the 1st and 3rd Quartiles at 0.4127 and 0.4527, respec-
tively. The mean of the bagging error rates was 0.4326 and the median was
close to this at 0.4315.

For The .632 Estimator, the resulting error rate ranged from 0.04137 to
0.17700 with the 1st and 3rd Quartiles at 0.08911 and 0.12420, respectively.
The mean of the bagging error rates was 0.10740 and the median was close
to this at 0.10480.

The Actual Error Rate ranged from 0.1167 to 0.2167 with the 1st and
3rd Quartiles at 0.1583 and 0.1750, respectively. The mean of the bagging
error rates was 0.1652 and the median was close to this at 0.1667.

6.2 OJ Dataset

6.2.1 Data Set

In addition to using data that I downloaded and cleaned from Gapminder, I
also used data available in the textbook An Introduction to Statistical Learn-
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ing. I specifically focused on the OJ data set which is a data set of 1070
observation on 18 different variables. This data was used to predict whether
or not a given customer purchased Citrus Hill or Minute Maid Orange Juice.
These are the variables with brief descriptions in parentheses:

• WeekofPurchase (Week of purchase)

• StoreID (Store ID)

• PriceCH (Price charged for CH)

• PriceMM (Price charged for MM)

• DiscCH (Discount offered for CH)

• DiscMM (Discount offered for MM)

• SpecialCH (Indicator of special on CH)

• SpecialMM (Indicator of special on MM)

• LoyalCH (Customer brand loyalty for CH)

• SalePriceMM (Sale price for MM)

• SalePriceCH (Sale price for CH)

• PriceDiff (Sale price of MM less sale price of CH)

• Store7 (A factor with levels No and Yes indicating whether the sale is
at Store 7)

• PctDiscMM (Percentage discount for MM)

• PctDiscCH (Percentage discount for CH)

• ListPriceDiff (List price of MM less list price of CH)

• STORE (Which of 5 possible stores the sale occurred at)

I did not alter this data set as it didn’t have missing entries and I included
all variables in the model. I applied the same algorithms to it that I applied
to the Gapminder data. The only difference being that I randomly sampled
200 out of 1070 available observations. The following section details the
results of this application.
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6.2.2 Results

Similar to the OJ set, I simulated the analysis 50 times in order to get a more
complete range of potential values for the error rates. I also calculated the
actual error rate to assess how close they are to the estimated error rates.
Below are the summary statistics for each statistic.

For SVM Bagging, the error rate ranged from 0.2987 to 0.5364 with the
1st and 3rd Quartiles at 0.3708 and 0.4330, respectively. The mean of the
bagging error rates was 0.4043 and the median was 0.4058.

For SVM Randomized Bootstrap Bagging, the resulting error rate ranged
from 0.4580 to 0.5034 with the 1st and 3rd Quartiles at 0.4852 and 0.4975,
respectively. The mean of the bagging error rates was 0.4902 and the median
was close to this at 0.4912.

For The .632 Estimator, the error rate ranged from 0.1890 to 0.3362 with
the 1st and 3rd Quartiles at 0.2357 and 0.2776, respectively. The mean of the
bagging error rates was 0.2571 and the median was close to this at 0.2596.

The Actual Error Rate ranged from 0.3724 to 0.5172 with the 1st and
3rd Quartiles at 0.3851 and 0.4135, respectively. The mean of the bagging
error rates was 0.4037 and the median was close to this at 0.3983.
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Chapter 7

Conclusions

When examining estimated error rates it is very useful to know how close the
estimated error rates are to the true error rate. This information can be used
to assess the confidence one should have when predicting future observations.
Efron found in his 1983 paper that among the 3 estimators I examined that
the Randomized Bootstrap Algorithm returned the lowest error rate while
the .632 Estimator was the most accurate measure of the actual error rate.
In Chapter 6, I treated the Gapminder and OJ data sets as populations. I
took small samples from them and used the remainder of the population to
predict the actual error rate for that given SVM. I applied these algorithm
to SVMs and tried to see if I would see similar results to what Efron found.

For the Gapminder data set we found that aside from the SVM RBB, the
SVM Bagging and .632 Estimator error estimates had similar ranges to the
actual error rate of the data set. In terms of mean and median, the SVM
Bagging error rate was the only estimator that had a mean and median
close to that of the actual error rate. When looking closely it is evident
that the SVM RBB error rate tended to overestimate the error rate while
the .632 Estimator underestimated the error rate. The SVM RBB error rate
range actually doesn’t even overlap the range of the Actual Error rate, which
suggests that at least with this data set, SVM RBB isn’t a good predictor.

For the ISLR OJ data set we found that none of the estimators have
ranges similar to that of the Actual Error rate. The closest among the 3 is
the SVM Bagging estimator. In addition to having the closest range, the
mean and median of the SVM Bagging estimator are very close to the mean
and median of the Actual Error Rate. The .632 Estimator underestimates
the Actual Error rate while the SVM RBB overestimates the Actual Error
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rate, which is similar to what we found with the Gapminder data. From
these factors, it seems to follow that the SVM Bagging error rate gives the
error rate closest to the actual error rates out of the 3 estimators I examined.

Though the findings from Chapter 6 seem to imply the SVM RBB estima-
tor and .632 Estimator don’t perform well, there were limitations in the way
I conducted the application that hinder the comparison that can be made be-
tween the estimators and the actual error rate. One of the largest factors to
note is that the error rates for different algorithms were not grouped. What
this means is that the smallest error rate for SVM Bagging didn’t necessarily
come from the same sample that had the smallest actual error rate. Thus
we can not assess how much the estimators varied from sample to sample.
This is an important assessment to make because even if the estimator and
the Actual Error rate have similar summary statistics, if the error rate for
the estimator is high when the Actual Error rate is low and vice-versa, the
estimator would not be a good estimator of the true error rate at all.

There are additional factors that might have led to the result we found
and weaken the argument that Efron’s findings can’t be applied to SVMs.
First, the data set that was used from Gapminder included a lot of NAs
that were then turned into 0s so that the model could run appropriately.
This easily could’ve skewed the models and error rates associated with them
since in actuality these values aren’t 0. At the same time, the classification
breakdown for the data set was 148 to 32. This type of breakdown could easily
lead to a bias in the models to just classify more observations as undeveloped.
Another factor that might have contributed to the results we saw was that
Efron applied the algorithms to linear regressions while I applied them to
SVMs. While this might not have made a large difference, the nature of the
two models is quite different and as such, it wouldn’t be too surprising to see
different results when algorithms are applied to them. The final point that
needs to be addressed is that the simulation was ran only 50 times. Though
this might seem like a good amount, with a larger simulation the results
could change substantially and that should be recognized as well.

Ultimately, there might have been additional features that contributed to
this result and if I were to run this type of experiment again I would definitely
try to find a data set that had less NA’s. I would also group the estimators
by sample so that it would be easier to see how much the estimators varied
and run the simulation as many times as possible. In all, it was still very
interesting to apply different learning algorithms to these data sets to see
how they would perform. Though these algorithms didn’t perform exactly
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as was expected, they shed some light onto how we might expect them to
perform in similar situations and suggest that additional work in this area
might yield valuable information about the application of these estimators
on a large scale.
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Appendix A

R Code

A.1 Gapminder
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load("GapminderData")	
  
check	
  <-­‐	
  function(x,y){	
  
	
  	
  match1	
  <-­‐	
  match(x,y)	
  
	
  	
  match2	
  <-­‐	
  sum(!is.na(match1))	
  
	
  	
  if(match2	
  >	
  0){	
  
	
  	
  	
  	
  final	
  <-­‐	
  1	
  
	
  	
  }	
  else	
  {	
  
	
  	
  	
  	
  final	
  <-­‐	
  0	
  
	
  	
  }	
  
	
  	
  return(final)	
  
}	
  
	
  
countrylist	
  <-­‐	
  read.delim(file=	
  '~/Developed	
  Countries',	
  header=FALSE,	
  
stringsAsFactors	
  =	
  FALSE)	
  
countrylist1	
  <-­‐	
  unlist(countrylist)	
  
for(i	
  in	
  1:nrow(g1)){	
  
	
  	
  g1$developed[i]	
  <-­‐	
  check(g1$Country[i],countrylist1)	
  
}	
  	
  	
  
totallist	
  	
  <-­‐	
  read.delim(file=	
  '~/Country	
  List',	
  header=FALSE,	
  stringsAsFactors	
  =	
  
FALSE)	
  
totallist1	
  <-­‐	
  unlist(totallist)	
  
	
  
#remove	
  any	
  observations	
  that	
  aren't	
  actually	
  countries	
  	
  
	
  
for(i	
  in	
  1:nrow(g1)){	
  
	
  	
  g1$keep[i]	
  <-­‐	
  check(g1$Country[i],totallist1)	
  
}	
  
	
  
g2	
  <-­‐	
  g1	
  %>%	
  filter(keep==1)	
  	
  
	
  
g3	
  <-­‐	
  g2	
  %>%	
  select(-­‐`Income.share.held.by.highest.10.	
  X2007`,-­‐
`Total.15..unemployment....	
  X2005`,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐`Agricultural.land....of.land.area.	
  X2011`,	
  -­‐`Children.out.of.school..primary	
  
X2011`,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐`Children.out.of.school..primary	
  X2011`,	
  -­‐
`Children.out.of.school..primary..female	
  X2011`,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐keep)	
  
	
  
g3[is.na(g3)]	
  <-­‐	
  0	
  
	
  
	
  
#build	
  an	
  svm	
  	
  
countrylist	
  <-­‐	
  g3$Country	
  
for(i	
  in	
  1:nrow(g3)){	
  
	
  	
  g3$id[i]	
  <-­‐	
  i	
  
}	
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g3$developed	
  <-­‐	
  as.factor(g3$developed)	
  
	
  
#take	
  random	
  sample	
  
bagerrC	
  <-­‐	
  c()	
  
ranbagerrC	
  <-­‐	
  c()	
  
estimatorerrC	
  <-­‐	
  c()	
  
acterrC	
  <-­‐	
  c()	
  
set.seed(5)	
  
for(z	
  in	
  1:50){	
  
trainC=sample(1:nrow(g3),	
  60)	
  
leftoutC	
  <-­‐	
  g3[-­‐trainC,]	
  
C.t	
  <-­‐	
  g3[trainC,]	
  	
  
country.train	
  <-­‐	
  g3[trainC,]	
  	
  
svmfit	
  <-­‐	
  svm(developed~.-­‐id-­‐Country,	
  data=country.train,	
  scale=FALSE)	
  
svmfit	
  
tune1	
  <-­‐	
  tune(svm,	
  developed~.-­‐id-­‐Country,	
  data=country.train,	
  kernel="linear",	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ranges=list(cost=c(0.01,	
  0.1,	
  1,	
  5,	
  10)))	
  
summary(tune1)	
  
	
  
#Best	
  performance	
  is	
  with	
  aa	
  cost	
  parameter	
  of	
  1.	
  We	
  find	
  that	
  the	
  cross-­‐validation	
  
error	
  rate	
  is	
  0.1343773	
  
#cross	
  validation	
  error	
  rate	
  
#bagging	
  error	
  rate	
  
#svm	
  bagging	
  
	
  
vals	
  <-­‐	
  sample(1:nrow(country.train),replace=TRUE,12000)	
  	
  
sam	
  =	
  matrix(vals,nrow=60,ncol=200)	
  
sam[1,]	
  
	
  
#bootstrap	
  samples	
  
samps	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  samps[[i]]	
  <-­‐	
  country.train[sam[,i],]	
  
}	
  
#build	
  an	
  svm	
  for	
  each	
  sample	
  
	
  
samsvmC	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  data	
  <-­‐	
  samps[[i]]	
  
	
  	
  if(!is.na(match(1,data$developed))){	
  
	
  	
  samsvmC[[i]]	
  <-­‐	
  svm(developed~.-­‐id-­‐Country,	
  data=data,	
  scale=FALSE)	
  
	
  	
  }else{	
  
	
  	
  	
  	
  samsvmC[[i]]	
  <-­‐	
  NA	
  
	
  	
  }	
  
}	
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#find	
  out	
  of	
  bag	
  observations	
  
oob	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  oob[[i]]	
  <-­‐	
  country.train[-­‐sam[,i],]	
  
}	
  
	
  
#predict	
  
results1	
  <-­‐	
  c()	
  
for(i	
  in	
  1:200){	
  
	
  	
  if(!is.na(samsvmC[[i]])){	
  
	
  	
  pre	
  <-­‐	
  predict(samsvmC[[i]],oob[[i]])	
  
	
  	
  t	
  <-­‐	
  table(pre,oob[[i]]$developed)	
  
	
  	
  results1[i]	
  <-­‐	
  1	
  -­‐	
  (t[1,1]+t[2,2])/nrow(oob[[i]])	
  
	
  	
  }else{	
  
	
  	
  	
  	
  results1[i]	
  <-­‐	
  NA	
  
	
  	
  }	
  
}	
  
#bag	
  error	
  
BaggingErrorC	
  <-­‐	
  mean(results1,na.rm=TRUE)	
  
	
  
#Predicts	
  30%	
  error	
  with	
  SVM	
  
#randomized	
  bootstrap	
  bagging	
  	
  
#same	
  as	
  before	
  except	
  apply	
  randomize	
  to	
  all	
  bootstraps	
  before	
  running	
  
	
  
ranC	
  <-­‐	
  function(x){	
  
	
  	
  for(i	
  in	
  1:60){	
  
	
  	
  toss	
  <-­‐	
  sample(0:1,size	
  =	
  1,	
  prob	
  =	
  c(0.9,1))	
  
	
  	
  if(toss	
  ==	
  1){	
  
	
  	
  	
  	
  x[i,]$developed	
  <-­‐	
  x[i,]$developed	
  
	
  	
  }	
  
	
  	
  else{	
  
	
  	
  	
  	
  if(x[i,]$developed	
  ==	
  1){	
  
	
  	
  	
  	
  	
  	
  x[i,]$developed	
  <-­‐	
  0	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  else{	
  
	
  	
  	
  	
  	
  	
  x[i,]$developed	
  <-­‐	
  1	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  
	
  	
  	
  	
  	
  
	
  	
  }	
  
	
  	
  return(x)	
  
}	
  
	
  	
  	
  
	
  
#set	
  up	
  randomization	
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randsamps	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  randsamps[[i]]	
  <-­‐	
  ranC(samps[[i]])	
  
}	
  
	
  
	
  
ransamsvm	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  data	
  <-­‐	
  randsamps[[i]]	
  
	
  	
  if(!is.na(match(1,data$developed))){	
  
	
  	
  ransamsvm[[i]]	
  <-­‐	
  svm(developed~.-­‐id-­‐Country,	
  data=data,	
  scale=FALSE)	
  
	
  	
  }else{	
  
	
  	
  	
  	
  ransamsvm[[i]]	
  <-­‐	
  NA	
  
	
  	
  }	
  
}	
  
ranresults	
  <-­‐	
  c()	
  
for(i	
  in	
  1:200){	
  
	
  	
  if(!is.na(ransamsvm[[i]])){	
  
	
  	
  pre	
  <-­‐	
  predict(ransamsvm[[i]],oob[[i]])	
  
	
  	
  t	
  <-­‐	
  table(pre,oob[[i]]$developed)	
  
	
  	
  ranresults[i]	
  <-­‐	
  1	
  -­‐	
  (t[1,1]+t[2,2])/nrow(oob[[i]])	
  
	
  	
  }else{	
  
	
  	
  	
  	
  ranresults[i]	
  <-­‐	
  NA	
  
	
  	
  }	
  
}	
  
RandomBagErrorC	
  <-­‐	
  mean(ranresults,na.rm=TRUE)	
  
	
  
#error	
  rate	
  
	
  
	
  
#.632	
  estimator	
  	
  
#Cycle	
  through	
  ids	
  
	
  
	
  
tracker	
  <-­‐	
  list()	
  
for(i	
  in	
  1:59){	
  
	
  	
  id	
  <-­‐	
  country.train$id[i]	
  
	
  	
  counter	
  <-­‐	
  0	
  
	
  	
  error	
  <-­‐	
  0	
  
	
  	
  for(j	
  in	
  1:200){	
  
	
  	
  	
  	
  if(is.na(match(id,samps[[j]]$id))){	
  
	
  	
  	
  	
  	
  	
  data	
  <-­‐	
  samps[[j]]	
  
	
  	
  	
  	
  	
  	
  if(!is.na(match(1,data$developed))){	
  
	
  	
  	
  	
  	
  	
  counter	
  =	
  counter+1	
  
	
  	
  	
  	
  	
  	
  svmm	
  <-­‐	
  svm(developed~.-­‐id-­‐Country,	
  data=data,	
  scale=FALSE)	
  
	
  	
  	
  	
  	
  	
  pre	
  <-­‐	
  predict(svmm,country.train[i:(i+1),])	
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  t	
  <-­‐	
  table(pre[1],country.train$developed[i])	
  
	
  	
  	
  	
  	
  	
  results	
  <-­‐	
  (t[1,2]+t[2,1])	
  
	
  	
  	
  	
  	
  	
  error	
  =	
  error	
  +	
  results	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  tracker[[i]]	
  <-­‐	
  c(error,counter)	
  
	
  	
  }	
  
}	
  
#Add	
  last	
  value	
  
	
  
	
  	
  id	
  <-­‐	
  country.train$id[60]	
  
	
  	
  counter	
  <-­‐	
  0	
  
	
  	
  error	
  <-­‐	
  0	
  
	
  	
  for(j	
  in	
  1:200){	
  
	
  	
  	
  	
  if(is.na(match(id,samps[[j]]$id))){	
  
	
  	
  	
  	
  	
  	
  counter	
  =	
  counter+1	
  
	
  	
  	
  	
  	
  	
  data	
  <-­‐	
  samps[[j]]	
  
	
  	
  	
  	
  	
  	
  svmm	
  <-­‐	
  svm(developed~.-­‐id-­‐Country,	
  data=data,	
  scale=FALSE)	
  
	
  	
  	
  	
  	
  	
  pre	
  <-­‐	
  predict(svmm,country.train[59:60,])	
  
	
  	
  	
  	
  	
  	
  t	
  <-­‐	
  table(pre[2],country.train$developed[i])	
  
	
  	
  	
  	
  	
  	
  results	
  <-­‐	
  (t[1,2]+t[2,1])	
  
	
  	
  	
  	
  	
  	
  error	
  =	
  error	
  +	
  results	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  tracker[[60]]	
  <-­‐	
  c(error,counter)	
  
	
  	
  }	
  
	
  	
  	
  
for(i	
  in	
  1:60){	
  
	
  	
  error	
  <-­‐	
  error	
  +	
  tracker[[i]][1]	
  
	
  	
  counter	
  <-­‐	
  counter	
  +	
  tracker[[i]][2]	
  
}	
  
ErrC	
  <-­‐	
  error/counter	
  
	
  
svmmod	
  <-­‐	
  svm(developed~.-­‐id-­‐Country,	
  data=country.train,	
  scale=FALSE)	
  
pre	
  <-­‐	
  predict(svmmod,country.train)	
  
t	
  <-­‐	
  table(pre,country.train$developed)	
  
error2	
  <-­‐	
  1	
  -­‐	
  (t[1,1]+t[2,2])/nrow(country.train)	
  
	
  
svmbagerC	
  <-­‐	
  function(x,y){	
  
	
  	
  add	
  <-­‐	
  0	
  
	
  	
  for(i	
  in	
  1:200){	
  
	
  	
  	
  	
  results	
  <-­‐	
  predict(x[[i]],y[[i]])	
  
	
  	
  	
  	
  tfin	
  <-­‐	
  table(results,	
  y[[i]]$developed)	
  
	
  	
  	
  	
  error	
  <-­‐	
  (tfin[1,2]+tfin[2,1])	
  
	
  	
  	
  	
  add	
  <-­‐	
  add	
  +	
  error	
  
	
  	
  }	
  
	
  	
  totalerror	
  <-­‐	
  (add)/(50*200)	
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  return(totalerror)	
  
}	
  
	
  
EstimatorErrorC	
  <-­‐	
  .368	
  *	
  error2	
  +	
  .632	
  *	
  ErrC	
  
	
  
	
  
	
  
	
  
remain	
  <-­‐	
  g3[-­‐trainC,]	
  	
  
prefinal	
  <-­‐	
  predict(svmmod,	
  remain)	
  
tfinal	
  <-­‐	
  table(prefinal,remain$developed)	
  
ErrAct	
  <-­‐	
  1	
  -­‐	
  (tfinal[1,1]+tfinal[2,2])/nrow(remain)	
  
ErrAct	
  
	
  
	
  
	
  
	
  
acterrorC	
  <-­‐	
  function(x,w){	
  
	
  	
  outcome	
  <-­‐	
  c()	
  
	
  	
  feeder	
  <-­‐	
  c()	
  
	
  	
  for(i	
  in	
  1:(nrow(w)-­‐1)){	
  
	
  	
  	
  	
  ob	
  <-­‐	
  w[i:(i+1),]	
  
	
  	
  	
  	
  count	
  <-­‐	
  0	
  
	
  	
  	
  	
  for(j	
  in	
  1:200){	
  
	
  	
  	
  	
  	
  	
  if(!is.na(x[[j]])){	
  
	
  	
  	
  	
  	
  	
  p	
  <-­‐	
  predict(x[[j]],	
  ob)[1]	
  
	
  	
  	
  	
  	
  	
  if(p==1){	
  
	
  	
  	
  	
  	
  	
  	
  	
  count	
  =	
  count	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  feeder	
  <-­‐	
  c(feeder,count)	
  	
  	
  
	
  	
  	
  	
  if(count	
  >=	
  100){	
  
	
  	
  	
  	
  	
  	
  outcome[i]	
  <-­‐	
  1	
  
	
  	
  	
  	
  }	
  else{	
  
	
  	
  	
  	
  	
  	
  outcome[i]	
  <-­‐	
  0	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  
	
  	
  i	
  <-­‐	
  nrow(w)	
  
	
  	
  ob	
  <-­‐	
  w[(i-­‐1):i,]	
  
	
  	
  count	
  <-­‐	
  0	
  
	
  	
  for(j	
  in	
  1:200){	
  
	
  	
  	
  	
  if(!is.na(x[[j]])){	
  
	
  	
  	
  	
  p	
  <-­‐	
  predict(x[[j]],	
  ob)[2]	
  
	
  	
  	
  	
  if(p==1){	
  
	
  	
  	
  	
  	
  	
  count	
  =	
  count	
  +	
  1	
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  }	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  
	
  	
  if(count	
  >=	
  100){	
  
	
  	
  	
  	
  outcome[i]	
  <-­‐	
  1	
  
	
  	
  }	
  else{	
  
	
  	
  	
  	
  outcome[i]	
  <-­‐	
  0	
  
	
  	
  }	
  
	
  	
  feeder	
  <-­‐	
  c(feeder,count)	
  
	
  	
  return(feeder)	
  
}	
  
	
  
predC	
  <-­‐	
  acterrorC(samsvmC,leftoutC)	
  
outcomeCtable	
  <-­‐	
  table(predC,leftoutC$developed)	
  
if(nrow(outcomeCtable)==1){	
  
	
  	
  ActualErrorC	
  <-­‐	
  outcomeCtable[1,2]/120	
  
}	
  else{	
  
	
  	
  ActualErrorC	
  <-­‐	
  (outcomeCtable[1,2]	
  +	
  outcomeCtable[2,1])/120	
  
}	
  
	
  
	
  
bagerrC	
  <-­‐	
  c(bagerrC,	
  BaggingErrorC)	
  
ranbagerrC	
  <-­‐	
  c(ranbagerrC,	
  RandomBagErrorC)	
  
estimatorerrC	
  <-­‐	
  c(estimatorerrC,EstimatorErrorC)	
  
acterrC	
  <-­‐	
  c(acterrC,ActualErrorC)	
  
}	
  
	
  
#Bagging	
  Summary	
  
summary(bagerrC)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  	
  	
  Max.	
  	
  
#0.06649	
  0.14410	
  0.16920	
  0.16820	
  0.19460	
  0.26540	
  	
  
#Random	
  Bagging	
  	
  
summary(ranbagerrC)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  	
  	
  Max.	
  	
  
#0.3586	
  	
  0.4127	
  	
  0.4315	
  	
  0.4326	
  	
  0.4527	
  	
  0.4844	
  	
  
#Estimator	
  Summary	
  
summary(estimatorerrC)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  	
  	
  Max.	
  	
  
#0.04137	
  0.08911	
  0.10480	
  0.10740	
  0.12420	
  0.17700	
  
	
  
#Actual	
  Error	
  
summary(acterrC)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  	
  	
  Max.	
  	
  
#0.1167	
  	
  0.1583	
  	
  0.1667	
  	
  0.1652	
  	
  0.1750	
  	
  0.2167	
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A.2 ISLR OJ
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bagerrOJ	
  <-­‐	
  c()	
  
ranbagerrOJ	
  <-­‐	
  c()	
  
estimatorerrOJ	
  <-­‐	
  c()	
  
acterrOJ	
  <-­‐	
  c()	
  
set.seed(4)	
  
for(i	
  in	
  1:50){	
  
trainO=sample(1:1070,	
  200)	
  
leftoutOJ	
  <-­‐	
  OJ[-­‐trainO,]	
  
OJ.t	
  <-­‐	
  OJ[trainO,]	
  	
  
for(i	
  in	
  1:nrow(OJ.t)){	
  
	
  	
  OJ.t$id[i]	
  <-­‐	
  i	
  
}	
  
traint	
  <-­‐	
  sample(1:200,50,	
  replace=FALSE)	
  
OJ.test	
  <-­‐	
  OJ.t[traint,]	
  
OJ.train	
  <-­‐	
  OJ.t[-­‐traint,]	
  
	
  
svmfit	
  <-­‐	
  svm(Purchase~.,	
  data=OJ.train,	
  scale=FALSE)	
  
svmfit	
  	
  
tune1	
  <-­‐	
  tune(svm,	
  Purchase~.,	
  data=OJ.train,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ranges=list(cost=c(0.01,	
  0.1,	
  1,	
  5,	
  10)))	
  
	
  
vals	
  <-­‐	
  sample(1:nrow(OJ.train),replace=TRUE,12000)	
  	
  
sam	
  =	
  matrix(vals,nrow=150,ncol=200)	
  
	
  
	
  
#bootstrap	
  samples	
  
sampsOJ	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  sampsOJ[[i]]	
  <-­‐	
  OJ.train[sam[,i],]	
  
}	
  
#build	
  an	
  svm	
  for	
  each	
  sample	
  
samsvmOJ	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  data	
  <-­‐	
  sampsOJ[[i]]	
  
	
  	
  samsvmOJ[[i]]	
  <-­‐	
  svm(Purchase~.,	
  data=data,	
  scale=FALSE)	
  
}	
  
	
  
oobOJ	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  oobOJ[[i]]	
  <-­‐	
  OJ.train[-­‐sam[,i],]	
  
}	
  
	
  
#predict	
  
results1	
  <-­‐	
  c()	
  
for(i	
  in	
  1:200){	
  
	
  	
  pre	
  <-­‐	
  predict(samsvmOJ[[i]],oobOJ[[i]])	
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  t	
  <-­‐	
  table(pre,oobOJ[[i]]$Purchase)	
  
	
  	
  results1[i]	
  <-­‐	
  1	
  -­‐	
  (t[1,1]+t[2,2])/nrow(oobOJ[[i]])	
  
}	
  
#bag	
  error	
  
BaggingErrorOJ<-­‐	
  mean(results1)	
  
	
  
#Predicts	
  30%	
  error	
  with	
  SVM	
  
#randomized	
  bootstrap	
  bagging	
  	
  
#same	
  as	
  before	
  except	
  apply	
  randomize	
  to	
  all	
  bootstraps	
  before	
  running	
  
	
  
ranOJ	
  <-­‐	
  function(x){	
  
	
  	
  for(i	
  in	
  1:150){	
  
	
  	
  	
  	
  toss	
  <-­‐	
  sample(0:1,size	
  =	
  1,	
  prob	
  =	
  c(0.9,1))	
  
	
  	
  	
  	
  if(toss	
  ==	
  1){	
  
	
  	
  	
  	
  	
  	
  x[i,]$Purchase	
  <-­‐	
  x[i,]$Purchase	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  else{	
  
	
  	
  	
  	
  	
  	
  if(x[i,]$Purchase	
  ==	
  'MM'){	
  
	
  	
  	
  	
  	
  	
  	
  	
  x[i,]$Purchase	
  <-­‐	
  'CH'	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  	
  else{	
  
	
  	
  	
  	
  	
  	
  	
  	
  x[i,]$Purchase	
  <-­‐	
  'MM'	
  
	
  	
  	
  	
  	
  	
  }	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  	
  
	
  	
  }	
  
	
  	
  return(x)	
  
}	
  
	
  
	
  
#set	
  up	
  randomization	
  
randsampsOJ	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  randsampsOJ[[i]]	
  <-­‐	
  ranOJ(sampsOJ[[i]])	
  
}	
  
	
  
ransamsvmOJ	
  <-­‐	
  list()	
  
for(i	
  in	
  1:200){	
  
	
  	
  data	
  <-­‐	
  randsampsOJ[[i]]	
  
	
  	
  ransamsvmOJ[[i]]	
  <-­‐	
  svm(Purchase~.,	
  data=data,	
  scale=FALSE)	
  
}	
  
ranresultsOJ	
  <-­‐	
  c()	
  
for(i	
  in	
  1:200){	
  
	
  	
  pre	
  <-­‐	
  predict(ransamsvmOJ[[i]],oobOJ[[i]])	
  
	
  	
  t	
  <-­‐	
  table(pre,oobOJ[[i]]$Purchase)	
  
	
  	
  ranresultsOJ[i]	
  <-­‐	
  1	
  -­‐	
  (t[1,1]+t[2,2])/nrow(oobOJ[[i]])	
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}	
  
RandomBagErrorOJ	
  <-­‐	
  mean(ranresultsOJ)	
  
	
  
	
  
#.632	
  estimator	
  	
  
#Cycle	
  through	
  ids	
  
	
  
	
  
	
  
	
  
tracker	
  <-­‐	
  list()	
  
for(i	
  in	
  1:149){	
  
	
  	
  id	
  <-­‐	
  OJ.train$id[i]	
  
	
  	
  counter	
  <-­‐	
  0	
  
	
  	
  error	
  <-­‐	
  0	
  
	
  	
  for(j	
  in	
  1:200){	
  
	
  	
  	
  	
  if(is.na(match(id,sampsOJ[[j]]$id))){	
  
	
  	
  	
  	
  	
  	
  counter	
  =	
  counter+1	
  
	
  	
  	
  	
  	
  	
  data	
  <-­‐	
  sampsOJ[[j]]	
  
	
  	
  	
  	
  	
  	
  svmm	
  <-­‐	
  svm(Purchase~.,	
  data=data,	
  scale=FALSE)	
  
	
  	
  	
  	
  	
  	
  pre	
  <-­‐	
  predict(svmm,OJ.train[i:(i+1),])	
  
	
  	
  	
  	
  	
  	
  t	
  <-­‐	
  table(pre[1],OJ.train$Purchase[i])	
  
	
  	
  	
  	
  	
  	
  results	
  <-­‐	
  (t[1,2]+t[2,1])	
  
	
  	
  	
  	
  	
  	
  error	
  =	
  error	
  +	
  results	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  tracker[[i]]	
  <-­‐	
  c(error,counter)	
  
	
  	
  }	
  
}	
  
#Add	
  last	
  value	
  
	
  
id	
  <-­‐	
  OJ.train$id[150]	
  
counter	
  <-­‐	
  0	
  
error	
  <-­‐	
  0	
  
for(j	
  in	
  1:200){	
  
	
  	
  if(is.na(match(id,sampsOJ[[j]]$id))){	
  
	
  	
  	
  	
  counter	
  =	
  counter+1	
  
	
  	
  	
  	
  data	
  <-­‐	
  sampsOJ[[j]]	
  
	
  	
  	
  	
  svmm	
  <-­‐	
  svm(Purchase~.,	
  data=data,	
  scale=FALSE)	
  
	
  	
  	
  	
  pre	
  <-­‐	
  predict(svmm,OJ.train[149:150,])	
  
	
  	
  	
  	
  t	
  <-­‐	
  table(pre[2],OJ.train$Purchase[i])	
  
	
  	
  	
  	
  results	
  <-­‐	
  (t[1,2]+t[2,1])	
  
	
  	
  	
  	
  error	
  =	
  error	
  +	
  results	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  }	
  
	
  	
  	
  
	
  	
  tracker[[150]]	
  <-­‐	
  c(error,counter)	
  
}	
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for(i	
  in	
  1:150){	
  
	
  	
  error	
  <-­‐	
  error	
  +	
  tracker[[i]][1]	
  
	
  	
  counter	
  <-­‐	
  counter	
  +	
  tracker[[i]][2]	
  
}	
  
ErrOJ	
  <-­‐	
  error/counter	
  
	
  
svmmodOJ	
  <-­‐	
  svm(Purchase~.,	
  data=OJ.train,	
  scale=FALSE)	
  
pre	
  <-­‐	
  predict(svmmodOJ,OJ.train)	
  
t	
  <-­‐	
  table(pre,OJ.train$Purchase)	
  
error2	
  <-­‐	
  1	
  -­‐	
  (t[1,1]+t[2,2])/nrow(OJ.train)	
  
	
  
svmbagerOJ	
  <-­‐	
  function(x,y){	
  
	
  	
  add	
  <-­‐	
  0	
  
	
  	
  for(i	
  in	
  1:200){	
  
	
  	
  	
  	
  results	
  <-­‐	
  predict(x[[i]],y[[i]])	
  
	
  	
  	
  	
  tfin	
  <-­‐	
  table(results,	
  y[[i]]$Purchase)	
  
	
  	
  	
  	
  error	
  <-­‐	
  (tfin[1,2]+tfin[2,1])	
  
	
  	
  	
  	
  add	
  <-­‐	
  add	
  +	
  error	
  
	
  	
  }	
  
	
  	
  totalerror	
  <-­‐	
  (add)/(200*200)	
  
	
  	
  return(totalerror)	
  
}	
  
	
  
EstimatorErrorOJ	
  <-­‐	
  .368	
  *	
  svmbagerOJ(samsvmOJ,sampsOJ)	
  +	
  .632	
  *	
  ErrOJ	
  
	
  
#Actual	
  Error	
  
	
  
remainOJ	
  <-­‐	
  OJ[-­‐trainO,]	
  
remainOJ	
  <-­‐	
  remainOJ	
  %>%	
  select(-­‐id)	
  
OJ.train	
  <-­‐	
  OJ.train	
  %>%	
  select(-­‐id)	
  
svmmodOJ	
  <-­‐	
  svm(Purchase~.,	
  data=OJ.train,	
  scale=FALSE)	
  
prefinal	
  <-­‐	
  predict(svmmodOJ,	
  remainOJ)	
  
tfinal	
  <-­‐	
  table(prefinal,remainOJ$Purchase)	
  
ErrActOJ	
  <-­‐	
  (tfinal[1,2]+tfinal[2,1])/nrow(remainOJ)	
  
	
  
	
  
	
  
	
  
	
  
acterrorOJ	
  <-­‐	
  function(x,w){	
  
	
  	
  outcome	
  <-­‐	
  c()	
  
	
  	
  for(i	
  in	
  1:nrow(w)){	
  
	
  	
  ob	
  <-­‐	
  w[i,]	
  
	
  	
  count	
  <-­‐	
  0	
  
	
  	
  for(j	
  in	
  1:200){	
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  p	
  <-­‐	
  predict(x[[j]],	
  ob)	
  
	
  	
  	
  	
  if(p=="MM"){	
  
	
  	
  	
  	
  	
  	
  count	
  =	
  count	
  +	
  1	
  
	
  	
  	
  	
  }	
  
	
  	
  }	
  
	
  	
  if(count	
  >=	
  70){	
  
	
  	
  	
  	
  outcome[i]	
  <-­‐	
  "MM"	
  
	
  	
  }	
  else{	
  
	
  	
  	
  	
  outcome[i]	
  <-­‐	
  "CH"	
  
	
  	
  }	
  
	
  	
  }	
  
	
  	
  return(outcome)	
  
}	
  
	
  
pred	
  <-­‐	
  acterrorOJ(samsvmOJ,leftoutOJ)	
  
	
  
outcomeOJtable	
  <-­‐	
  table(pred,leftoutOJ$Purchase)	
  
if(nrow(outcomeOJtable)==1){	
  
	
  	
  ActualErrorOJ	
  <-­‐	
  outcomeOJtable[1,2]/870	
  
}	
  else{	
  
ActualErrorOJ	
  <-­‐	
  (outcomeOJtable[1,2]	
  +	
  outcomeOJtable[2,1])/870	
  
}	
  
	
  
bagerrOJ	
  <-­‐	
  c(bagerrOJ,	
  BaggingErrorOJ)	
  
ranbagerrOJ	
  <-­‐	
  c(ranbagerrOJ,	
  RandomBagErrorOJ)	
  
estimatorerrOJ	
  <-­‐	
  c(estimatorerrOJ,EstimatorErrorOJ)	
  
acterrOJ	
  <-­‐	
  c(acterrOJ,ActualErrorOJ)	
  
}	
  
	
  
#Bagging	
  Stats	
  	
  
summary(bagerrOJ)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  
#0.2987	
  	
  0.3708	
  	
  0.4058	
  	
  0.4043	
  	
  0.4330	
  	
  
#Max.	
  	
  
#0.5364	
  	
  
	
  
#Random	
  Bagging	
  Stats	
  	
  
summary(ranbagerrOJ)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  
#0.4580	
  	
  0.4852	
  	
  0.4912	
  	
  0.4902	
  	
  0.4975	
  	
  
#Max.	
  	
  
#0.5034	
  	
  
	
  
#Estimator	
  Stats	
  
summary(estimatorerrOJ)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
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#0.1890	
  	
  0.2357	
  	
  0.2596	
  	
  0.2571	
  	
  0.2776	
  	
  
#Max.	
  	
  
#0.3362	
  	
  
	
  
#Actual	
  Error	
  Stats	
  
summary(acterrOJ)	
  
#Min.	
  1st	
  Qu.	
  	
  Median	
  	
  	
  	
  Mean	
  3rd	
  Qu.	
  	
  
#0.3724	
  	
  0.3851	
  	
  0.3983	
  	
  0.4037	
  	
  0.4135	
  	
  
#Max.	
  	
  
#0.5172	
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