Pomona

College

7

SENIOR THESIS IN MATHEMATICS

Developing Inference

Frameworks for Random
Forests Using Bag of Little

Bootstraps & Related Methods

Author: Advisor:
John Bryan Dr. Johanna Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

May 5, 2016

Abstract

In this thesis we seek to develop statistical inference frameworks for random
forests, a widely-used machine learning method. We first explore the pos-
sibility of using ideas from the Bag of Little Bootstraps (BLB) to develop
a modified implementation of the random forest algorithm which could po-
tentially produce error estimates for random forest predictions. We then
explore other approaches for attempting to obtain accurate prediction inter-
vals for new observations. We delve into the specifics of constructing such
prediction intervals, first employing naive percentile intervals and assessing
their performance. We then propose an alternative method for constructing
prediction intervals, based on examining the response variability within the
nodes of decision trees. We thoroughly define this method and characterize
its performance.

Contents

1__Introductionl

2 Bootstrapping & Bag of Little Bootstraps|

[2.1 Sampling Distributions| .

2.2 Bootstrappingl

[2.3 Bag ot Little Bootstraps|

P31

Subsampling and Parallelization|

R.3.2

Bootstrapping| . .

B.1 The CART Algorithn| .

B.1.1

Overview|

B12

Tree Building] . .

[3.1.3 Pruning the Tree]

3.2 K-Fold Cross Validationl

~

U
Q
Q

[Merging BLB and Random Forests|

[b.1 Translating BLLB to Random Forests|

H.1.1

Overall Structurel

12
12
12
12
17
19

21
21
21
22
22

6.1 Motivationl. 27
6.1.1 Confidence vs. Prediction Intervals 28
6.2 Simulation Studieslo 30
[6.2.1 Naive Approach — General Simulation Structure| . . . 30
622 Dinear Datal o0 32
6.2.3 Gaussian Mixture Model Datal 35

[6.2.4 Alternative Methods of Obtaining Prediction Intervalsf 39

[7__Conclusion| 47

i

Chapter 1

Introduction

The Bag of Little Bootstraps (BLB) is a relatively new methodology de-
signed to implement bootstrapping in parallel on large datasets [6]. It uses
the bootstrap method, a resampling procedure used for estimating sampling
distributions that are not well-characterized by statistical theory [3]. Boot-
strapping generates a distribution that closely approximates the shape of
the true sampling distribution of some statistic. BLB utilizes parallel com-
puting architectures, subsampling, and a cleverly implemented multinomial
random variable to drastically reduce computational costs while preserving
the appropriate level of error and statistical correctness.

Machine learning is a broadly defined field that encompasses many aspects
of both computer science and statistics. There are an abundance of well-
defined machine learning algorithms — both for prediction and classification
— but one common critique of many of these methods is that they produce
predictions that are not associated with well-defined error bounds. This
characteristic stems from a number of distinct differences between machine
learning and traditional statistics. In traditional statistical settings we tend
to care a great deal about what assumptions are made about our model
and data, as well as be concerned with the validity of such assumptions
in different situations. In many instances, however, it is in fact the case
that some or all such assumptions do not hold. For this reason, machine
learning methods take the approach of dropping the insistence on many of
these rigorous assumptions when trying to establish a model and predictions.
Through dropping these assumptions, machine learning methods typically do
very well at predicting. However, one consequence of this aspect of machine
learning is that these methods lose the ability to draw clear relationships

between the predictions produced and well-defined probability models. This
results in machine learning methods not being able to easily fit into the
standard inferential frameworks that are employed in traditional statistics.
This artifact is why many machine learning methods are thus often unable
to produce reliable confidence estimates for predictions in a straightforward
and accurate manner.

One such machine learning technique is random forests. Random forests
consist of large aggregations of individual decision trees, and they are used
for classification and prediction. In this thesis we explore the possibility
of combining ideas from BLB with random forests to develop an algorithm
which implements random forests on large datasets in a computationally
inexpensive manner, while also producing accurate prediction intervals for
new observations.

In order to better understand how subsampling and bootstrapping (the
fundamental concepts of BLB) will affect random forests once they are im-
plemented in a BLB-like structure, we also seek to thoroughly understand
the amount of prediction variability across trees and forests. We explore
these aspects of the algorithms through simulation studies that seek to ob-
tain accurate prediction intervals. We define two methods for constructing
such intervals — one naive method and another newly-proposed method —
and characterize their performance. Ultimately, this thesis seeks to advance
the understanding of the feasibility of obtaining accurate prediction intervals
for random forests. Secondarily, this thesis explores the possibility of design-
ing a BLB-like random forest algorithm which produces accurate prediction
intervals and is optimized for situations involving large data sets.

Chapter 2

Bootstrapping & Bag of Little
Bootstraps

2.1 Sampling Distributions

A fundamental concept of statistics is the sampling distribution. A sampling
distribution describes how some statistic varies across different sample draws
from a population. Suppose we have some population distribution P from
which we obtain data. We can consider drawing samples of size N from this
population. Furthermore, for a given sample X we can evaluate some statistic
of interest, T'(X). Suppose we could obtain all possible samples of size N
that can be drawn from P. We could then compute T(X) for each of these
samples. The distribution of these T'(X)’s would be known as the sampling
distribution (Figure [2.1)). From this distribution we could understand how
the T'(X) vary across samples of size N from population P.

Population

T(P)

7(X) 7(X) T(X) 7(X) T(X)
Sampling
Distribution
of T(X)
T i 1
T(P)

Figure 2.1: Sampling Distribution [4]

In the above figure, note how a non-Gaussian and asymmetrical popu-
lation distribution produces a sampling distribution that is Gaussian and
symmetrical. This result comes from the Central Limit Theorem. For many
statistics, the sampling distribution will assume a shape like that seen in the
figure above. However, some statistics (such as correlation) do not necessar-
ily adhere to this shape, which is when bootstrapping becomes very useful.

2.2 Bootstrapping

In many instances, it is not possible to obtain the sampling distribution for
a statistic of interest. This is primarily due to the calculus being intractable
for certain statistics, but can also be due to not having access to all possible

samples that could be drawn from our population P. Depending on our
statistic of interest, however, it may still be possible to understand what the
underlying sampling distribution looks like. In the case where our statistic
of interest is the sample mean X, the Central Limit Theorem provides a
thorough description of the corresponding sampling distribution. However,
the sampling distributions of many statistics are not supported by the same
theoretical understanding. In these instances, bootstrapping becomes a very
powerful tool to accurately estimate the shape and spread of the sampling
distributions of such statistics.

Bootstrapping exhibits a number of useful properties. As discussed, we
find that Var(sampling distribution) ~ Var(bootstrap distribution). In ad-
dition, we typically find that any bias (systematic shift from the true pa-
rameter 6) present in the original sample will be preserved in the bootstrap
distribution. These properties are illustrated through the example below

(Figure [2.2).

Sampling

Population Distribution
of X

1 T T
-6 u 6 -3 [0 E]

Bootstrap
Sampie A distribution
from sample 1
l of X
-6 X 6 —3 ® 3

Figure 2.2: Estimating Sampling Distributions Using Bootstrapping [4]

Bootstrapping is performed by repeatedly resampling from some original
sample X. If we were to generate the sampling distribution, we would begin
by repeatedly drawing samples of size N from our population. However, in
situations involving bootstrapping we do not have the luxury of repeatedly
drawing samples from the population. The intuition becomes that since X
came from our population of interest, we can treat the data distribution as
the best estimate of the population distribution. So then rather than draw

new samples, we repeatedly resample with replacement from X up to size N.
It can be shown that on average there will be 0.632/N unique observations
in each bootstrap sample [6]. With each of these resamples, we compute
our statistic of interest, which for each bootstrap sample is known as T'(X)*.

The compilation of these realizations of T'(X)* is known as the bootstrap
distribution (Figure [2.3)).

Sample
-3 T(X) 8
T(X)* T(X)" (X)" T(X)® T(X)"
Bootstrap
distribution
from sample 1
R = 1000

o T(X) 4

Figure 2.3: Bootstrap Distribution [4]

In the above figure, note how the bootstrap distribution is centered at the
original sample statisticT'(X). This is in contrast to sampling distributions,
which are centered at the population parameter T'(P). Once the bootstrap
distribution for a statistic of interest is constructed, confidence intervals can
be constructed fairly easily. Commonly employed methods in these instances
include symmetric percentile intervals, t-intervals, and bootstrap-¢ intervals.

With percentile intervals, (1—«) level intervals are constructed by letting the
intervals endpoints be the § and 1— 5 quantiles of the bootstrap distribution.
For t-intervals, the bootstrap distribution is used to obtain an estimate of
the standard error of our statistic. The interval endpoints then become
T(X) £ ta - SE(T(X)*), where SE(T(X)*) is the standard error estimate
obtained from the bootstrap distribution. This type of interval depends on
the assumption that the ¢ distribution is an appropriate distribution from
which to obtain quantiles. Bootstrap-t intervals go one step further, where
they use a second level of bootstrapping to find § and 1 — & quantiles for the
bootstrap distribution of a standardized statistic. The bootstrap-t intervals
are then constructed in an analogous way to the t-intervals, but with the
estimated bootstrap quantiles in place of the ¢ quantiles. In this thesis, we
exclusively employ symmetric percentile intervals in our early experiments,
as well as our own proposed method of obtaining prediction intervals.

2.3 Bag of Little Bootstraps

As discussed, bootstrapping is a very powerful tool for approximating the
variability of a statistic. However, in situations involving large datasets,
bootstrapping can quickly become very computationally expensive. This is
where the Bag of Little Bootstraps (BLB) becomes very helpful. BLB uses
subsampling, parallelized computing, bootstrapping, and the clever imple-
mentation of a multinomial random variable to deliver accurate confidence
estimates while exhibiting dramatically reduced computational times. In the
original BLB implementation, the algorithm constructs confidence intervals
for the population mean p.

2.3.1 Subsampling and Parallelization

The algorithm first randomly selects (without replacement) S subsamples
of size B << N. A commonly used value is B = v/N [6]. Each of these
subsamples is then processed on a different parallel processor. Since each
processor only has to work with data of a reduced dimension as compared
to the full data set, operations are less computationally costly. Within each
processor, the algorithm then generates one confidence interval for p.

2.3.2 Bootstrapping

Within each parallel track, the algorithm bootstraps the corresponding sub-
sample to generate a confidence interval for p. In order to ensure that these
confidence intervals exhibit the correct amount of error, the algorithm needs
to work with data of size N rather than of size B. With data of size B,
the eventual intervals would be too large. However, it would be counterpro-
ductive to generate bootstrap samples of size N through simply sampling
N observations with replacement from the B observations in the subsam-
ple. This approach would lose the advantage of subsampling the data and
would be no less computationally costly than bootstrapping with the full
(non-subsampled) data set. The solution to this issue comes from the use of
a multinomial random variable to generate bootstrap samples.

2.3.3 Multinomial Random Variable Implementation

In order to bootstrap one of the S subsamples of size B, the algorithm
generates a multinomial random variable M that is distributed as M ~
multinomial(N, rep(%, B)). Realizations of M are of dimension B and sum
to N. We consider the following example:

e N=10

e B=5

o Y =(10.2,11,16,9.3, 14)

e One realization of M: M = (1,3,3,2,1).

In order to consider this as a bootstrap sample, we treat M as indicating the
number of times that each observation occurs in the bootstrap sample. So
for the i*" observation, the number of times it occurs in the bootstrap sample
is the multinomial coefficient m;, where m; is the i'" element of M. So in
the above example, this translates to our bootstrap sample containing:

e 1 occurrence of y; = 10.2
e 3 occurrences of y, = 11

e 3 occurrences of y; = 16

e 2 occurrences of y, = 9.3
e 1 occurrence of y5; = 14

In constructing the bootstrap sample using a multinomial random variable,
we “simulate” sampling to size N while only actually generating a random
variable of dimension B.

Within the BLB algorithm, each parallel processor generates R boot-
strap samples by drawing R different multinomial random variables. With
each multinomial variable, the processor estimates the population mean p by
computing the sample means as

| B
=TSy
e y, ; is the j™ response of the i subsample

e m; is the corresponding multinomial coefficient of the j™response

So then for our example from above 4§ would be computed as

Yijom; = ((1 10.2)+(3-11)+(3-16) +(2-9.3) + (1-14)) = 12.38

||Mm

2.3.4 Confidence Intervals

Within each parallel processor, we now have R realizations of 3. Each parallel
processor constructs a single confidence interval to produce S confidence
intervals for 1. These confidence intervals can be constructed through various
approaches, some of which are percentile intervals, t-intervals, and bootstrap-
t intervals. Once the intervals are constructed for each processor, a final
interval is obtained by averaging the bounds of the S confidence intervals, or

The overall algorithm structure is depicted in Figure and Algorithm

2.3.5 Notable Characteristics

Through subsampling and the multinomial random variable implementation,
the algorithm maintains the correct amount of error while never having to
perform computations on the full data set [6]. Parallelization ensures that
computational time is further reduced. BLB also has a number of convenient
statistical properties. It is a consistent estimator for p, meaning that as
N, B — oo, the BLB estimator converges in probability to u [6]. Addition-
ally, the BLB estimator converges to the true value for p at the same rate
as the regular bootstrap, with a convergence rate bounded above by O(%)
[6]. Ultimately, BLB is a very impactful method for effectively implementing
bootstrapping on massively large data sets.

sample size

N

Y™ R estimates

Figure 2.4: Bag of Little Bootstraps [0]

y- vy vy vy

confidence interval (CI) S confidence intervals

10

Algorithm 1 Bag of Little Bootstraps [6]

Inputs: N,B,R, S
Draw S subsamples X, X3,..., Xg of size B << N
for iin 1,...,S (in parallel) do
for rinl,..., R do
Draw M ~ multinomial(N,rep(5, B))

B
Compute § =+ > ¥ - m;
j=1

y;.; is the j™ response of the i"* subsample.
m; is the corresponding multinomial coefficient.

Obtain confidence interval for y
(our implementation of BLB uses the § and 1 — § quantiles).

Average bounds of S confidence intervals
return Single confidence interval for g.

11

Chapter 3

Decision Trees & CART

3.1 The CART Algorithm

3.1.1 Overview

The classification and regression trees (CART) algorithm is useful for clas-
sification or regression problems [2} [5]. The algorithm can classify data or
predict responses based on the explanatory components of the observations.
CART can be used on data sets with either categorical and numerical ex-
planatory variables, as well is with either categorical and numerical response
variables. The algorithm is comprised of two steps, a tree-building step and
a tree-pruning step. Here we describe the details of the CART algorithm.

3.1.2 Tree Building

Terminology

In order to explore the construction of classification and regression trees, we
must first establish a set of terms with which to refer to different components
and characteristics of decision trees. In the context of the diagram below, we
define various terms that are relevant to trees (Figure [3.1).

e Root: the top node in a tree, can also refer to the top node of a subtree.

e Level: how far a node is from the root node. In the diagram below, the
two daughter nodes are at level 2, and the four terminal nodes are at

12

level 3. In general, the level is equal to 14+the number of connections
between the node of interest and the root node of the tree.

Daughter: a node that is directly connected to a parent node, and is
at a level in the tree that is one lower than the parent.

Parent: the node that is directly connected to a daughter node and is
at a level in the tree that is one higher than the daughter.

Descendants: All nodes that can be reached from a node by repeatedly
moving from parent to daughter nodes.

Terminal node: a node that has no daughters.

Branch/Subtree: a subcomponent of the full tree. The node closest to
the top of the full tree but still contained in the branch/subtree is con-
sidered the root of the branch/subtree. The branch/subtree includes
all descendants of the root node.

Parent/Root Node

Branch (with root = Daughter 1)
Subtree of Root Node (full tree)

Daughter Node 1 Daughter Node 2

()
oo/ e

Figure 3.1: Tree Terminology

13

General Aim

In the CART algorithm, we establish a series of decision nodes to sort the
data into increasingly homogenous groups based on the response variable.
The intuition is that if we develop nodes that are increasingly similar in their
responses/classifications, we can do a better job of predicting/classifying new
test data. The exact procedure for determining these nodes is different de-
pending on whether the response variable is numerical or categorical.

Numerical Response

For data with a numerical response, we use the within sum of squares metric
(WSS;) to assess the homogeneity in the response variable for observations
at node t. We compute this as

Ny

WSS, = Z(yi,t - ?jt)2

i=1

1
Y = Nt ; Yit
where 7, is the average response at node ¢, IV; is the number of observations
at node ¢, and y;, is the response of the i*" response at node ¢.

A high W S'S; indicates that the data at that node are relatively heteroge-
nous in their responses, while a low WSS, indicates that they are relatively
homogenous in their responses. We want to progress toward ending up with
nodes that contain data which are homogenous in their response, since this
characteristic will better allow us to produce predictions at the different
nodes. As such, we repeatedly consider different ways that we could take the
data in a certain root node — referred to as the parent node — and make a bi-
nary split of the data within one of the explanatory variables. This splitting
criterion in the explanatory variables is referred to as a decision point. Such a
split produces two subsets of the data that was originally found at the parent
node, and each of these two subsets comprise two new daughter nodes. There
are a number of possible splitting criteria that we could choose. In order to
determine the best one, we seek a splitting criterion which maximizes the

drop in WSS — our metric for assessing spread — between the parent node
and the two daughter nodes D, Dy. This reduction in WSS is calculated as

AWSS = WSSparent — 3 WSSaaughter

14

For a numeric explanatory variable, we consider all possible cutoffs for split-
ting the data into two daughter nodes. So if we consider some decision point
s € (min(X), max(X)) for splitting the data at the parent node cutoff s for
a explanatory variable x;, we divide the data in the parent node into the two
daughter nodes: Dy = {X]z; < s}, Dy = {X|x; > s}. The splitting cutoff s
that produces the greatest reduction in WSS is determined to be the best
split.

If we are dealing with a numerical explanatory variable, it becomes clear
that there will be some interval, [d;, d,], such that there are an infinite number
of decision criteria that would result in equal reductions in W.S'S because they
result in identical splitting of our training data set. The precise decision
criterion is determined as the median of the two bounds of this interval. For
a categorical explanatory variable, we consider all possible groupings of the
different explanatory levels into the daughter nodes D; and D5, and assess the
reduction in WSS for each split. Similar to the case of numeric explanatory
variables, the split that produces the greatest reduction in WSS is chosen
as the best split.

Categorical Response

For data with a categorical response, we can no longer employ the mean
response nor the WSS as meaningful statistics. In their place, CART uses
the concept of impurity. The impurity assesses the homogeneity of the re-
sponses of data at a specific node. Similar to using WSS as an assessment of
homogeneity, CART can compare the drop in impurity for different daughter
nodes. Different possible daughter node groupings of the data are created in
an identical fashion as that discussed above for the numerical response case.
We introduce the Gini index as a way of quantifying impurity. The Gini
index is defined as

G (pri) = Prt(1 — pry)
where G(pg¢) is the Gini index at node ¢ with category k (for the response),
and py, is the proportion of observations at node ¢ that are included in
category k. The intuition is that if a node contains data that is entirely (or
close to entirely) the same in their response category, then that node is a
very pure node. This will result in px; ~ 1, and G(pg¢) ~ 0. Similarly, if
et ~ 0, then G(py:) ~ 0. The Gini index lives in the interval [0,1], and a
Gini index closer to 0 indicates a more pure node. In this way the Gini index

15

is used as a measure of impurity, and we can evaluate the impurity at a node
t by summing all the Gini indices for the different categories present at node
t, calculated as

K
I(t) = Z G (k1)
k=1
where K is the total number of response categories.

Similar to cases where numerical responses are encountered, the CART
algorithm considers all possible splits at a given node across all explanatory
variables. The best split is determined in an analogous manner to cases with
numerical responses — by assessing the drop in impurity between a parent
node and potential daughter nodes. This is calculated as

AT = p(to)I(to) — (p(t1)I(t1) + p(t2)1(t2))

where ty is the parent node, tq,ty are the daughter nodes, and p(t) is the
proportion of observations that are at that node, with respect to the entire
data set. Weighting impurity reductions by the proportion of data at a
specific node ensures that we give appropriate weight to the homogeneity of
a node based on how much data is there. For instance, in terms of making
splits, we should give more weight to a highly homogenous node with 100
observations than a node that is perhaps more homogenous but only has 5
observations. After assessing the impurity reduction across all possible splits,
the best split is made by CART based on maximizing AJ.

Tree Building Process

The CART algorithm continues to make additional nodes based on maxi-
mizing AWSS or AI (depending on whether the response is numerical or
categorical) for each new node. The algorithm continues to do this until it
reaches some stopping criterion. This could be a variety of things, but one
common stopping criterion is some minimum number of observations that
must be contained in a node. Once a terminal node contains fewer than
this minimum number of observations, the CART algorithm will no longer
consider that node for additional splitting. When all terminal nodes meet
this criterion, the CART algorithm stops building the tree.

16

Assessing Risk

As a tree is built using CART, we can evaluate the risk at each terminal
node. The risk gives an indication of how well the decision tree fits the data.
The way that CART computes risk is different based on whether the response
variable of the dataset is numeric or categorical. If the response is numeric,
the risk at a node ¢ is simply the WSS at that node.

Ny

R(t) =WSS, = Z(yzt - gt)Q

=1

When we are dealing with a categorical response variable, we calculate risk
as

N
R(T> = Z [(yi,t 7é kt,majority)
i=1

where k¢ majority 1 the majority class at node ¢.

Regardless of whether the response variable is numeric or categorical, we
can compute a total risk for a decision tree T" based on summing the risks of
all terminal nodes in the tree.

7|

R(T) = 3" R(t)

where ¢; is the j™ terminal node and |T| is the total number of terminal
nodes for the decision tree.

3.1.3 Pruning the Tree

When the CART algorithm builds the initial tree, it seeks to add branches
and nodes so as to account for as much variability as possible. It does this by
continuing to add branches and nodes as long as doing so decrease WSS or I,
increasing the homogeneity of the terminal nodes. One way we can assess the
quality of a tree (in terms of fitting the data) is by the total risk of the tree.
However, this is not always desirable. In only considering risk reduction and
with no regard for how many new branches and nodes the algorithm adds,
CART runs the risk of over-fitting the data, and growing the tree to account
for white noise rather than actual structure. Consequently, once CART has

17

built the initial tree, it has to undergo a pruning process to generate the best
final subtree.

Selecting Against Excessive Complexity

As mentioned previously, we don’t want to solely consider risk reduction
when determining our best decision tree model, due to the high likelihood of
over-fitting. As such, the CART algorithm relies on a complexity parameter
a > 0 in order to quantify the cost of adding additional nodes and branches
in the tree. The a parameter acts as a sort of filter, such that as « increases,
branches and node additions must result in even greater risk reductions to
be included in the tree. We introduce the assessment of cost — complexity
as a meaningful way for comparing different possible trees. We can calculate
the cost — complexity of a tree T' as

R.(T) = R(T) + «o|T|

where R(T) is the total risk of the tree 7', and |T'| is the number of terminal
nodes in tree T

Similar to computing the cost — complexity of a decision tree, we can
compute the cost — complexity of a node as well as of a branch. This is
computed, respectively, as

Node: R,(t) = R(t) + a* (1)

Branch: R,(T};) = R(T}) + «o|T3|

where T} is the branch with node ¢ as its root and |73 is the number of
terminal nodes found in the branch 7;. Consider if &« = 0. Due to the
fact that branches reduce risk more than nodes — and with o = 0 the cost-
complexity is unchanged by the size of the node/branch — then Ry(T;) <
Ry(t). However, branches carry greater complexity than nodes, so as we
increase the complexity cost parameter «, Ry(7;) increases at a faster rate
than Ro(t). Thus, at some point ' it will be the case that R,/ (T}) = Ru/(t).
Rearranging we find that

, _ R@) — R(T3)
- nf-1

18

At this point, with the cost — complexity equal for the branch and the node
that it originates from, it makes more sense to prune the branch rather than
the node, in favor of a smaller tree. We want a smaller tree so as to protect
against the possibility of over-fitting the data. We find the weakest link,
or the best branch to prune, by finding the node ¢ that minimizes o) — the
lowest o that results in a node and branch where R, (7;) = R (t) — and
then remove the branch originating from that node, which we refer to as
the branch T'(ay). We then repeat this process with subsequently larger
o’ values, each time identifying the next node ¢ at which R/ (T;) = Ru/(t)
using the smallest o > af_;. At each step of this process, we identify the
next weakest link, and we prune the corresponding branch. We continue this
process until o, at which point 75, is a tree with only the root node t,. We
end up with a series of n intervals:

IO = [070/1)
Il = [01,1,0/2)

I, = [a;w OO)

such that for each interval, there is one optimal tree for that collection of «
values. This gives us a corresponding sequence of trees Ty, Ty, ..., Tor, . We
then need to determine which o/ produces the optimal tree overall.

3.2 K-Fold Cross Validation

In order to find the optimal o pruning parameter, we engage in K-fold cross-
validation. We begin by randomly dividing the training data into K folds,
or subsets of equal size. For each of the o/ values and for each of the K folds,
we grow and prune a tree based on a data set that consists of the training
data but with 1 of the K folds excluded. We then find the risks of all of these
trees, and then average across the K folds. This gives us a good picture of
which of the o’ values produces the lowest risk on a variety of random subsets
of our training data. Based on these results, we choose our optimal o/ so as
to minimize the average risk. We then obtain the corresponding decision tree
for our chosen «'. The overall algorithm structure is depicted in Algorithm

2l

19

Algorithm 2 K-Fold Cross-Validation [5]

Inputs: K

Split the training data into K folds (subsets) of equal size

for kinl,..., K do
Grow a decision tree on the training data, with the k" fold excluded
Prune the tree with each of o}, ..., &, to get To i, Tag ks - - > T,
Compute R(T') for each of Tor g, Tay ks - - - Tt i

_ K "
For each o, find R(T) = % > R(T)
k=1

Choose the optimal pruning parameter o, ;... to be the o} that minimizes
R(T)

return Grow final tree on full training data and prune using o/

optimal

20

Chapter 4

Bagging & Random Forests

4.1 Introduction

Individual trees produced by the CART algorithm are often highly variable
in their structure. In addition, they also exhibit a tendency to overfit the
training data that are inputted [5]. Various methods exist to help stabilize
the highly variable nature of CART trees. Two of these methods are bagging
and random forests.

4.2 Bagging

Predictions produced from a single CART tree can be highly variable and
less accurate than we would like. One improvement to this issue with CART
is bootstrap aggregating, commonly referred to as bagging. In bagging we
bootstrap our training set many times, and then create a CART tree with
each bootstrap resample (Figure . When we want to obtain predictions
for some new observation (with a continuous response), we obtain predictions
from each individual tree, and then average them for our final prediction.
Through this method, we obtain predictions that are much more stable and
consistent than if they were solely based on a single decision tree.

21

tree tree tree tree tree

Bagged trees

Figure 4.1: Bagging

4.3 Random Forests

4.3.1 Description

Our aim in bagging is to stabilize the highly variable nature that is inherent
in individual decision trees, as well as to reduce the tendency of individual
trees to overfit the data. Random forests have the same goal, and share
many commonalities with bagging. Similar to bagging, random forests are
constructed by repeatedly bootstrapping the original training data set and
building an individual decision tree with each bootstrap sample. However,
random forest also rely on an additional variability measure in order to avoid
over-fitting of the data.

When trees are built within the random forest algorithm, node-splitting
is determined using the same measures as CART, such as maximizing ARSS
between parent and daughter nodes. However, in considering potential splits
for a node, only a randomly selected subset of size m of the explanatory
variables are considered for splitting. This is a parameter in the random
forest algorithm, and has been studied extensively. If we have p explanatory
variables in our training data, a very common value for m is m = /p. By
choosing nodes based on a subset of explanatory variables, a greater variety
of tree structures are introduced to the random forest.

An additional distinction between CART decision trees and random forests
is that random forest trees are not pruned. The aim of pruning in CART
is to protect against over-fitting the data. However, the bootstrapping and
subsetting of explanatory variables in tree-building that are characteristic of

22

random forests make it so that pruning is not necessary in random forests.
In an identical manner to bagging, we obtain predictions from forests by ob-
taining predictions from each individual tree, and then averaging them for
the final prediction (Figure [4.2)).

f(X),
fX), fX)r

prediction, j

Figure 4.2: Obtaining Predictions from Random Forests [7]

23

Chapter 5

Merging BLB and Random
Forests

Given that one critique of random forests and other machine learning meth-
ods is that the predictions they produce are not accompanied by error esti-
mates, we might consider trying to implement a BLB-like structure for ran-
dom forests as a way to get prediction error estimates in a computationally
inexpensive manner.

5.1 Translating BLB to Random Forests

5.1.1 Overall Structure

We propose a structure that is very similar to BLB. The algorithm will ran-
domly select (without replacement) S subsamples of size B << N. Similar
to BLB, a typical value for B will be B = v/N. Each of these subsamples
will be processed on a different parallel processor. We expect that similarly
to BLB, working with data of a reduced dimension will lead to a meaningful
reduction in computational time as compared to working with the full data
set. Within each processor, we will construct a random forest. As discussed
previously, in the random forest algorithm a collection of decision trees are
generated, with each tree being built from a new bootstrap sample of the
original inputed data.

At this point in BLB, in order to ensure the correct amount of error,
bootstrap samples of size N are generated by sampling with replacement R

24

times from the subsample of size B. We need to translate this bootstrapping
— from size B up to size N — to the random forest setting. In the context
of random forests, we propose sampling generating bootstrap samples, and
then using each of those bootstrap samples to grow a different tree within
the random forest.

However, we also must recall that the bootstrapping step of BLB is where
a multinomial random variable is cleverly placed. The use of this multinomial
random variable is what enables the algorithm to only ever work with data of
dimension B rather than of dimension N. We consider how to implement the
multinomial random to the BLB-like random forest structure in an analogous
and equally effective way.

Implementing the Multinomial Random Variable

In the original BLB algorithm, the clever use of the multinomial random
variable occurs when computing the sample mean for each bootstrap sample.
The way the sample mean is calculated “resembles” computing the sample
mean on data of size NV, when in actuality the computation is done with data
of size B. In order to implement a similar step in the BLB-like random for-
est structure, we propose a change to the node-splitting step in tree-building.
The modifications in Table depict such an implementation, which incor-
porates the multinomial random variable into this node-splitting component
of the tree-building that occurs within random forests at some node t.

randomF orest randomForest BLB
Nt Nt
Mean @tZN%ZZ/i gt:NLthi,yi
=1 i=1
Sum of Ny . w -
Squares WSS, = Z;(% —)" | WSS, = Z; m; - (yi — Uy

Table 5.1: Incorporating a Multinomial Random Variable into Tree-Building

e N, denotes the number of training observations at node t.

— N; would be expected to be smaller on average in the random Forest
BLB case since trees are built with training data of size B << N.

25

Prediction Interval Construction

Once the random forests are built using the implementation of the multino-
mial random variable, we obtain predictions for our test observations from
the different forests. Within each of the S parallel tracks, we obtain R predic-
tions for each test observation. For the i*" observation, we have predictions
Y; = (9insYins---»Yir). We then construct prediction intervals centered at

R
% > 9i;. It remains to be seen how exactly the algorithm will effectively
j=1

determine how far to extend from this center for the interval bounds. As a
naive method, we propose simply setting the endpoints of the interval to be
the § and 1 — § quantiles of the collection of R predictions. We explore the
question of effectively establishing interval endpoints in detail later on in this
thesis.

Once confidence intervals are constructed from each parallel track, for
each observation we have S intervals of the form (I, ;,u;;),7 =1,...,5,i =
1,..., Niest- In a similar manner to BLB, the final intervals for each test
observation are obtained by simply averaging the endpoints of the .S intervals,

S S
or (% 21 Lij, % 21 u; j |. The complete structure of this proposed BLB-like
J= J=

random forest implementation is depicted in Figure [5.1}

sample size

N
| i
N

tree tree tree tree tree

Figure 5.1: BLB-like Implementation of Random Forests

R trees

random forest .
S confidence intervals

26

Chapter 6

Simulation Studies — Prediction
Intervals from CART & RF's

6.1 Motivation

As discussed previously, we eventually hope to implement a BLB-like struc-
ture for random forests. One of the major motivations behind such an initia-
tive is to be able to obtain reliable prediction error estimates on the predic-
tions that we obtain from random forests. In the original BLB algorithm, the
focus was on obtaining confidence intervals for p rather than prediction inter-
vals for predictions coming from a model. The former captures the average
(1 —a)% of the time, whereas the latter captures the individual observations
(1 —a)% of the time. In the random forest setting, we are instead interested
in prediction intervals. This changes the way that we think about construct-
ing accurate intervals. Additionally, before we can feel confident in saying a
BLB-like structure for random forests produces accurate prediction intervals,
it is important that we ask a number of preliminary questions:

1. How do we estimate prediction variability in the context of RFs and
trees?

2. How different is prediction variability between RFs and individual trees?

3. How can we get prediction intervals that actually capture the true
response at the appropriate frequency?

In addressing the first question, it is not immediately clear what variabil-
ity even means in a random forest context. If we were in a traditional linear

27

model setting, we could evaluate variability of a model by examining how
the slope and intercept coefficients of our model vary. We could also think
about Y varying However, in random forests there is much less of an intu-
itive structural representation — there is in fact no model that can be easily
written down — so it is important to consider how we are to think about vari-
ability in the context of random forests. Furthermore, we also must consider
the difference in variability between random forests and individual trees, in
terms of the predictions that they produce. One of the central aims of ran-
dom forests is to stabilize the highly variable nature of individual trees, so
we must carefully evaluate to what degree this occurs. Finally, we must eval-
uate whether our proposed methods of prediction intervals result in intervals
that exhibit the error level that we would expect. For example, suppose we
are constructing what we expect to be intervals with a 5% error rate. So we
would on average expect 5% of our intervals to not contain the true response.
If our intervals in fact produce a error rate lower than 5%, then we are doing
worse than we could by having intervals that are too wide. Alternatively, if
our intervals are actually giving an error rate higher than 5%, then we are
worse off because we will be less accurate in inference than we expect. In
order to answer these questions, we conduct a number of simulation studies.

6.1.1 Confidence vs. Prediction Intervals

In properly interpreting the results from our simulation studies, it is im-
portant to first consider the distinction between confidence and prediction
intervals. We consider a hypothetical sample where we are interested in
predicting Age of youngest friend based on the Age of a study participant
(Figure . We fit a simple linear model to the data and construct both
confidence intervals (CI) and prediction intervals (PI).

28

80
I

= = Confidence
= = Prediction

Age of youngest friend

Age
Figure 6.1: Confidence vs. Prediction Intervals

In the figure above, the red-dotted line depicts the confidence interval
bounds. A confidence interval is intended to capture the mean response (at
a specific explanatory value) 95% of the time on average. The blue-dotted
line depicts the prediction interval bounds. This denotes the region where
on average 95% of individual observations will fall.

Translating Confidence and Prediction Intervals to a Forest and
Tree Setting

In order to fully understand the simulations discussed in this thesis, we must
first think about how this distinction between confidence and prediction in-
tervals translates to interval construction in the context of random forests
and CART trees. If we recall how predictions are generated in random forests
and CART trees, predictions are made by averaging the responses of training
observations within a given terminal node of a tree. This aspect of forests
and trees becomes an important consideration when trying to construct con-
fidence intervals or prediction intervals. We explore this distinction through
two simulations.

The first method uses a naive method of constructing intervals that looks
at how the mean predicted response varies for a specific observation. Said
another way, variability is measure by how the mean response varies across
the different nodes that test observations are assigned to in different trees. In
thinking about the consequences of intervals being constructed in this man-
ner, it is important to emphasize that intervals in this instance are measuring

29

the predicted response of certain nodes, which is simply an average of the
training responses that comprise a certain node. As such, this method ig-
nores any training response variability within the actual node. Consequently,
intervals constructed in this way are in reality built to capture the mean re-
sponse of the nodes in which an observation falls, rather than the actual
response of that individual observation. These intervals can be thought of as
being analogous to confidence intervals.

This is where our third and fourth simulations come into play and inform
this distinction further. In order to construct intervals that are built to cap-
ture the individual responses, the intervals need to account for the training
response variability within a node. Consequently, an additional simulation
employs a different method of constructing intervals, one which seeks to ac-
curately assess the training response variability within a node, in the hope
that the intervals will in fact effectively capture the individual test responses
rather than simply the mean response of a certain node. These intervals are
to be thought of as being constructed in an analogous manner to prediction
intervals.

6.2 Simulation Studies

6.2.1 Naive Approach — General Simulation Structure

We conduct simulation studies that assess our ability to obtain accurate
prediction intervals in a naive manner that is similar to the way in which
confidence intervals are constructed in the BLB structure. We run these
studies using two types of simulated data. In each simulation, we construct
both individual CART trees and random forests as a way of comparing the
variability of the two models. We are interested in assessing the true error
rate of the prediction intervals that we are constructing, in order to see
whether our intervals closely match the error rate that we anticipate.

In order to do this, we perform a large number of repetitions of generating
naive prediction intervals. Within each repetition, we randomly divide the
dataset into a test set (of size Niesy = 250) and a training set (of size Nypqin =
750). We then construct S (typically 100) random forests and S individual
decision trees. Fach random forest and decision tree is generated using a new
bootstrap sample of size Ny.q, from the training data. Once we have this
collection of random forests and decision trees, we use all forests and trees to

30

generate two large collections of predictions for the observations in the test
set.

Let Prr be the resulting predictions from the random forests and let
Ppr be the resulting predictions from the single decision trees. So then Pryg
and Ppt are both Ny by S matrices. With these two large collections
of predictions in hand, we construct naive prediction intervals for each test
observation. For the i*" test observation, the endpoints of our confidence
intervals from the random forests and single decision trees become the 2.5
and 97.5 percentiles of the i*" rows of Pry and Ppr, respectively. Now that
we have the prediction intervals constructed, we check to see whether or not
the true response of each observation was actually captured by the interval.

We repeat this procedure a chosen number of reps, each time using a
different test/training set split. Once we have conducted a large number of
repetitions of this procedure, we can then compute a capture rate for each
observation by dividing the number of times an observation’s response was
captured by the number of times that the observation appeared in the test
set. The simulation structure is depicted in Algorithm [3|

Algorithm 3 Simulation Structure

Inputs: N, reps, S, test.size, train.size
Simulate data of size N
foriin 1,...,reps do
Split data into test set and training set
Record indices of test set
for jinl1,...,5 do
Bootstrap training data
Use bootstrapped data to grow CART tree and RF on training data
Obtain predictions for test data from CART tree and RF

for CART and RF do
Obtain 95% PI for test data using percentile intervals
Record bounds of each prediction intervals
Record whether each PI contains corresponding test data response

For each observation in full data set, compute:

__ # times caught by PI
Capture rate = # times in test set

return Empirical confidence rates, test set counts, CART and RF PIs

31

6.2.2 Linear Data

We first consider generating data (N = 1000) from a simple linear model
with 10 explanatory variables and a normally distributed noise term. We
simulate data of the form

Y =XB+e€

To understand the structure of this data, we can consider a visualiza-
tion of the hypothetical space associated with 2 (of 10) dimensions of the
explanatory variables (Figure .

10

X1

Figure 6.2: Linear Model in 2 Dimensions with Color Representing the Re-
sponse Variable

In the plot above, the color gradient corresponds to the gradient of the
response variable for the full data set. The first thing we notice is that there

32

is a very smooth gradient in the explanatory variables for the response. With
this in mind, we see how it would be difficult to draw vertical and horizontal
lines so as to create groupings in the explanatory variables that are relatively
homogenous in their response (the goal of random forests and decision trees).
For this reason, it appears that perhaps data of this structure might not be
handled very well by the model that is inherent to trees and random forests.
Nevertheless, we conduct a simulation with this data using the standard
structure (Algorithm . We obtain a number of interesting results (Figure

53).

> o o > o P ‘*"Afg"‘:’-

§§' *&%ﬁi\:ﬁTAi ﬂ-‘ ()
B r

o | o | & -‘i : 4

I [} e!’l

g

o o

- =

I I

Observations Observations
(a) CART (b) Random Forests

Figure 6.3: Collection of Naive CART and RF Prediction Intervals on Linear
Data

The above figure depicts 50 selected observations from the linear model
dataset. Plotted are boxplots of the lower and upper bounds on the naive
prediction intervals for the 50 observations, accompanied by the true response
for each observation. We first notice that the bounds for the CART PlIs are
much more variable than for the random forest PIs. This is demonstrated by
the boxplot boxes being wider for CART than for random forests. A second
observation comes from noticing that the center of the Pls fluctuate with the
data more in the CART case than with the random forest case. Finally, we
notice that the lengths of the prediction intervals are larger in the CART
case than for random forests.

We develop intuition for this observation by revisiting one of the major
differences between individual decision trees (CART) and random forests.
The prediction used to generate the above intervals are coming from random

33

forests or CART trees. So for a given observation, we obtain one prediction
from a CART tree and one prediction from a random forest. As we recall
from our previous discussion of the motivation behind random forests, we
remember that one of the central aims of random forests make it so that pre-
dictions are relatively consistent, much more so than if the predictions were
based on single decision trees. This added prediction consistency comes from
the fact that random forests are collections of decision trees, each of which
is based on a new bootstrap sample and where random variable selection
occurs at each node in the tree-building process.

While individual decision trees are known for being highly variable, ran-
dom forests are in contrast known for being fairly stable in their predictions.
These characteristics of random forests and CART provides possible justifi-
cation for why the naive prediction interval bounds are more variable with
CART than with random forests. Since our prediction intervals are based on
percentiles from the distribution of predictions that we get for a given obser-
vation (found in Prg and Ppt), then more variable predictions would result
in more variable percentile intervals. The higher degree of variability that
is characteristic of CART also explains the fact that the interval lengths are
larger with CART than with random forests, since more variable predictions
will result in wider confidence intervals.

We consider the capture rates that we obtained for the 1000 observa-
tions in our simulated data, including a comparison of how these rates differ
between CART and random forests (Figure [6.4)).

We find that we are much closer to our desired capture rate of 0.95 for
CART than for random forests. If we revisit the characteristics of random
forests and CART, we can develop some intuition for why this may be hap-
pening. As discussed previously, CART trees are known for highly variable
predictions, as compared to the stabilization that occurs with random forests.
Thus, it’s possible that the CART intervals capture our response more fre-
quently because they produce wider intervals that fluctuate more readily.
The actual predictions of random forests may be off by a similar amount to
any given CART tree, but random forests’ additional stability in predicting
translates to smaller and less variable confidence bounds, ultimately captur-
ing the response less frequently and consequently lower empirical confidence
levels.

The ultimate reason for the lower than expected capture rates is based
on the way in which the intervals are constructed. The intervals are built by
taking percentiles of the predictions from the different random forests and

34

— Mean =0.33

— Mean =0.78

I I I
300 400 500
I I]

Frequency

Frequency
200
1

100 200 300 400 500 600

100
I

0
L
0
L

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Capture Rate Capture Rate
(a) CART (b) Random Forests

Figure 6.4: Response Capture Rates from Naive CART and RF Prediction
Intervals on Linear Data

single decision trees. As we recall, each individual prediction for a test ob-
servation is chosen to be the mean training response of the node in which the
test observation is found. As such, we realize that the intervals constructed
in this simulation are not actually built to capture response of an individual
observation. To capture the individual response, we need to evaluate the
variability of the training responses in that same node.

6.2.3 Gaussian Mixture Model Data

We recall that CART trees and random forests are more well-suited to situa-
tions in which the data being analyzed is fairly easy to use binary splits in the
explanatory variables to separate the data into groupings that are relatively
homogenous in their responses. With this understanding, we recognize that
CART trees and random forests are more likely to be successful in analyz-
ing highly clustered rather than linear data, and so we consider simulating
data from an alternative source. We use a gaussian mixture model from the
MixSim R package to generate 5 explicit clusters based on 10 explanatory
variables [8]. We then simulate the response through drawing from cluster-
specific normal distributions that are shifted in their means so as to have
no overlap. For each cluster in the explanatory variables, all the responses
come from the same normal distribution. The different normal distributions

35

are randomly assigned to each cluster. These normal distributions are of the
form

N (Mia 1)
p=(1,5,9,13,17)
To understand the structure of this data, we can consider a visualization of
the hypothetical space associated with 2 (of 10) dimensions of the explana-

tory variables (Figure [6.5)).

(@)
S
15
© _ |
S =
10
(9\]
<
© _
o
& 5
RS
OQ & §
< Jos
o
0
[[[[[_
0.2 0.4 0.6 0.8 1.0
X1

Figure 6.5: Clustered Model in 2 Dimensions with Color Representing the
Response Variable

In the plot above, the color gradient corresponds to the gradient of the
response variable for the full data set. The first thing we notice is that there

36

is a very clear distinction within the explanatory variables for the different
clusters. In contrast to the data from the linear model, we can see how
it would be fairly straightforward to isolate each cluster by drawing vertical
and horizontal partitions within the explanatory variables. For this reason, it
appears that perhaps data of this structure might be handled much better by
the model inherent to trees and random forests than was the linear data. We
conduct a simulation with this data using the standard structure (Algorithm
[3). We obtain a number of interesting results (Figure [6.6).

N
o | § i -
— g : -
. E 8 Il Vs 8 l -
o
—] RIS) S5 OQGOOHA,:]m o | *F*
N eli\fwa-' O éu"ﬁ"g el A é-lee >
vl I ° . ©q "
0 18 v ; : o
Ll I O I 8 ~
|I NS 3 :
xlaé.igi. B | ©q
o o &
Observations Observations
(a) CART (b) Random Forests

Figure 6.6: Collection of Naive CART and RF Prediction Intervals on Clus-
tered Data

The above figure depicts 50 selected observations from the clustered data
set. Plotted are boxplots of the lower and upper bounds on the confidence
intervals for the 50 observations, accompanied by the true response for each
observation. We first notice that the bounds for both the CART and random
forest Pls are fairly disorderly.

A second observation comes from examining the very large box sizes of
the CART PIs for certain observations. This indicates that the predictions
for these observation are extremely variable with single CART trees. This
makes intuitive sense based on the highly variable nature of CART trees, but
we can develop further intuition by considering the structure of the data for
this simulation. As seen in the 2-dimensional visualization of clustered data,
there is much larger separation within the explanatory variables. Addition-
ally, the clusters are drastically different in their response. If a CART tree
incorrectly groups an observation with observations from a different cluster,

37

then the prediction that it produces will be drastically deviated from the
true response (Figure . While this is not happening every time, we hy-
pothesize that it happens frequently enough to produce such highly variable
confidence bounds. We don’t see this same pattern with the random forest
PIs, since random forests have the benefit of stabilizing the highly variable
trees. As such, even if a few trees in the forest misallocate an observation
to an incorrect cluster, there are enough trees in the forest that this does
not completely disrupt the eventual confidence bounds. Finally, it’s interest-
ing to compare the performance between the linear and the clustered data.
While the performance of the CART Pls was dramatically reduced with the
clustered data as compared to the linear data, this occurred only slightly for
the random forest Pls.

We can also consider the capture rates that we obtained for the 1000
observations in our simulated data, as well as how these rates differ between
CART and random forests (Figure [6.7).

500
|
600
]

— Mean =0.38 — Mean =0.29

400
I

Frequency
300
Il
Frequency
300
1

200
I

100
I

0
L

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Capture Rate Capture Rate
(a) CART (b) Random Forests

Figure 6.7: Response Capture Rates from Naive CART and RF Prediction
Intervals on Clustered Data

We find that we are nowhere near our desired capture rate of 0.95 for
CART or random forests. However, as discussed previously the performance
decreased less for random forests than for CART.

38

6.2.4 Alternative Methods of Obtaining Prediction In-
tervals

If we are to develop intervals that will capture the responses of individual
observations at the rate that we would anticipate, then from these previous
simulations it is clear that we must consider a different method for obtaining
intervals. Recall that the prediction for test observations at some node t
is simply the average of the responses for the training data that comprise
that node. As discussed previously, this means that predictions obtained in
this way do not account for whatever variance may exist in the responses for
the training data at a specific node. Furthermore, generating intervals in this
manner would not be expected to capture the individual test responses, since
this would require that the intervals compensate for the response variability
of the training observations for the node. As such, we need to develop a way
to construct intervals that account for the variability in training response for
a node.

We propose a new method for obtaining prediction intervals, and we test
this method using a single random forest (as compared to the hundreds of
forests used in previous simulations). This method for establishing prediction
intervals is depicted in Algorithm {4 for a single test observation (Xyest, Ytest),
and we will refer to prediction intervals from this method as Within-Node
Variability (WNV) prediction intervals. This procedure can be easily re-
peated for all observations in the test set.

39

Algorithm 4 Within-Node Variability (WNV) Prediction Intervals

Inputs: (Xiest, Yiest), nodeSize, nFriends, numTrees

Outputs: One prediction interval for Y, based on Xt

Grow random forest using training data, specifying the parameters
numTrees and nodt;/[Sz'ze

Compute sy = (3= 1] 52)/ (23 1)

t; is the i'" terminal node that is of a size greater than nFriends

s? is the squared standard deviation of the training response in the i

terminal node that is of a size greater than nFriends
M is the number of nodes that are of size greater than nFriends

for t in 1,..., numTrees (terminal nodes that contain (Xyest, Yiest)) do
if |t| < nFriends then
St = Sall
else
T .
St = m Zl(yt,i,train - yt,train)
=

Yt.itrain 15 the response of the i*h training observation at node ¢
Ut train 1S the mean response of the training observations at node ¢

numTrees numTrees

Compute speq = \/(1/ SON)- (> Ny-s?)
t=1 =1

Obtain final prediction interval bounds as

2
Spred

pred £ 2 - \/Sﬁred T numTrees

pred is the mean prediction for Y. across all the trees within the random
forest.
return Final prediction interval bounds.

In order to evaluate the performance of this algorithm for obtaining ac-
curate prediction intervals, we conduct another simulation that is similar to
Algorithm [3] However, in this simulation we only use a single random forest,
rather than multiple random forests and multiple CART trees. An additional
difference is that in this simulation we are constructing 95% prediction inter-
vals using Algorithm [4] rather than the naive prediction intervals using the
percentile interval procedure from the first two simulations. In these simula-

40

tions we again consider two types of data, one set from a simple linear model
and the other using the MixSim R package, in an analogous manner to the
data generated for the first simulation. We use the parameters

e N = 1000 (testSize = 250, trainSize = 750)

e nodeSize = 10

nFriends = 5

numTrees = 5

reps = 1000

Through other simulations using this method of interval construction, we
found that substantially increasing the numTrees parameter did relatively
little to improve the capturing performance of the prediction intervals that
were generated. So in order to keep computational time low, we conducted
the simulation using numTrees = 5. We first consider a number of interest-
ing results from the simulation using the linear model data (Figure

Lo
«—

10

-15

Observations

Figure 6.8: Collection of WNV RF Prediction Intervals on Linear Data

41

The above figure depicts 50 selected observations from the linear model
dataset used in this simulation. Plotted are boxplots of the lower and upper
bounds on the prediction intervals for the 50 observations, accompanied by
the true response for each observation. We first notice that the prediction
intervals do a fairly good job at capturing the true response. The intervals
properly adjust to changes in the response variable. However, the intervals
become less reliable for capturing the more extreme responses of the depicted
observations.

We can also consider the overall response capture rate that we obtain for
the 1000 observations in our simulated data (Figure . We find that many
observations have a capture rate fairly close to the expected capture rate of
0.95, since we are trying to construct 95% prediction intervals.

o — Mean = 0.9581
o -—
[oe]
o
o —
[{e]
>
[8)
c
(]
>
T o
L 2
I ¥
o
O —
N
o J
[T T T 1
0.2 0.4 0.6 0.8 1.0

Capture Rate

Figure 6.9: Capture Rates for WNV RF Intervals on Linear Data

We also find that 353 of the 1000 observations were captured every time.
Since we conducted 1000 repetitions of the simulation and the test data
set in each repetition was of size 250, on average we would expect a given
observation to be in the test set for &~ 250 of those repetitions. Prediction
intervals are only constructed when an observation is randomly selected to
be in the test set, so this means that on average, the capture rates in Figure

42

are based on & 250 prediction intervals. Our finding that 353 of the 1000
observations were captured every time is not surprising, as these observations
can be thought of as being analogous to those which are in the center of the
prediction interval in Figure 6.1}

We also consider the proportion of observations captured by the predic-
tion intervals in each iteration of the simulation (Figure [6.10). We find that
in most of the repetitions in the simulation, close to 95% of the test responses
were captured, which is what we would expect. The deviations from a 95%
capture rate were relatively small.

— Mean = 0.9579

200
|

Frequency
50 100

0
|

| T T |
0.92 0.94 0.96 0.98

Proportion of Test Responses Captured

Figure 6.10: Overall Capture Rates (for Each Reptition of Simulation) for
WNV RF Prediction Intervals on Clustered Data

In order to better elucidate the characteristics of our newly proposed
method of prediction interval construction, we also consider the results from
the simulation using the clustered data (Figure [6.11])

43

m |ower Bound
® Upper Bound
oy

20
1
- - @DO® O

10

-10
!

Observations

Figure 6.11: Collection of WNV RF Prediction Intervals on Clustered Data

The above figure depicts 50 selected observations from the clustered
dataset used in this simulation. Plotted are boxplots of the lower and upper
bounds on the prediction intervals for the 50 observations, accompanied by
the true response for each observation. We first notice that the prediction
intervals do a fairly good job at capturing the true response. The intervals
properly adjust to the different clusters. However, we also notice that the
intervals do not exhibit substantial adjustment within a given cluster. So
for one observation that has a response near the low end of responses for
a given cluster, and another observation that has a response which is near
the high end for that cluster, the prediction intervals will still be relatively
the same. However, across all observations in each cluster, it appears as
though the intervals depicted in the plot are capturing the true responses at
approximately the rate that we would expect.

We can also consider the overall response capture rate that we obtain
for the 1000 observations in our simulated data (Figure [6.12). We find that
many observations have a capture rate fairly close to the expected capture
rate of 0.95, since we are trying to construct 95% prediction intervals.

44

— Mean =0.91392

Frequency
600 800
| |

400
I

200
I

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Capture Rate

Figure 6.12: Capture Rates for WNV RF Intervals on Clustered Data

We also find that 240 of the 1000 observations were captured every time.
Since we conducted 1000 repetitions of the simulation and the test data set
in each repetition was of size 250, on average we would expect a given ob-
servation to be in the test set for ~ 250 of those repetitions. Prediction
intervals are only constructed when an observation is randomly selected to
be in the test set, so this means that on average, the capture rates in Figure
are based on & 250 prediction intervals. Our finding that 353 of the 1000
observations were captured every time is not surprising, as these observations
can be thought of as being analogous to those which are in the center of the
prediction interval in Figure We would expect that these 353 observa-
tions have responses which are relatively close to their cluster-specified mean
().

We also consider the proportion of observations captured by the predic-
tion intervals in each iteration of the simulation (Figure[6.10]). We find that in
most of the repetitions in the simulation, close to 91% of the test responses
were captured, which is a smaller proportion than what we would expect.
The deviation from a 91% capture rate was relatively small. The cause of
this lower-than-expected capture rate could be due to the reasons discussed
above, where perhaps the prediction intervals frequently fail to capture the

45

edge response of the different clusters.

250
!

— Mean =0.9139

Frequency
150
|

| T T T T T |
086 088 090 092 094 096 0.98

Proportion of Test Responses Captured

Figure 6.13: Overall Capture Rates (for Each Reptition of Simulation) for
WNV RF Prediction Intervals on Clustered Data

From the simulations of node-based intervals using linear and clustered
data, we observed that the capture rates for many of the observations were
fairly close to the 95% rate that we would expect, with this being more the
case for the linear data than the clustered data. As discussed, the subpar per-
formance on the clustered data could be due to the structure of the clustered
data. It is possible that these lower-than-expected capture rates are due to
the individual trees misallocating a test response to the wrong cluster. In our
simulations using WNV intervals, we used a value of numTrees = 5, which
is extremely small for random forests (the standard value in the R package
implementation is numTrees = 500). Using a small value for numTrees di-
minishes the stabilization that random forests provide as an advantage over
single CART trees. Increasing the value of numTrees could perhaps improve
this issue.

46

Chapter 7

Conclusion

In this thesis, we explored various ways to develop inference frameworks for
random forests, with the goal of finding a way to produce obtain accurate
prediction intervals from random forests. We first investigated the feasibil-
ity of using ideas from the Bag of Little Bootstraps to develop a procedure
for obtaining accurate prediction intervals on predictions that are produced
by random forests. We first discussed some of the most fundamental con-
cepts behind BLB, namely sampling distributions and bootstrapping. We
then contextualized these concepts within the larger picture of BLB, also
introducing the specifics of the BLB algorithm and why it is such a powerful
methodology.

Following this presentation of BLB and its characteristics, we provided a
discussion on decision trees and various methods that employ them, namely
bagging and random forests. We conveyed the specifics of the CART algo-
rithm, which is the foundation for bagging and random forests. Following
these discussions, we explored the specifics of implementing a BLB-like struc-
ture for random forests. It became clear that one of the more difficult aspects
of this endeavor is to effectively implement a multinomial random variable
into the tree construction component of the random forest, so as to mirror
BLB’s use of a multinomial random variable. We proposed a method for
doing so.

Following this discussion of a potential BLB-like structure for random
forests, we explored different ways to produce prediction intervals for two
varieties of data, one generated from a linear model and the other gener-
ated using a Gaussian mixture model. We considered two approaches to
obtaining prediction intervals for these data within simulation studies. The

47

first method for prediction intervals was a naive approach of simply obtain-
ing quantiles for the predictions produced from a large collection of random
forests and CART trees. This method ignores any variability in training
response at the nodes from which predictions are generated. Through simu-
lation studies, we verified that this naive approach of constructing percentile
intervals based on the random forest and CART predictions resulted in test
response capture rates that were lower than would be expected for accurate
prediction intervals. We proposed a second method for interval construction
which aimed to resolve this issue, as it obtained prediction interval bounds
(for random forests only) by examining the variability in training response for
different nodes. We assessed the performance of these Within-Node Variabil-
ity (WNV) intervals using additional simulations, and found that this new
method produced intervals with far superior response capture performance
compared to the original naive percentile approach.

The capture rates and appearance of the intervals (adjustment to the
different test responses and the centers of the intervals) were vastly improved
by moving from the naive method to our WNV intervals, but there was a
distinct performance discrepancy between the intervals on the linear data
and those on the clustered data. The clustered data exhibited lower-than-
expected capture rates, which could possibly be due to our use of a low value
for numTrees in our simulation.

Future work could delve deeper into the parameter space of our simula-
tions and WNV interval procedure in order to better elucidate the perfor-
mance and suitability of such intervals. More specific investigations could
entail examining the per group capture rate for the clustered data. Through
considering different amounts of overlap in the clusters, such investigations
could clarify if in fact certain characteristics specific to the clustered data
are directly contributing to the lower-than-expected capture rates. Finally,
in this thesis we merely proposed a BLB-like random forest implementation.
Future investigations could be aimed at implementing our WNV intervals
into our proposed BLB-like framework for random forests.

48

Bibliography

1]
2]

[3]

Breiman, L. (2001). Random Forests. Machine Learning. 45(1), 5-32.

Breiman, L., Friedman, J., Olshen, R., Stone, C. (1984).“Classification
and Regression Trees”, Wadsworth.

Efron, B., Tibshirani, R. (1994). “An Introduction to the Bootstrap”,
Chapman & Hall.

Hesterberg, Tim C. (2015) What Teachers Should Know About the
Bootstrap: Resampling in the Undergraduate Statistics Curriculum,
The American Statistician, 69(4), 371-386.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani
(2013). “An Introduction to Statistical Learning: With Applications in
R”, Springer.

Kleiner, A., Talwalkar, A., Sarkar, P., Jordan, M.I. (2014). A Scalable
Bootstrap for Massive Data. Journal of the Royal Statistical Society:
Series B. 76(4), 795-816.

Mennitt, Daniel, Kirk Sherrill, and Kurt Fristrup (2014). A Geospa-
tial Model of Ambient Sound Pressure Levels in the Contiguous United

States. The Journal of the Acoustical Society of America J. Acoust. Soc.
Am. 135(5), 2746-764.

Volodymyr Melnykov, Wei-Chen Chen, Ranjan Maitra (2012). MixSim:
An R Package for Simulating Data to Study Performance of Clus-
tering Algorithms. Journal of Statistical Software, 51(12), 1-25.
http://www.jstatsoft.org/v51/il12/.

49

	Introduction
	Bootstrapping & Bag of Little Bootstraps
	Sampling Distributions
	Bootstrapping
	Bag of Little Bootstraps
	Subsampling and Parallelization
	Bootstrapping
	Multinomial Random Variable Implementation
	Confidence Intervals
	Notable Characteristics

	Decision Trees & CART
	The CART Algorithm
	Overview
	Tree Building
	Pruning the Tree

	K-Fold Cross Validation

	Bagging & Random Forests
	Introduction
	Bagging
	Random Forests
	Description

	Merging BLB and Random Forests
	Translating BLB to Random Forests
	Overall Structure

	Simulation Studies – Prediction Intervals from CART & RFs
	Motivation
	Confidence vs. Prediction Intervals

	Simulation Studies
	Naive Approach – General Simulation Structure
	Linear Data
	Gaussian Mixture Model Data
	Alternative Methods of Obtaining Prediction Intervals

	Conclusion

