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Abstract

Distance metrics are often the backbone of clustering algorithms.
Yet certain distance metrics, such as one based on Pearson’s correlation,
are sensitive to outliers. Microarray data tend to have outlying data points.
Hence, we may intuitively believe metrics like one based on Pearson’s cor-
relation may not be appropriate for clustering microarray data. Hardin, et
al. (2007) show a metric based on Tukey’s biweight estimate of multivariate
scale and location to be more robust than a metric based on Pearson’s cor-
relation. The goal of this paper is to find a way to evaluate whether a metric
based on Tukey’s biweight will create more valid clusters (based on known
partitions in microarray data) than a metric based on Pearson’s correlation.

We define an extreme outlier to be a data point that is sufficiently
outlying with respect to the relationship between two genes. When an ex-
treme outlier is removed, a metric based on Pearson’s correlation will often
dramatically change its measurement of correlation, while a metric based
on Tukey’s biweight will often display very little change in its estimate of
correlation [11]. We consider a “robust” cluster to be a cluster that would be
clustered the same with the removal of extreme outliers from gene pairings
as without the removal. Our results suggest that a metric based on Tukey’s
biweight will create more “robust” clusters than a metric based on Pear-
son’s correlation. As our clustering algorithm, we use Partitioning Around
Medoids (PAM) [14].



Chapter 1

Background: Introduction to
Clustering Microarrays

Why is one person afflicted with lung cancer while another person is
not? We often read that there are paramount differences between how the
two people lived their lives. We have also come to see that genetic influences
can be integral to determining a person’s chances of getting cancer. As
scientists, we want to get to the heart of the subject, and find how the two
subjects’ body chemistries differ.

The most useful building blocks for scientists are genes. Genes are
segments of our DNA; hence, each gene’s information is a part of our genetic
blueprint. Genes live in two states, active (or “expressed”) and inactive. A
gene is active when the information on the gene is being “read.” During
a well-known multiple-stage biological process known as transcription and
translation, the “reading” of the information in the gene occurs. The result
of transcription and translation is often the creation of a protein. Proteins
perform specialized functions within cells.

In the process of transcription, a molecule known as messenger RNA
(mRNA) is created to make a copy of certain information on the gene. The
mRNA resulting from this process is called an mRNA transcript. This
mRNA carries this information to the sites where protein synthesis occurs.
At these sites, the information from the mRNA is often used to create a
protein by the process of translation.

The level of gene activity (or its expression level) is usually defined
as the number of mRNA transcripts synthesized by a gene to conduct the
synthesis of different proteins. Thus, to analyze gene expression, scientists
compare the relative quantities of various mRNA molecules in the cells of
two different subjects.

In 1989, Affymetrix, invented a technology that can track the ac-
tivity of thousands genes. The technology Affymetrix invented, known as
a microarray, is a small robotic chip. The microarray is a matrix of spots,
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i.e., locations that will be used to measure a certain gene’s expression level.
There are a number of different microarray chips on the market today. Note,
the method we describe below for using a microarray to analyze gene ex-
pressions is not the method used by Affymetrix.

To study an organism, scientists lyse the cells they are interested
in, and then they isolate the mRNA. They then convert the mRNA into a
complementary strand known as complimentary DNA (cDNA). Each spot
on the microarray contains a complement of the cDNA, to which the cDNA
can bind. The scientists spread the cDNA onto the chip to measure whether
genes are expressed.

Our specific problem is that of finding groups of genes that are
co-expressed. To study differences in co-expression between two human
subjects, the chip will have all the genes that can feasibly be thought to be
active in our subjects. Then, we will isolate the mRNA from the tissue we
are interested in from the healthy and unhealthy subjects. The cDNA is
created and is then labeled red if it comes from the unhealthy subject and
green if it comes from the healthy subject. The cDNA is then spread across
the microarray, and the genes that would be “expressed” by the mRNA on
the chip light up the color of the cDNA.

When genes are active in both healthy and unhealthy subjects, the
displayed color is yellow. When the gene is inactive in both subjects, the
displayed color is black. The colors are then quantified; because sometimes
the cDNA only binds partially with the spot, we get a full spectrum of values.
In fact, there is almost never a time when a spot on the chip lights up to be
completely red or green. There are more cases where the spot is completely
black. The quantified value is the log ratios of the color intensities of each
spot. We use standardized values. Each microarray gives us one array worth
of data for thousands of genes. We repeat this process for as many arrays
as possible or necessary.

1.1 The Goal of Working with A Microarray:

Our data is a matrix of rows of thousands of genes, and columns of
tens of arrays. The data is used to see which genes are correlated with
other genes. If we can find large groups of genes that are all correlated
with one another then we have clusters. Hence, an analysis of the clusters
can effectively find groups of genes that are correlated with one another.
Therefore, if we have two genes in the same cluster, we know that these
two genes are expressed across the different arrays in such a way that they
are co-expressed by some measure. Likewise, if we have fifty genes that
are all correlated, these genes are supposedly all active to a similar degree
across different arrays. In our analysis, we consider to what degree genes in
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the same cluster are active. By identifying patterns of gene expression and
grouping genes into expression classes, we might be able to provide much
greater insight into their biological function and relevance.
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Chapter 2

Clustering Techniques: PAM

Clustering algorithms perform the intuitively simple task of finding
groups in data. Distance metrics are the backbone of these algorithms be-
cause a group is going to be defined by the proximity of data points to a
certain point. We look at distance metrics in the next chapter. We exam-
ine unsupervised learning techniques, since we have no a priori knowledge
about the cluster structure.

Clustering algorithms tend to be categorized into two types: parti-
tioning and hierarchical. There are also hybrids of these two types of algo-
rithms as well as other types of algorithms. Partitioning Around Medoids
(PAM) is a partitioning algorithm. We use this algorithm in our research.
The algorithm performs the following steps:

•Choose the number of clusters you want, say k.

•Choosing Medoids (BUILD).
–Select the first medoid by choosing the data point for which the sum of all
the dissimilarities to all other elements is as small as possible.
–To Select the remaining k –1 medoids:

1. Consider an element, i, which has not yet been selected.

2. Consider another non-selected element, j.

3. Calculate the difference between the dissimilarity, Dj , of element j
with the most similar previously selected medoid and the element’s
dissimilarity, d(j, i), with element i.

4. If the difference from Step 3 is positive, element j will benefit if element
i is selected as the medoid. We calculate:

Cj,i = max(Dj − d(j, i), 0) (2.1)

4



5. We calculate the total gain by selecting element i :∑
j

Cj,i

6. Choose as the next medoid the not yet selected element i which max-
imizes the total gain:

max i
∑
j

Cj,i

–Continue steps 1-6 until k medoids have been found.

•See if an unselected element may be a better choice as a medoid than
the current selections (SWAP).

1. Consider a non-selected object, h, along with our current selected ob-
ject, i. Also, consider another representative object, j, and calculate
its contribution to the swap, Cjih. Let Cjih =

(a) Zero if j is further from both i and h than from another repre-
sentative object.

(b) One of two values defined below if j is not further from i than
from any other medoid. Note:

Dj = d(j, i) (2.2)

i.
Cjih = d(j, h)−Dj (2.3)

if j is closer to element h than to the second closest medoid,
i.e., d(j, h) < Ej where Ej is the dissimilarity between j and
the second most similar representative object. In this case,
the contribution of element j to the swap between objects i
and h.

ii.
Cjih = Ej −Dj (2.4)

if j is at least as distant from h than from the second closest
medoid, i.e., d(j, h) > Ej .

(c)
Cjih = d(j, h)−Dj (2.5)

if j is further from medoid i than from at least one of the other
representative objects but closer to element h than to any medoid.
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2. Calculate the total results by adding the contributions:

Ti,h =
∑

jCjih (2.6)

–To decide whether to carry out a swap:

1. Select the pair (i,h) which minimizes Ti,h.

2. If the minimum of Ti,h is negative, the swap is carried out and the
algorithm returns to step 1. If the minimum of Ti,h is positive or 0,
the value of the objective cannot be decreased by carrying out a swap
and the algorithm stops.

2.1 Understanding PAM and PAM’s Advantages

In PAM, we must input the number of clusters we believe there are in
our data. We will show how we can avoid this in the chapter, “Methods
and Results.” We then try to find medoids. There will be as many medoids
as clusters. PAM finds the most representative medoids in our data by
calculating the within-group distances of all the possible combinations of
medoids. We want groups that have the smallest within-group distances
from each other, and the furthest distances from the other groups. Intu-
itively, it makes sense that we want our data to be as close as possible to
one another if they are in a group, and as far away as possible from the
points in the other groups.

We do not measure the validity of the clusters PAM creates rela-
tive to clusters created by other clustering algorithms. In the literature,
clustering algorithms have been studied, and although there is no consensus
on a “best” algorithm, partitioning and hybrid methods have been shown
to create more valid clusters (based on known partitions within the data)
than hierarchical methods [2], [23]. We clustered our data with other algo-
rithms like HOPACH and a linked-hierarchical method, but we found that
the output from PAM was the best means to studying our different metrics.
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Chapter 3

Distance Metrics

To be a distance metric, the metric, d, must satisfy the following four
properties for some points x, y, and z.

d(x, y) ≥ 0 (3.1)
d(x, y) = d(y, x) (3.2)

d(x, y) = 0 ⇐⇒ x = y (3.3)
d(x, y) ≤ d(x, z) + d(z, y) (3.4)

In <2, distance metrics define a distance between some x ∈ <2 and
some y ∈ <2. Likewise, in <n, distance metrics define a distance between
some x ∈ <n and some y ∈ <n. A correlation measure suggests the strength
and direction of a linear relationship between two random variables in some
space. There are a number of distance metrics that are functions of corre-
lation measures. A distance metric in <n that is a function of a correlation
measure estimates the distance between some x ∈ <n and some y ∈ <n. A
high correlation between these two points implies a small distance. Likewise,
a low correlation between x and y implies a large distance.

In our project, we examine thousands of correlations between dif-
ferent genes using distance metrics based on correlation measures, and we
group together highly correlated genes. We considered a few different met-
rics based on correlation coefficients, specifically based on Pearson’s correla-
tion, Tukey’s biweight correlation, and Spearman’s correlation. We use two
other distance metrics to simulate clusters: the Euclidean metric and the
absolute Euclidean metric. Note that there are many metrics that sustain
the above properties, 3.1-3.4; we merely consider the metrics most used in
clustering microarray data. Also note that equations 3.3 and 3.4 are not
always satisfied by the metrics based on correlation. This is acceptable to
our study. The metrics based on correlation may not be “distance metrics,”
because they do not satisfy the properties 3.1-3.4. However, metrics based
on correlations are useful to clustering algorithms - and, in turn, to our
study - because they estimate closeness based on correlation.
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Below, we examine the different distance metrics in depth.

3.1 The Euclidean and Absolute Euclidean Metric

We begin with the Euclidean metric:

dE(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3.5)

The Euclidean metric satisfies equations 3.1-3.4. The metric is not
considered to be robust.

The absolute Euclidean metric is:

dabs(E)(x, y) = min(dE(x, y), dE(−x, y)) (3.6)

The absolute Euclidean metric considers two distances and takes the
minimum. The first distance it considers is the Euclidean distance above.
The other distance it considers is the Euclidean distance metric after a minus
transformation on one of the components, x or y.

The absolute Euclidean metric is not a well-known metric, but it is
pertinent for the analysis of microarray data. Since each data point is the
log ratio of two values, a minus transformation on a data point will be the
log ratio of the inverse of the two values. In our case, if genes x and y are
close, we want to cluster them; likewise, if genes x and −y are close, we want
to cluster the two genes. Hence, the absolute Euclidean metric is pertinent
to our specific analysis of microarray data.

3.2 A Metric Based on Pearson’s Correlation Co-
efficient

A metric based on Pearson’s correlation is a function of Pearson’s cor-
relation. The equation for the metric based on Pearson’s correlation is:

dr(x, y) = 1− |rxy| (3.7)

where rxy is the Pearson’s correlation coefficient of the vectors x and y.

rxy =
Sxy√
Sx
√
Sy

=
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(3.8)

Pearson’s correlation coefficient, rxy, is the product of the differ-
ences in the mean deviations divided by the product of the standard devia-
tions. Correlation is defined as the ratio of the covariance to the product of
the individual standard deviations. Hence, all further correlation measures
are variations on the idea of dividing the covariance by the product of the
standard deviations.
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3.3 A Metric Based on Spearman’s Rank Corre-
lation Coefficient

The Spearman correlation coefficient is the Pearson’s correlation coeffi-
cient on the ranked data. The formula below is the commonly used formula
for the Spearman correlation:

dS(x, y) = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(3.9)

where di = the difference between the rank of each corresponding value of
x and the rank of each corresponding value of y.
n = the number of pairs of values

Two cases define Spearman’s rank correlation coefficient: there are tied
ranks and there are no tied ranks. When there are no tied ranks, we perform
our calculation as in equation 3.9.

If tied ranks exist, we first rank the data using the average of the
two ranks any two tied points would have been. For example, say we have
two equal data points. Within our vector, x, the equal data points are the
fourth and fifth biggest points. Hence, we assign them each rank 4.5. We
then perform our calculation as in equation 3.9.

The metric used in our paper is:

dS(x, y) = 1− |rS(x, y)| (3.10)

There are some clear differences between the formulas for the Spear-
man’s and Pearson’s coefficients. Spearman’s coefficient does not require
that we think of the relationship between x and y as linear. Likewise, we
measure from an ordinal rather than a cardinal perspective. In data with
many outliers, these differences are often seen as advantages. However, we
do see inherent problems with Spearman’s coefficient. It ignores the infor-
mation about relative distance between data points. Hence, we consider
another robust distance metric, a metric based on Tukey’s biweight correla-
tion.

3.4 A Metric Based on Tukey’s Biweight Correla-
tion

A metric based on Tukey’s biweight is considered “resistant”to outliers.
The biweight correlation comes from the class of M-Estimators, which have
been shown to down-weight points that are far from the estimated center
as defined by the scatter of the data [13]. To make good choices about
which points to down-weight, we need a good estimate of the center of the
data and how the data is scattered. It is important to note that sometimes
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outliers are in fact important and meaningful points. A valuable part of the
metric based on the biweight correlation is that it gives the user the ability
to determine whether points should be flagged (and perhaps later removed)
as outliers.

Consider two genes. We can output a 2x2 biweight covariance ma-
trix from the biweight measurement of multivariate scale:(

sBWx,x sBWx,y

sBWx,y sBWy,y

)
Using our definition of correlation, we use the output from our 2x2 bi-

weight covariance matrix to define the biweight correlation:

rBW =
sBWx,y√

sBWx,x ∗ sBWy,y
(3.11)

In turn, we define the metric based on biweight to be:

dBW = 1− |rBW | (3.12)

3.5 A Note on the Specification of Metrics Through-
out this Paper

We have called a metric based on a correlation “a metric based on
Pearson’s correlation,” for example. Now that we have a good understanding
of the metrics based on correlation, we shall call, throughout the rest of the
paper, the metrics based on correlation which we use: Pearson’s metric,
Spearman’s metric, and the biweight metric.
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Chapter 4

Methods: Simulating and
Clustering Data

4.1 Data

Our data is a matrix of yeast microarray gene expression data: 3360
genes (rows), 17 arrays (columns). The arrays represent samples taken over
multiple different generations.

Clearly, we have a large number of genes, but we do not have a large
number of data points, per se, because in our correlations between two genes
we have at most 17 data points.

4.2 Simulating Data

A clustering approach is considered more valid if the algorithm parti-
tions the data such that the algorithm is closer (by some measure) to creating
the known partitions. Our goal is to compare the biweight and Pearson’s
metrics by distinguishing between the validity of the biweight and Pearson’s
metric’s re-clusterings of the simulated clusters.

To accomplish our goal, we create a simulated sample from our
data. We created “large” clusterings of 5 groups of 50 genes and “small”
clusterings of 3 groups of 20 genes. A subset of genes with small within
cluster distances were selected in creating 3 or 5 clusters. The metrics used
for simulation were: absolute Euclidean, Euclidean, Spearman’s, Pearson’s,
and biweight.

To simulate data:

1. Select a single gene, x, at random. This gene is called a node.

2. Create a one-column matrix, M , with same number of rows as one less
than the total number of genes (in our case, total genes = 3360, so
number of rows = 3359).
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3. In each row, insert the distance (as determined by the specific distance
metric) from x to a specific gene in the sample, with no repetition of
the gene selected.

4. Create a new one-column matrix, N , in which the rows are an ordered
list of the distances in M from lowest to highest (closest to furthest
from x).

5. Select the 19 or 49 closest genes to x (depending on the size of the
cluster wanted), and put these genes in the cluster.

6. Remove the rows of the distances of the genes that were selected to be
in the cluster from M .

7. Select the minimum of the list (the furthest gene) from our initially
selected gene, x′. This gene is another node.

8. Remove the distance from x to x′ from M .

9. Create a one-column matrix, M ′, in which each row is the distance
from x′ to some other gene in the data besides the genes already se-
lected to be in the created cluster(s) (again, with no repetition of the
gene selected). The distance from x′ to some gene, say a, should be in
the same row as the distance from x to a.

10. Create a two-column matrix by attaching M ′ to M . Call this matrix
M , replacing the previously created M .

11. Create a one-column matrix of the minimum value of each row in M
(i.e., find the smallest of the distances to each selected node from each
row). Call this matrix N , replacing the previously created matrix N .

12. Select the 19 or 49 genes with the lowest values in N . Put these genes
in the new cluster around the node x′.

13. Remove the 19 or 49 selected genes’ distances from M .

14. Select the gene with the highest value in N . Take this gene as a new
node, around which to form, a new cluster. Call this gene x′, replacing
the previously created x′.

15. Remove the distances from x′ to the previously selected nodes from
M .

16. Repeat steps 9-15 until one less than the number of clustered wanted
are created. Then repeat steps 9-12.
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It is important to note that we did not allow genes to be put in more than
one group, i.e., all selection was done without replacement.

Our chosen method for simulating the data is problematic. Just
because our initial node, chosen in step 1, and and our next chosen node,
chosen in step 7, are far from one another, this does not mean that the
points within the two node’s clusters, chosen in step 5, are all necessarily
far from one another. Hence, for any metric used in the simulation process,
we do not believe that the simulated clustered are objectively true clusters.
Thus, it is not possible to attain any notion of the validity of the clustering
technique by measuring the ability of the clustering technique to re-cluster
simulated clusters into the original partitions.

At first, it was unclear if the problems stated above would make our
results moot. However, we were still able to approach our goal of examining
differences in how biweight and Pearson’s cluster simulated data, as will be
explained below.

4.3 Clustering

When re-clustering our simulated clusters, we do not want to make any
assumptions about the specific number of clusters our clustering techniques
will think is best. Rather, we use a reflection of the appropriateness of
the number of clusters assigned, i.e., average silhouette width, to choose
the appropriate number of clusters. We explain silhouette width below.
The average silhouette width is the average of the silhouette widths of the
clusters. When clustering, we find the average silhouette width output from
PAM for 1,2,...,k clusters. We take the number of clusters with the maximum
average silhouette width as the number of clusters chosen by the biweight
or Pearson’s metric. We use the adjusted Rand, a measure of the clustering
as compared to the known structure, to evaluate how well the biweight and
Pearson’s metric’s re-cluster the simulated clusters. We explain the adjusted
Rand in the subsection below. We want to see to what degree our best
clustering, as chosen by maximizing the average silhouette width, matches
our predicted groups.

4.3.1 Silhouette Width

The silhouette measures how well a point fits in its own cluster against
how it fits in another cluster. For a gene, j, let aj be the average dissimilarity
of gene j with the other elements of its cluster, and let bj be the minimum
average dissimilarity of gene j with the members of all other clusters. To
further explain bj , let q1...qn represent the points in cluster Q, a cluster of
which j is not a member. Find the average dissimilarity between gene j and
all q1...qn in cluster Q. Continue to find the average dissimilarity between j
and all genes within a cluster for all other clusters of which j is not a member.
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Find the closest value of all the average dissimilarities found between clusters
of which j is not a member; call it bj . Hence, bj is a quantification of how
close the nearest cluster is, whereas aj is a quantification of how close the
elements of element j’s cluster are to gene j. The silhouette of gene j can
be any value -1 to 1 and will be given as:

Sj =
bj − aj

max(aj , bj)
(4.1)

There are three ways a gene can be “classified.” If the dissimilarities
within the cluster are less than the dissimilarity between clusters, the genes
are “well-classified.” If these dissimilarities are about the same, we do not
know whether gene j should be in its current cluster or another. If the
dissimilarity within the cluster is greater than that between clusters, then
we have a “misclassified” gene. The values range from -1 to 1, i.e., from
misclassified to well-classified, respectively.

The silhouette process is quite simple and intuitive, and finding the
average of the silhouettes tends to be a good predictor of how well the genes
are clustered. [14]

4.3.2 Adjusted Rand

The adjusted Rand is a cluster-validation measure described in detail
by Yeung and Ruzzo [29]. The adjusted Rand is used to judge the clustering
done by PAM - in our case - to external criteria, i.e., the simulated clusters
we first created. To understand the adjusted Rand, first we consider the
Rand index:

“Given a set of n objects S = (O1, ..., On), suppose U = (u1, ..., uR)
and V = (v1, ...vC) represent two different partitions of the objects in S such
that ∪Ri=1ui = S = ∪Cj=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for 1 ≤ i 6= i

′ ≤ R

and 1 ≤ j 6= j
′ ≤ C. Suppose that U is the external criterion and V is a

clustering result. Let a to be the number of pairs of objects that are placed
in the same class as U and in the same cluster in V , b to be the number of
pairs of objects in the same class in U ,but not in the same cluster in V , c
be the number of pairs of objects in the same cluster in V but not in the
same class in U , d be the number of pairs of objects in different classes and
different clusters in both partitions” [29]. The Rand index is:

a+ d

a+ b+ c+ d
(4.2)

The Rand index will output a value between 0 and 1, and when the
two partitions agree perfectly, the Rand index ouput is 1.

We use the adjusted Rand index instead of the Rand index, “because
the expected value of the Rand index of two random partitions does not take
a constant value” [29]. “The adjusted Rand index assumes the generalized
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Table 4.1: Notation for the contingency table for comparing two partitions

Class v1 v2 ... v1C Sums

u1 n11 n12 ... n1C n1.

u2 n21 n22 ... n2C n2.
...

...
...

...
...

uR nR1 nR2 ... nRC nR.
Sums n.1 n.2 ... n.C n.. = n

hypergeometric distribution as the model of randomness, i.e., the U and
V partitions are picked at random such that the number of objects in the
classes and clusters are fixed. Let nij be the number of objects that are in
both class ui and vj . Let ni. and n.j be the number of objects in class ui
and vj , respectively” [29]. The notations are illustrated in Table 4.1 above.

“The general form of an index with a constant expected value is
index−expected index

maximum index−expected index, which is bounded above by, and is 0 when

the index equals its expected value” [29].
Under the generalized hypergeometric model, it can be shown that

the adjusted Rand index is:∑
ij

(nij

2

)
− [
∑
i
(
ni.
2

)∑
j
(n.j

2

)
]/
(
n
2

)
1
2 [
∑

i

(
ni.
2

)
+
∑
j
(n.j

2

)
]− [

∑
i
(
ni.
2

)∑
j
(n.j

2

)
]/
(
n
2

) (4.3)

We use the form from equation 4.3 as the Rand index in our results.
From here forward, the adjusted Rand values will be referred to as simply
the Rand output or value.
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Chapter 5

Initial Results of the
Clusterings

5.1 Results when Simulating with the Absolute
Euclidean and Euclidean Metrics

In both the large and small simulations, we get lower Rand values when
the biweight metric clusters the data simulated by the Euclidean and abso-
lute Euclidean metrics than when Pearson’s metric clusters the same data.
(See Tables 8.1 and 8.2) However, just because we get a lower Rand for
biweight, we cannot say that clustering with Pearson’s metric creates better
clusters. In fact, we should expect that Pearson’s metric would cluster data
simulated by the Euclidean and absolute Euclidean metrics better, since
Pearson’s metric is a function of the Euclidean metric.

5.2 Results when Simulating with Spearman’s Met-
ric

For the data simulated by Spearman’s metric, biweight and Pearson’s
perform similarly, with biweight displaying slightly higher Rand values (See
Tables 8.1 and 8.2). Pearson’s metric and the biweight metric both re-
clustered the simulated clustered with an average Rand of nearly 1 in the
small simulations (See Table 8.2). Since Spearman’s correlation is consid-
ered more resistant to outliers than Pearson’s correlation, we expect Spear-
man’s metric to not cluster together as many gene pairings with outliers
as a non-resistant metric, like the Euclidean metric. The juxtaposition be-
tween Spearman’s results and the Euclidean and absolute Euclidean results
informed us that outliers may play an important role in how the Pearson’s
and biweight metrics re-cluster simulated data, since an important difference
between Spearman’s metric and the Euclidean metric (or absolute Euclidean
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metric) is the Spearman’s metric’s resistance to outliers.

5.3 Results when Simulating with the Biweight
and Pearson’s Metrics

We get a Rand of one or nearly one for all of the biweight metrics clus-
terings of the data the biweight metric simulated. (See Tables 8.2 and 8.1).
Likewise, Pearson’s metric clusters the data that Pearson’s metric simulates
with a Rand value of one or approximately one. We should expect the bi-
weight metric to estimate high Rand values when re-clustering simulated
clusters as defined by the biweight metric since biweight determined the dis-
tances between the genes to create the clusters in the first place. However, it
is interesting that Pearson’s also re-clusters the simulated clusters as created
by biweight with a Rand of one. We hypothesize that since biweight is a
metric that is resistant to outliers, in the initial clustering of the data, very
few outliers within gene pairings will be clustered together. Hence, both
Pearson’s correlation and biweight correlation will either find gene pairings
to be highly correlated, or not. Again, our results suggest that outliers play
a key role in the clustering of microarray data.

5.4 Interpreting our Initial Results

From our results, we were unable to derive any consensus about which
distance metric clusters simulated data with a higher Rand. We hypothe-
size that we were unable to derive a consensus about whether the biweight
metric re-cluster simulated clusters into their original partitions better than
Pearson’s metric, because the specific distance metric used to simulate the
data is fundamental to how the groups will be perceived by the distance
metric used to cluster the data. For example, if Pearson’s metric creates
the simulated clusters, Pearson’s metric will output a higher Rand value
than the biweight metric when clustering the data. However, just because
Pearson’s metric clusters such that it outputs a higher Rand value, this does
not imply that Pearson’s metric is “right” in its designated clustering. It is
hard to say what a “best” cluster is, since our initial simulations could have
been poorly generated.

We hypothesize that the biweight metric may have not clustered the
data according to their simulated partitions in some cases since the biweight
metric is more resistant to outliers than Pearson’s metric. In turn, the bi-
weight metric may have clustered gene pairings differently than Pearson’s
metric because the biweight metrics measures closeness differently; specif-
ically, the biweight metric gives different values to the distance between
gene pairings than Pearson’s metric when there are outliers between gene
pairings.
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5.5 A New Approach to Achieve our Goal

We found some interesting cases when examining the disparities be-
tween average Rand values when biweight and Pearson’s metric re-cluster
simulated data. Specifically, there were four cases when simulated clusters
were re-clustered with a Rand of one by Pearson’s metric, but with a lower
Rand when biweight was the metric. Hence, in these cases, Pearson’s metric
clusters the data “perfectly” based on what we defined our initial groupings
to be. Only two distance metrics, the Euclidean and absolute Euclidean
metrics, simulated the four cases where Pearson’s clustered with a Rand of
one. The fact that clustering with Pearson’s metric outputs a higher Rand
than clustering with the biweight metric goes against our initial hypothesis
that the biweight metric will cluster our simulated data into their “correct”
groupings. Thus, we wanted to closer examine these instances.

We analyze the instances when Pearson’s metric clusters the sim-
ulated data such that it outputs a Rand of one and the biweight metric
clusters the simulated data such that it outputs a Rand of less than one.
We call these instances “perfect instances.” We hope to show that the differ-
ences in clusterings made by the biweight metric are due to outliers creating
significant differences in the estimates of closeness between two genes made
by the biweight metric and Pearson’s metric.

5.6 Examining Differences in Clusterings

In order to investigate the differences in the “perfect instances” of the
clusterings by the biweight metric and Pearson’s metric, we decided to look
at how many extreme outliers were clustered differently by the biweight and
Pearson’s metrics. Hence, we need to define an extreme outlier. By measur-
ing the pairwise distances of all 3360 genes in a robust way, we can define a
robust cutoff value, beyond which a pair of genes is considered extreme. Our
results in the next chapter are an investigation into how extreme outliers
affect the output of “perfect instances.” In the sections below, we define an
extreme outlier by finding robust measures for all pairwise distances and a
cutoff value, beyond which the robust measure of a pairwise distance is an
extreme outlier.

5.7 A Robust Measure of Pairwise Distances

Our pairwise distances are calculated using the Mahalanobis Squared
Distance (or MSD) measurement:

d2
MSD,i(x, y) = (

(
xi
yi

)
−
(
XMCD

YMCD

)
)TS−1

MCD(
(
xi
yi

)
−
(
XMCD

YMCD

)
) (5.1)
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where MCD = (X∗J , S∗J) where J = [set of h points: |S∗J | ≤ |S∗K | ∀ sets K
s.t. #|K| = h] where #|w|defines the number of elements in set w. That is,
the MCD is the mean vector and scatter matrix of the subset of points of
size h with the smallest covariance determinant.

X
∗
MCD = 1/h

∑
i∈J

xi (5.2)

S∗MCD = 1/h
∑
i∈J

(xi −X
∗
J)(xi −X

∗
J)t (5.3)

h = b (n+p+1)
2 c, n=17, i.e., the number of arrays in our data, and p=2. The

value h is the highest possible breakdown point for the MCD, i.e., it is the
minimum number of points which must not be outlying.

5.8 Finding Cutoffs

Once we know the d2
MSD,i for each pairwise distance, we need a mecha-

nism for evaluating whether the distance is sufficiently outlying with respect
to the relationship between the two genes. MSD distances with MCD shape
and location parameters are known to be robust with an F-distribution when
the data are normally distributed [9].

Hence, we want to find a cutoff value using an F-distribution to
choose which points are outliers. We use the similarity equation:

c(m− p+ 1)
pm

d2
S∗(Xi, X∗) v Fp,m−p+1 (5.4)

to find d2
S∗(Xi, X∗), our cutoff value.

To find d2
S∗(Xi, X∗) from equation 5.4, we need estimates of c and m. To

find an estimate of c, ĉ, and an estimate of m, m̂, we use the set of equations
below. ĉ is solved for in equation 5.5, and we use equations 5.6-5.17 to solve
for m̂.
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ĉ =
P (χ2

p+2 < χ2
p,h/n)

h/n
(5.5)

α =
n− h
n

(5.6)

1− α = P (χ2
p ≤ qα) (5.7)

cα =
1− α

P (χ2
p ≤ qα)

(5.8)

c2 =
−P (χ2

p+2 ≤ qα)
2

(5.9)

c3 =
−P (χ2

p+4 ≤ qα)
2

(5.10)

c4 = 3 ∗ c3 (5.11)

b1 =
cα(c3 − c4)

1− α
(5.12)

b2 = .5 +
cα

1− α
(c3 −

qα
p

(c2 +
1− α

2
)) (5.13)

v1 = (1− α)b21(α(
cαqα
p
− 1)2 − 1)− 2c3c2α(3(b1 − pb2)2 +

(p+ 2)b2(2b1 − pb2)) (5.14)
v2 = n(b1(b1 − pb2)(1− α))2c2α (5.15)

v =
v1
v2

(5.16)

m̂ =
2
c2α

(5.17)
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Chapter 6

Results from Our Analysis of
“Perfect Instances”

Within each of the clusters created by both Pearson’s and biweight, we
found the number of extreme outliers. The extreme outliers were tabulated
to measure any effects outliers might have on the clustering. There were no
systematic differences in the number of extreme outliers clustered together
by Pearson’s and biweight. (See Table 8.3). However, just because there
were no systematic differences in the number of extreme outliers, our results
are not moot. In fact, our results are just the opposite.

There were multiple types of outliers. To a non-resistant metric,
some outliers make a gene pairing seem uncorrelated. But, after removing
the outlier, the non-resistant metric finds the genes to be correlated. Bi-
weight will cluster the gene pairing with the extreme outlier, since biweight
estimates a high correlation with or without the outlier. On the other hand,
some outliers make two genes seem correlated. But, after removing the out-
lier, the non-resistant metric find the genes to not be correlated. Biweight
will not cluster the gene pairing with the extreme outlier since biweight es-
timates a low correlation with or without the outlier. We also found a few
isolated instances of multiple extreme outliers within the gene pairings in
“perfect instances.” The multiple types of extreme outlier pairs are broken
into four categories; the four categories are displayed by Figures 8.1-8.4.

We consider a “robust” cluster to be a cluster that would be clus-
tered the same with the removal of extreme outliers from gene pairings as
without the removal. Our results show that in the instances when the bi-
weight metric clusters extreme outlier pairs differently than Pearson’s met-
ric, biweight is creating more “robust” clusters. Since there are imperfec-
tions, such as human error, within many steps within the microarray data
collection process, we expect there to be outliers in our data. Hence, it is
an advantage of the biweight metric that it creates more “robust” clusters
than Pearson’s metric.
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6.1 Analyzing the Genes Pearson’s Clusters To-
gether

Table 8.3 displays the number of pairwise differences for four “perfect
instances.” Of the nineteen small simulations (See Table 8.2), four were
“perfect instances.” Only two distance metrics, the Euclidean and absolute
Euclidean metrics, simulated these “perfect instances.” In Table 8.3, we
break up the four “perfect instances” into two categories: gene parings that
look like Figure 8.1 and gene pairings that look like Figure 8.2

First, we consider the case where an outlier makes two genes seem
correlated to a non-resistance metric, but not correlated to a resistant met-
ric. Visually, we can see an example of an extreme outlier making two genes
seem correlated in a non-resistant metric, in Figures 8.1 and 8.2. Pearson’s
clusters together the two genes displayed in Figures 8.1 and 8.2, whereas
biweight does not. Below, we quantitatively explain the biweight and Pear-
son’s metric’s estimates of correlation between the genes in Figures 8.1 and
8.2 to exemplify the resistance of the biweight metric to outliers.

The cases we consider in this section, visually displayed by Figures
8.1 and 8.2 refer to Graph 1 and Graph 2 in Table 8.4, respectively. There are
seventy-five instances Pearson’s clusters the pairwise genes together when
biweight does not such that the graph looks like Figure 8.1, and there are
twenty instances where the graph looks like Figure 8.2.

The pairwise distance the biweight metric estimates for the genes
in Figure 8.1 is -0.046. The pairwise distance Pearson’s metric estimates for
the genes in Figure 8.2 is -0.89. After removing the extreme outlier from the
two genes, the pairwise distance the biweight metric estimates for the genes
in Figure 8.1 is .046, and the pairwise distance Pearson’s metric estimates
for the genes in Figure 8.2 is 0.045. The removal of the outlier changes
the Pearson’s correlation value by 0.845. Our results display that when
clustering microarray data, there are some cases where Pearson’s metric
will cluster together two genes the biweight metric will not cluster together
because the genes share an extreme outlier.

We now consider the case of when the graph looks like Figure 8.2.
The biweight metric estimates a correlation of -.09 for the genes in Figure 8.1.
Pearson’s metric estimates a correlation of -0.67 for the gens in Figure 8.1.
After removing the extreme outlier from the two genes, biweight estimates
a correlation of -0.06 for the genes in Figure 8.1. Pearson’s metric estimates
a correlation of 0-.15 for the genes in Figure 8.1. The removal of the outlier
changes the Pearson’s correlation by 0.52. Hence, even though the graph
may look different from the Figure 8.1, we still find that Pearson’s will cluster
together genes even though Pearson’s does not find a correlation with the
removal of an extreme outlier.

22



6.2 Analyzing the Genes Biweight Clusters To-
gether

The cases we consider in this section, visually displayed by Figures 8.3
and 8.4 refer to Figure 3 and Figure 4 in Table 8.5, respectively. Notice, of
the 109 instances the biweight metric clusters the pairwise genes together
when Pearson’s does not, there are only four instances where the graph looks
like Figure 8.4. We found so few cases, because Figure 8.4 exemplifies the
special case when two extreme outliers are within a gene pairing.

The biweight metric estimates a value of -0.646 for the genes in Fig-
ure 8.3. Pearson’s estimatesa correlation of -0.08 for the genes in Figure 8.3.
After removing the extreme outlier from the two genes, biweight estimates
a correlation of -0.63 for the genes in Figure 8.3. Pearson’s correlation esti-
mates a correlation of -.067 for the genes in Figure 8.3. The removal of the
outlier changes the Pearson’s metric value by 0.55. Our results display that
when clustering microarray data, there are some cases where Pearson’s met-
ric will not cluster together two genes biweight will cluster together because
the genes share an extreme outlier.

We now consider the four instances of when the graph looks like
8.4. The biweight metric estimates a correlation of -0.30 for the genes in
Figure 8.4 . Pearson’s metric estimates a correlation of -0.10 for the genes
in Figure 8.4. After removing the two extreme outliers from the two genes,
the biweight metric estimates a correlation of -0.28 for the genes in Figure
8.4. After the removal of two outliers, Pearson’s estimates a correlation of
-0.32 for the genes in Figure 8.4. The removal of the two extreme outliers
changes the Pearson’s estimate by 0.22. Hence, even though the graph may
look different from the Figure 8.4, we still find that Pearson’s will not cluster
together genes even though Pearson’s does not find a correlation (similar to
that biweight finds) with the removal of two extreme outliers.
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Chapter 7

Conclusion

One goal of microarray analysis is to find genes that have similar ex-
pression patterns. The adjusted Rand is good at displaying the differences
between how well a clustering algorithm performs based on an external cri-
terion. However, a high adjusted Rand does not imply a “better” clustering
method because the external criterion may not be objectively created.

We examined “perfect instances” because, in these cases, the Pear-
son’s metric supposedly clustered simulated groups into the appropriate clus-
ters, whereas the biweight metric did not. However, we showed in the results
that the different clustering choices that the biweight metric makes in these
“perfect instances” are often due to its resistance to outliers. Hence, we
believe that biweight’s clustering is actually better. However, we have not
shown that biweight creates more valid clusters based on some objective
truth. In future research, we would like our simulated clusters to define
some objective truth about gene expression patterns.

Our results are evidence that non-robust metrics can often cluster
genes that are not correlated; the clustering of non-correlated genes is dan-
gerous to scientists making conclusions about trends in expression patterns.
Hence, we believe our results are not only telling of the advantages of using
a biweight metric in the clustering process, but they are also telling of the
disadvantages to using a non-robust metric in the clustering process.

In our future research, we hope to further analyze the advantages
of robust metrics in clustering microarray data. A separate research idea is
to explore the advantages of tight clustering through resampling [24]. We
can use tight clustering methods to find a best cluster, rather than forcing
our data into k clusters. A best cluster may tell us all we need, especially if
we can design the clustering method to look for groups of certain types of
expression patterns.
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Chapter 8

Appendix: Tables and
Figures

Metric Used in Simulations # Sims Clustered with Pearson’s Clustered with biweight
Euclidean 5 0.772 0.348
Absolute Euclidean 5 0.660 0.234
Spearman’s 5 0.766 0.796
Biweight 5 0.628 0.969
Pearson’s 5 0.977 0.784

Each entry in columns 3 and 4 represents the average adjusted Rand over five simulations.

Table 8.1: Large Simulation Results

Metric Used in Simulations # Sims Clustered with Pearson’s Clustered with biweight
Euclidean 5 0.528 0.233
Absolute Euclidean 5 0.661 0.234
Spearman’s 5 0.97 0.980
Biweight 1 0.674 1
Pearson’s 1 1 1

Each entry in columns 3 and 4 represents the average adjusted Rand over the number of
simulations defined in column 2.

Table 8.2: Small Simulation Results
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Perfect Instances: Abs. Eucl. 1 Abs. Eucl. 2 Eucl. 1 Eucl. 2 Total
# Pairwise Differences 82 34 29 39 184
#B 38 23 16 32 109
#P 44 11 13 7 75

Each entry in # Pairwise Difference represents the number of gene pairs with extreme
outliers clustered differently by Pearson’s and biweight
Each entry in #B represents the number pairwise differences clustered together by the
biweight metric
Each entry in #P represents the number of pairwise differences clustered together by
Pearson’s metric

Table 8.3: Results from Our Analysis of Extreme Outliers

Perfect Instances: Abs. Eucl. 1 Abs. Eucl. 2 Eucl. 1 Eucl. 2 Total
Looks like Graph 1 31 10 9 5 55
Looks like Graph 2 13 1 4 2 20

Each of the pairwise differences clustered together by Pearson’s is similar to one of two
graphs, Graph 8.1 or Graph 8.2.

Table 8.4: Pearson’s Results from Our Analysis of Extreme Outliers

Perfect Instances: Abs. Eucl. 1 Abs. Eucl. 2 Eucl. 1 Eucl. 2 Total
Looks like Graph 3 38 23 12 32 105
Looks like Graph 4 0 0 4 0 4

Each of the pairwise differences clustered together by biweight is similar to one of two
graphs, Graph 8.3 or Graph 8.4.

Table 8.5: Biweight Results from Our Analysis of Extreme Outliers
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Figure 8.1: Graph 1: Pearson’s Clusters Two Genes Together
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Figure 8.2: Graph 2: Pearson’s Clusters Two Genes Together
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