
Senior Thesis in Mathematics

Partial Least Squares Regression
in Football Projections

Author:
Kalyan Chadalavada

Advisor:
Dr. Jo Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

May 5, 2018

1



Abstract

Partial least squares (PLS) is a developing modeling technique that is gaining
traction in the world of predictive models. It has the capability to compress a
large number of explanatory variables into fewer components that are in turn
used in a linear model to predict response variables. What sets PLS apart
from principle components analysis (PCA) is that PLS also relates the response
variables to the explanatory variables for more accurate predictive capabilities,
as well as predicting multiple response variables. In this paper, I will examine
the mechanism that PLS utilizes and apply it to NFL quarterback data from
2009 to 2017 to predict the total yardage a quarterback may have in future
seasons.
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Chapter 1

Introduction

Every day models are used to predict an outcome, and many of them are
barely even noticed. From choosing what to eat to following the behavior of
the United States’ economy and everything in between, people utilize different
techniques to decide what is the best method of action for the future. When
ordering a meal, a customer will think about what he already knows he likes to
eat, what his stomach is craving in the moment, what has been recommended
to him, the restaurant’s specials, any news on health issues on certain foods,
the type of diet he is on, and the list goes on and on. Although all of these
questions are answered in just a short amount of time, choosing a meal is still
considered a trivial action that is almost second nature.

Now, predicting the ups and downs of the seemingly-capricious movement
of the New York Stock Exchange is a task that even professionals have trouble
mastering. Every day people buy shares of hundreds of different companies in
the hopes of falling on the fruitful side of luck and making a fortune. When they
buy a stock, they believe that based off of current events in the world, trends in
that stock from the past, advice from financial advisors and other professionals
they, too, will be able to catch a boom in that stock and make some profit from
the investment. Figure 1.1 portrays the volatile nature of the stock market.
Although the general trend of the graph is positive after 2009, there are many
dips that would result in a loss of principal. The dive in the stock market in
2008 would have resulted in a huge loss of money. With such a temperamental
behavior, it would seem that plotting the course of stocks for the future is an
insurmountable task.

The movie The Big Short(2015) argues that it actually is possible to pre-
dict even the stock market. In this movie, a small group of economists were
able to foresee the economic collapse of 2008, use this foresight to their advan-
tage, make specific financial actions to brace for the collapse, and make millions
while many others suffered. Now although these economists may not have used
multiple linear regression to become wealthy, it is one technique to create a
model in order to predict future data. Multiple linear regression (MLR) cre-
ates a linear model as a function of multiple explanatory variables to predict
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Figure 1.1: NYSE Composite Index from 2006-2015[1]

a single response variable. However, MLR may not be suitable for all data
sets, particularly ones that do not satisfy the assumptions required for multiple
linear regression. Another analysis method that can be used is principal com-
ponents regression. Principal components creates linear combinations between
the most important explanatory variables to best match the existing data. It
gives weights to each explanatory variable, assigning individual weights to each
predictor to best represent the data set. An extension to principal components
analysis is partial least squares regression. In this report, I will introduce mul-
tiple linear regression and principle components analysis to provide an in depth
explanation of partial least squares regression. Finally, I will apply partial least
squares analysis to National Football League(NFL) data to show how player
productivity and value can be predicted with a model. In turn, this model can
be used by teams to recruit more accurately and more confidently.
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Chapter 2

Background

2.1 Multiple Linear Regression

Simple linear regression is a model that only uses a single explanatory
variable or predictor, x, to predict a single response variable, y. A simple linear
regression model can be represented as:

ŷ = b0 + b1x (2.1)

where b0 represents the y-intercept of the model and b1 is the estimate of the
slope needed to predict y from x. In Figure 2.1, we see that x is the explanatory
variable that is being used to predict the response variable y. Values for x were
generated in R as one hundred normal random natural numbers with a mean
of zero and a standard deviation of one. Y was calculated similarly however
each natural number of x was multiplied by x. In this case, the b0 is 0.035
and b1 is 1.046. The regression line is the representation of the simple linear
regression model, and the actual data is represented by the unfilled dots around
the regression line. For these data, the model only has one explanatory variable,
but what if there are two explanatory variables? More than 2? For example,
in Figure 2.2, how would an analyst be able to correlate all ten explanatory
variables to create a model for his desired response variable.

Multiple linear regression(MLR) is a method of incorporating multiple
explanatory variables to predict a response variable with a linear function. In
order for MLR to be possible, certain assumptions must be met. First, the
relationship between the explanatory and response variables must be roughly
linear. The best way to confirm linearity is by creating scatter plots of the data.
For example, in Figure 2.1, the original scatter plot of x versus y shows a linear
relationship between the two variables. However, in Figure 2.3, y2 is defined as
x multiplied by 100 normal random natural numbers, that have a mean of zero
and a standard deviation of 1. Here, Figure 2.3 shows a non-linear relationship
between x and y2. These two variables would, therefore, not be suitable for
MLR.
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Figure 2.1: Simple linear regression model using randomized data in R

Figure 2.2: Sample Data Table on Top Running Backs[2]

The second assumption is that all variables of the data set must be nor-
mally distributed. In other words, the residuals at any subset of explanatory
variables form a normal distribution around the linear regression line as seen in
Figure 2.4. There are many ways to test this assumption, including checking to
see that the Q-Q plot of the data is linear.
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Figure 2.3: Scatter Plot of x and the New Response Variable, y2
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Figure 2.4: Depiction of Normal Errors[6]

The third assumption is that there should constant variance amongst the
data. If we are to plot the fitted values of a model versus the residuals, the data
should be randomly spread out around the zero line of the plot. There should
be no increase or decrease in error across the fitted values.

The fourth assumption is independence amongst the observations. In other
words, the appearance of one observation should have no effect on any other
observation.

If these four assumptions are met, the data can accurately be matched to
a multiple linear regression in the form of:

Y = b0 + b1X1 + b2X2 + ...+ bmXm + ε (2.2)

where Y is the response variable, {b0, ..., bm} is the coefficient vector that min-
imizes the sum of square errors, Xm is each explanatory variable, m is the
number of predictors, and ε is the error of the model. Even without these four
assumptions, the parameter estimates can be fit using least squares, but the
accuracy of the model would falter.

2.2 Principle Components Analysis

Multiple linear regression is quick and accurate method to model linear
data, but what if the value for m in Equation 2.2 is incredibly high? Looking
back at Figure 2.2, we see a data set that has eleven variables to work with.
Although these variables are the ones recorded by ESPN for running backs,
they do not fully encompass all factors that effect running back output. For
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example, one variable that is not accounted for in Figure 2.2 is the capability of
one’s offensive line. No matter how talented a running back is, the offensive line
is necessary in creating openings to run through and keeping defenders at bay.
Now what are all the factors that contribute to the effectiveness of the offensive
line? We could still use MLR for a large number of explanatory variables, but
some variables like the offensive line, speed of the running back, and others are
more substantial in affecting running back output than variables like a team’s
wide receiver output. The less important pieces of information can be left out
of models as they have little effect on the response variable. However, how can
we decide which variables have more influence on the data?

Principal components analysis (PCA) is a method of analysis that can
solve both of these questions that MLR cannot. When dealing with m number
of of variables, where m is very large, PCA serves to compress the data to
be focused on k components, where k is less than or equal to m. Although
the full dataset includes all m variables, the k variables will be able to explain
approximately the same amount of variability in the response variable that the
m explanatory variables do. Figure 2.5 shows a broad overview of how PCA
zooms the scope of the model to only incorporate the most important variables.

In other words, PCA creates linear combinations, or principle components
(PC), of all variables to represent the data set. The top image of Figure 2.5
depicts a model that uses a set of the original explanatory variables to predict
y1. M1 portrays a model that does not have any relation between y1 and x5.
M2 utilizes the same five explanatory variables to predict y1. This shows how
linear combinations of x1-x4 can create just two components, C1 and C2. These
components are then used in a linear model to predict y1. Similarly, PCA can
be used in football data like from Figure 2.2 to compress the enormous number
of variables into fewer variables which are then utilized in a linear model to
predict a response variable[4].
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Figure 2.5: Principle Components Analysis Flow Chart [3]
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Chapter 3

Mathematical Derivation of
Partial Least Squares

Much like PCA, Partial Least Squares (PLS) aims to compress the orig-
inal data matrix in order to create a regression model with fewer explanatory
components than number of variables in the original data space. Similarly, PLS
creates linear combinations to represent the explanatory variables with latent
variables, and the greater the number of latent variables or components, the
more representative of the data these latent variables will be. The sets of lin-
ear combinations for both PLS and PCA are from the explanatory variables;
however, the key difference between the two modeling techniques lies in the
optimization criteria that created the coefficients. PCA aims to create a lin-
ear combination that will project the data onto the one dimensional space that
captures the maximum variability in X, but PLS’s goal is to do the same for
XTY . We will dive into more depth on how PLS achieves this goal later in this
chapter.

Let’s suppose we have a sample of size N which contains the response
variables Y1,Y2,...,Yp and the explanatory variables X1,X2,...,Xm, where p and
m are the number of response and explanatory variables, respectively. When
p is only one, we have the option of creating a linear regression model of the
following form:

Y = XB (3.1)

where the regression coefficients, B, can be estimated with:

B̂ = X+Y (3.2)

Here, X+ is defined as (XTX)−1XT , otherwise known as the matrix pseudoin-
verse. However, collinear variables in the X matrix create trouble in this set of
solutions because XTX must be invertible. The issue of non-invertible XTX
matrices can be solved by using PLS. We must decompose the X and Y matrices
into the following forms:

XN×m = TN×rP
T
r×m YN×r = TN×rC

T
r×p (3.3)
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where T is an orthogonal matrix that is common to both X and Y . In PLS,
the common matrix T acts to relate the explanatory variables with the response
variables for more accurate latent variables. The T matrix is arbitrary at the
moment, but it is the same matrix in the decomposition of X and Y matrices to
maximize the variability of XTY captured by the linear combination between
X and Y . P and C are the loadings matrices for X and Y , r is the rank
of the input matrix. T , P , and C must be computed iteratively. We must
calculate a component, w ∈ Rm×1, such that the covariance between X and Y
is maximized. Let’s define the matrix, S, as such:

S1 = XT
1 Y1 (3.4)

where X1 and Y1 represent the initial conditions of the response and explanatory
variables. That is, X1 = X and Y1 = Y . The subscripts for these matrices
indicate that PLS is a iterative process where each covariance matrix after the
first is an approximated version of the original data matrices. Because the
covariance equation is cov(X) = XXT if X is centered, we know that the
cov(XTY ) = XTY XY T = SST . Based on the initial conditions X1 and Y1, the
first component vector w1 is the solution to the following optimization problem:

w1 = arg max
||w||=1

wTS1S
T
1 w (3.5)

which then maximizes the cov(w1X
TY ). w1 is also the largest eigenvector of

cov(XTY ),
w1 = Eigmax{S1S

T
1 }. (3.6)

Here, Eigmax{} is the operator that extracts the maximum eigenvector from a
given matrix. We, then, take our newly calculated first component, w1, and use
it to calculate the first column of the scores matrix T in the following way:

t1 = X1w1. (3.7)

Eventually, we want to rewrite equation (3.3) as a summation of the multipli-
cation between the columns of T and P for X and between the columns of T
and C for Y .

X =

r∑
d=1

tdp
T
d , Y =

r∑
d=1

tdc
T
d (3.8)

However, our PLS equation only calculated the first score, t1, and we do not
know the other column values for the T matrix. This first column of the scores
is used as an approximation of the X and Y matrices as such:

X ≈ t1pT1 , Y ≈ t1cT1 (3.9)

where p1 and c1 are the first columns of their respective loadings matrices.
Later, I will show how to calculate X2. P and C have not yet been calculated
so we must figure out a way to determine these values. Upon closer inspection,
the equations in (3.9) are similar to equation (3.1). Using least squares as in
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equation (3.2), we apply the same method to determine the first columns of P
and C. We do so by projecting the values of X1 onto t1 as seen in equation
(3.10)

X1 = t1p
T
1 → p̂1 = (tT1 t1)−1tT1X1 (3.10)

The Y matrix is treated similarly to calculate c1 as such:

Y1 = t1c
T
1 → ĉ1 = (tT1 t1)−1tT1 Y1, (3.11)

which simplifies to equation (3.12) determining p1 and c1.

p1 =
XT

1 t1
tT1 t1

, c1 =
Y T
1 t1
tT1 t1

(3.12)

We then subtract t1p
T
1 from X to create a new deflated matrix. This process

removes the influence of t1 on the original X and Y matrices, and we are left
with the following:

X2 ← X1 − t1pT1 , Y2 ← Y1 − t1cT1 (3.13)

In other words, we subtract the component in the direction of the maximum
cov(w1X

TY ) onto the remaining m − 1 space. Figure 3.1 is a graphical repre-
sentation of this process. PCA 1st Dimension is removed from the dataset, and
the data is then projected onto the remaining space to form X2. The component
in the direction of maximum variability then becomes PCA 2nd Dimension for
X2. The decomposition above is applied to the response variables when r < p;
however, as will be seen in Chapter 4, I will only be predicting a single response
variable. Therefore, there is no decomposition for the response variables, only
the X matrix.

Figure 3.1: Components in Direction of the Maximum cov(w1X
TY )[5]

Equations (3.1)-(3.13) are repeated r times in order to calculate the re-
maining vectors for W , T , P , and C. We then compile the vectors in their
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respective matrices as such:

W = w1, ..., wr T = t1, ..., tr P = p1, ..., pr C = c1, ..., cr (3.14)

Finally, we are left with a newly formed X matrix marked as:

X̃ = TPT = TPT × I = TPTWWT = T (PTW )WT (3.15)

where I is the identity matrix. The coefficients for this PLS model are calculated
in a similar way as equation (3.2).

B̂ = X̃+Y (3.16)

X̃+ is calculated as such:

X̃+ = (X̃T X̃)−1X̃T (3.17)

Figure 3.2 provides a summarized version of the steps PLS takes to model data.

Figure 3.2: NIPALS Algorithm[8]

This algorithm will be applied to NFL play-by-play data to extract a model
that predicts player productivity for future seasons[8].
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Chapter 4

PLS Application to NFL
Data

In order to fully grasp the depth of the PLS technique, I have applied it
to nine seasons worth of NFL play-by-play data scraped from ryurko’s github
repository [7]. The play-by-play data displays the time of each play, what type
of play was run, the players involved in the play, the result of the play in terms
of yardage or any other event including touchdowns and turnovers, and other
details about the play. When approaching these datasets, my focus was to ob-
serve a player or team’s output over an entire season rather than just a play at a
time. I then began running analysis on the data sets that presented data in such
a fashion seen in Figure 4.1, which presents statistics each team’s quarterback
from 2009 to 2017. In Figure 4.1, there seem to only be a few variables, so
wouldn’t I just use MLR to model these data? In actuality, this image is only
a small section of the full dataset. The full dataset has 288 observations and
88 variables, which makes MLR a less appropriate technique. Thankfully, one
of PLS’s prime objectives is to compress the number of explanatory variables.
And so, using R, I applied a PLS Regression model to this dataset that resulted
in the output seen in Figure 4.2. The model consisted of just one response vari-
able (Total Yardage) and the rest of the dataset as the explanatory variables.
I chose twenty components to put into the model in order to as an arbitrary
maximum number of components. From the output in Figure 4.2, I can see
that the percent variance explained in the response variable begins to plateau
at four components; however, there seems to be another plateau at thirteen
components as well. In order to better determine what the appropriate number
of components are to be used in the model. I plotted the root mean squared
error (RMSE) of this model in Figure 4.3. The goal is to minimize the RMSE
value without running into the dilemma of over-fitting. To detect over-fitting,
the model was constructed with a training dataset consisting of data from 2009
to 2016. The 2017 season was set aside as the test data set for later use. Just
as expected, there is a significant drop until the model reaches four components
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and another drop at thirteen components. So I am still left wondering what the
appropriate number of components for my model should be. I decided to plot
the predicted values for each of these models against the measured values. Fig-
ure 4.4 represents the side-by-side comparison of these two plots. Although the
model with thirteen components has a much tighter fit for the predicted values
versus the measured values, I still am unable to properly determine whether or
not the model is over-fitted. Because I had trained the model with a subset
of the original data set, I now want to compare the percent variance explained
by the training set and the test set. According to the model output in Fig-
ure 4.2, with four components, the percent variance explained is 0.95. Using
R, I predicted the 2017 season yardage for quarterbacks with the test set, and
compared that to the actual 2017 statistics and received a correlation of 0.96.
Therefore, coupled with the RMSE being so low at four components, the similar
correlation values between training and test data sets leads me to believe that
my model is capable of accurate predictions without suffering from over-fitting.

Figure 4.3 displays the cross-validation plot of our model. Both CV and
adjCV represent the test error of the predictive model, so the lower these val-
ues the more accurate our model is. We witness a large dip in both of these
estimates at four components so this form of validation has told us that four
components produces an accurate model for predicting future data.Finally, in
Figure 4.4, I plotted the true values for the 2017 season Total yards and com-
pared them to the predicted values from my model. The predicted values are
not exactly aligned with true values, but there is a positive linear relationship
that shows our model is quite accurate with predicting future data. When I
used MLR to create a linear model for the data set, it formed a model with an
R-squared value of 0.9999. At first it seems as this is highly accurate; however,
upon observing Figure 4.5 we see that this model suffers from over fitting as the
prediction values are exactly one-to-one for the 2017 true values.

Figure 4.1: Partial Representation of Team Passing Season Data
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Figure 4.2: PLS Output of Total Yards against all other variables for quarter-
backs

Figure 4.3: RMSE of the PLS model for Quarterbacks
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Figure 4.4: Quarterback Model with 4 components predictive capability
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Figure 4.5: Quarterback Model with 4 components predictive capability with
MLR
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Chapter 5

Conclusion

Through the data analysis, I was able to create a model to best repre-
sent the quarterback passing data over 8 seasons. The appropriate number of
components for the model was found to be four components in order to avoid
over-fitting while still providing a strong enough model for predictive ability.
As a general rule of thumb for PLS regression models, the appropriated number
of components for the model can be found by choosing the value with the first
significant drop in RMSE value.

In the future, I would like to apply this type of analysis to players in-
cluding the running back, wide receivers, tight end, etc. I would also like to
research the effects that these players have upon each other. In other words,
how does a running back’s productivity affect that of the quarterback and vice
versa. To do so, I would like to create a numerical rating system for each player
based off their statistics, and include these values with other player’s stat charts
to observe the correlation between players on the same team. Currently, there
is little data on the effectiveness of the offensive line in these datasets, but I
would like to be able to incorporate a method of measuring their efficiency and
strength as a variable for the other players as well. One additional metric that
must be analyzed is each team’s defensive opponents. Clearly, a quarterback
will perform at a higher level against weaker defenses, but how do we measure
a team’s defensive value. Just as there is the quarterback rating(QBR), I would
like to create a scale for defenses to be able to account for all factors that influ-
ence a player’s productivity. In the long run, these models will be used to create
a full team depth chart based off of style of play and effectiveness with each play
style. The factors that have the most influence on Total Yards or Touchdowns
can be isolated using coefficient plots, leading to the areas that need the most
attention while practicing or building a team.

In a perfect world (with more time), I would also create models with MLR
and PCA. I could then compare the accuracy and analyze the difference between
all three modeling techniques. They each have their own advantages and disad-
vantages with respect to predictive capability, so it is important to understand
which data sets require each technique.
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