
Senior Thesis in Mathematics

Learning from Loss Functions:
A Modified Algorithm for

Classification Trees

Author:
Kashvi Tibrewal

Advisor:
Dr. Jo Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

April 12, 2018

i

Contents

1 Introduction 1

2 Background 3

3 Homogeneity 8

4 Incorporation of Loss 11

5 Performance Metrics 16

6 Conclusion 19

ii

Chapter 1

Introduction

Predictive models like linear or polynomial regression are global models,
where a single predictive formula is applied over the entire data space. How-
ever, a single global model can perform poorly on many predictor vari-
ables that may interact with each other in complex ways. Non-parametric
smoothers can be used to fit the model locally over different regions of the
predictor space, but such smoothers can be hard to interpret. An alternative
approach is to use additive models that recursively (or repeatedly) partition
the predictor space into smaller regions using some splitting criteria, until
the resulting regions can fit simple models. Prediction trees are an example
of such additive models that use recursive splitting of the predictor space
into a set of rectangles and then fit simple models to each of the subspaces.

Such predictive models are built using training data, and are used to
predict the response of test observations. Ideally, the models should simul-
taneously achieve low variance and low bias so as to increase accuracy of
prediction on test data. Variance refers to the amount by which the results
would change if the model was built using a different training set of data.
If a model has high variance, small changes in the training data could lead
to large changes in the result. Ideally a model should not change much for
different training sets, and therefore have low variance. Bias, on the other
hand, refers to the error that arises from trying to estimate a complex real-
life problem with a much simpler model. Thus, the simpler the model, the
higher the bias, and therefore, higher the error in the model prediction. As a
result, as the complexity of a model increases, its variance increases and bias
decreases. Therefore, there exists a variance-bias tradeoff, and it is important

1

to think about this concept when looking into predictive models.

Predictive models can be built for classification or regression problems.
Most approaches to classification are designed to maximize the homogeneity
of the resulting subspaces with respect to the response variable. In other
words, common classification algorithms that aim to predict the response
variable do so by repeated partitioning of the data until the final subspaces
are as homogeneous as possible with respect to the response. Then, all the
observations that fall into a particular region are predicted to belong to the
most commonly occurring class (or the majority class) in that region. How-
ever, there is no well-defined measure for homogeneity, and most measures
that are commonly used do not deal with imbalanced data or different loss
weights associated with misclassifying different classes of the response.

Many practical applications of classification models deal with imbalanced
data, where at least one of the classes of the response variable constitutes only
a small minority of the data available to train the model. In such cases, the
interest is usually focused towards the correct classification of the minority
class (or classes). In other words, the loss associated with misclassification of
a certain class may be higher than for others. For example, the loss associated
with predicting that a patient does not have cancer when they actually do is
much higher than the loss associated with its vice versa. However, common
classification algorithms perform poorly when working with such imbalanced
data or skewed loss functions since they aim to minimize the overall error rate
by maximizing the homogeneity of the response. Since the data in such cases
is mostly comprised of observations from the dominating classes, the algo-
rithm seeks to correctly classify them rather than paying special attention to
the minority class. This leads to over-prediction of the majority class. Thus,
in situations such as disease diagnosis, fraud detection, etc. it is important
to assign different weights that arise from false positives and false negatives.
This leads to the issue of picking suitable weights for different error types,
which is often very hard to do. In my thesis, I will focus on classification trees
and investigate alternative approaches that evaluate the quality of splits and
increase accuracy of prediction when dealing with imbalanced data or data
with highly skewed loss functions.

2

Chapter 2

Background

Tree-based methods are models that are trained on known data, or training
data, and aim to predict the categorical or numerical response of new test
observations. Such models can be used for classification or regression prob-
lems, and they recursively partition the predictor space into a finite number
of smaller regions so as to maximize the homogeneity of each of the resulting
regions with respect to the response variable in the data. In this chapter, we
will focus on classification trees, which take in numerical or categorical pre-
dictor variables and predict a qualitative response. These are binary trees,
since the feature space is repeatedly split into two resulting subsets.

Given training data, let the different values of the categorical response
variable be referred to as classes. Thus each observation in our training
data has a response that falls into the set of classes C = {1, 2, ..., K}. Let
the feature space be denoted by X . Then X ∈ X is an input vector that
contains p features X1, X2, ..., Xp that may be numerical or categorical. An
observation i in our training data can be represented as (yi, xi), where yi is
the categorical response, and xi is the input vector (xi1, xi2, ...xip).

A classification tree is constructed by splitting the feature space X into
two descendant subsets. These subspaces of X are known as nodes, and each
of the resulting nodes is split in the same way as X . This process continues
until some stopping criteria is reached (for example, when a minimum node
size is reached, or when the resulting nodes are completely homogeneous with
respect to the response variable). At each split, the two descendant nodes
are referred to as daughter nodes, and the node that was split to produce
them is called the parent node. Each node in a tree is either an internal node

3

or a terminal node. Terminal nodes represent the final nodes of the tree,
implying that further splitting of the feature space does not explain enough
of the variance to be relevant in describing the response variable. Once the
tree is constructed, it gives a set of rules or conditions at each level that
are easy to interpret. Observations fit within a particular node only if they
satisfy the condition at that node. Each of the terminal nodes are assigned
with a class, and each observation is associated with the class of terminal
node that it lands in.

Based on the discussion above, the construction of a tree consists of three
important elements:

• The determination of split at each node.

• The decision of when to declare a node terminal or to continue splitting
it.

• The prediction or assignment of each terminal node to a particular class
of the response variable.

Determination of Splits

In order to grow a classification tree, binary partition of the feature space is
carried out at each level of the tree. Each split depends on a particular value
of one of the p features or variables. The point at which the partition occurs
is called the split point, and a goodness of split criterion is evaluated for any
split s at any node t. At each node, the goodness of split criterion measures
the extent of homogeneity of the resulting nodes with respect to the response
variable. These measures of homogeneity are called impurityfunctions, and
are discussed in detail in the next chapter. Thus, the algorithm determines
the best split for each parent node such that the class distribution of the
response variable in each of its daughter nodes is ”purer” than that of the
parent node. In other words, the algorithm seeks to minimize a measure of
impurity with each iterative split.

Each possible split is defined by an explanatory variable Xj and a split
point s such that the explanatory variable space can be partitioned into two
regions, R1 and R2. At node t, consider a continuous predictor variable Xj

and a split point s that results in the following pair of half planes:

4

R1(j, s) = {X|Xj ≤ s}

R2(j, s) = {X|Xj > s}

For example, let Xj be a predictor variable that represents the price of a
car, and ranges over $20,000 to $100,000. Then the split point s = 40, 000
divides the feature space into the regions R1(j, s) = {X|Xj ≤ $40, 000} and
R2(j, s) = {X|Xj > $40, 000}.

If, on the other hand, Xj is a categorical variable that is defined over a
set of classes 1, 2, ...K,then a split point s results in the following pair of half
planes:

R1(j, s) = {X|Xj ∈ A}

R2(j, s) = {X|Xj /∈ A}

where A ranges over all subsets of 1, 2, ...K.
For example, let Xj be a predictor variable that represents the color of

a car and ranges over {blue, black, red}. Then a split point s = {blue, red}
divides the feature space into the regions R1(j, s) = {X|Xj ∈ {blue, red}}
and R2(j, s) = {X|Xj /∈ {blue, red}}.

In a node t representing a region Rt with a total of Nt observations, let
p̂tk represent the proportion of observations of class k in node m. Thus,

p̂tk =
1

Nt

∑
xi∈Rt

I(yi = k)

The node is then split using predictor variable Xj and split point s such
that the following equation is minimized over all (j, s):

∑
xi∈R1(j,s)

K∑
k=1

p̂R1k(1− p̂R1k) +
∑

xi∈R2(j,s)

K∑
k=1

p̂R2k(1− p̂R2k)

Thus at each node, every possible pair of (j, s) is used to evaluate the
node impurity measures, and the best split is determined to be the pair
that minimizes the node impurity measure. The data is then partitioned
into the two resulting nodes using the best split criteria, and the splitting

5

process described above is repeated with each of the two resulting nodes.
This process continues until the stopping criterion is reached.

The algorithm for growing a classification tree is ”greedy” - it makes a se-
ries of locally optimal decisions about which attribute to use for partitioning
the data by minimizing the impurity measures at each level.

To Split or not to Split

Classification trees need some criterion that evaluates whether a particular
node should be further split into its daughter nodes or declared a termi-
nal node. In the absence of such a criterion, the algorithm would continue
splitting in order to maximize node homogeneity, and would grow a tree
in which each case or observation occupied its own terminal node. Such a
tree would not only be computationally intensive but would also overfit the
training data, and would have low accuracy in predicting classes on new test
observations.

Some of the commonly used stopping criteria for classification trees are:

• If the number of observations in a particular node is less than a pre-
specified limit, then stop splitting, that is, declare the node to be a
terminal node.

• If the node is purely homogeneous, that is, all observations falling into
the node have the same response variables, then declare it to be a
terminal node.

• If the depth of the node is more than some pre-specified limit, then
declare it to be a terminal node.

• If all the observations in the node have identical values for explanatory
variables, no rule could be generated to split them, so the node should
be declared to be a terminal node.

Prediction

In the process of building the classification tree, the feature space, or the set
of all possible values of X1, X2, ...Xj is partitioned into M distinct, mutually
exclusive regions R1, R2, ..., RM . Each terminal node corresponds to one of

6

these regions. All observations in a particular region are classified to belong to
the most commonly occurring class of training observations in that region. In
other words, every observation that belongs to region Rj is classified to belong
to the majority class of the response variable for the training observations in
Rj.

Let p̂mk represent the proportion of training observations in node m (or
region Rm that belong to class k.

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k)

Node m is assigned to class k(m) = arg maxk ˆpmk. Thus, all observations
in node m are classified to belong to the majority class in node m.

Given a test observation, we can predict its response value by using its
explanatory variables to go down the tree structure and determine which
terminal node it falls into. Then, its predicted response value is the class
assigned to its terminal node in the process described above.

[Add figure/example]

There are a number of advantages to using classification trees. Their
output is a set of rules that is easy to interpret and mirrors the typical human
decision-making process. They can handle categorical or numerical predictors
(or both) and since they are non-linear models, they make use of interactions
between the different variables. They can also handle classification of data
points over more than two groups or classes.

At the same time, even though they are incredibly useful, classification
trees have their limitations. They suffer from high variance. As discussed in
Chapter 1, this means that small changes in the training data can result in
large changes in the result of the tree. Thus, if the training data were spit
into two parts at random and a tree was fit to both halves, the results could
be very different. Without proper pruning of the tree, classification trees can
easily overfit the training data. Current methods of binary classification that
are used to split nodes at every step do not penalize for misclassifications in
specific directions.

7

Chapter 3

Homogeneity

As discussed in Chapter 2, a goodness of split criterion is evaluated at each
node in the tree building process. The goodness of split criterion measures
the extent of homogeneity of the resulting nodes with respect to the response
variable. The algorithm determines the best split for each parent node such
that the class distribution of the response variable in each of its daughter
nodes is more homogeneous than that of the parent node. These measures
of homogeneity are called impurityfunctions, and while there are several
ways of measuring the homogeneity of a node, this chapter discusses the most
commonly used measures. Each of them seeks to maximize node homogeneity
by minimizing ”impurity” withe each iterative split.

Measures of Node Impurity

An impurity function measures the extent of homogeneity of a region contain-
ing observations that may belong to a number of different classes. Although
there are many ways of measuring impurity, they share some common prop-
erties.

Definition. Let the different values of the categorical response variable
be referred to as classes. Then each observation in our training data has
a response that falls into the set of classes C = 1, 2, ..., K. For a node m,
an impurity measure is a function f defined on the set of all K-tuples of
(pm1, pm2, ...pmk) such that 0 ≤ ˆpmk ≤ 1 ∀k and

∑K
k=1 ˆpmk = 1. f has the

following properties:

• f is maximized when observations are uniformly distributed across all

8

K classes, i.e., when p̂mk = 1/K ∀k.

• f = 0 when p̂mk = 1 for one class and p̂mk = 0 for all other classes.

• f is invariant to which is the majority class (f does not penalize for
specific misclassifications).

In classification trees, the measures developed for selecting the best split
are often based on the degree of impurity of the child nodes. The impurity
function takes a value of 0 for perfectly homogeneous nodes and increases as
homogeneity decreases. This means that minimizing measures of impurity
implies maximizing homogeneity in nodes.

Some common measures of impurity include the misclassification error,
Gini index and Cross-entropy.

1. Misclassification error

The misclassification error is the proportion of observations in a node m
that do not belong to the most commonly occurring class in node m. The
misclassification error is measured as:

Em = 1−max
k

ˆpmk

2. Gini index

The Gini index is a measure of variance across all the different classes. If the
response of each observation is recorded to be 1 if it belongs to a particular
class k, and 0 if it does not, then the variance over the node of this 0-1
response variable is ˆpmk(1− ˆpmk). Summing over all K classes yields the Gini
index, which is, therefore, defined as:

Gm =
K∑
k=1

ˆpmk(1− ˆpmk)

If all the values of ˆpmk are close to 0 or 1, it implies that a majority of
observations in a particular node belong to a particular class. As a result,
the value of the Gini index will be small, implying low variance and higher
homogeneity. In contrast, the Gini is maximized when the observations in
a node m are more equally distributed among the K classes, thus implying
high variance and lesser homogeneity.

9

3. Cross-entropy

The measure for cross-entropy is defined as:

Dm = −
K∑
k=1

ˆpmk log ˆpmk

This measure is close to 0 if all values of ˆpmk are close to 0 or 1. Thus,
the measure is lower when node m is more homogeneous.

The Gini index and cross-entropy are differentiable, and are therefore,
more useful in numerical optimization. They are also more sensitive to
changes in ˆpmk when compared to the misclassification error rate. For exam-
ple, consider a sample with 800 observations, such that half (=400) belong
to class 1 and the other half (=400) belonged to class 2. Split A results in
daughter nodes (300,100) and (100,300) each, producing a misclassification
error of 0.25. Split B results in daughter nodes (200,0) and (200,400), and
also produces a misclassifcation error of 0.25. Thus, even though split B
produces a pure node, according to the misclassification error measure, both
splits (A and B) have equal measures of impurity and are equally preferred.

The Gini index and cross-entropy measures are lower for split B than split
A, implying that split B is preferable over split A. The Gini index and cross
entropy are more sensitive to node purity than the misclassification error,
and are therefore, more typically used in partitioning trees.

[Add figure on different impurity measures]

10

Chapter 4

Incorporation of Loss

Introduction

An important aspect of minimizing the risk associated with misclassifica-
tion that is not used in the previously defined impurity measures is the loss
function. In certain situations, the loss associated with misclassifying obser-
vations belonging to some classes is higher than the others. For example,
when diagnosing cancer in a patient, the loss associated with predicting that
the patient will not have cancer when they actually will, is far higher than
the vice versa. Thus, sometimes, misclassification of observations need to be
weighted differently depending on what class they actually belong to. For
this purpose, a K x K loss matrix L is used, with rows corresponding to the
correct classes and columns corresponding to classes predicted by the tree.
The elements of L are represented by Lkk′ , indicating the loss incurred for
misclassifying a class k observation as a class k

′
observation. Since no loss is

incurred for correct classification, Lkk = 0 for all values of k. The classifica-
tion tree can take this into consideration by weighting how much to penalise
each incorrect classification in a given choice of split.

Generalized Gini Index

A commonly used approach to incorporating losses in the tree building pro-
cess is to modify the Gini index to be defined as:

Gm =
∑
k 6=K

Lkk′ p̂mk(1−p̂mk)

11

This is the expected loss incurred by the randomized rule. This approach
does not use the majority class in the node to evaluate the splits. At each
split, the tree tries to maximize homogeneity irrespective to what is the
majority class at each node.

Consider the two class scenario, i.e. when k = 2.

Gm =
∑
k 6=k′

Lkk′ p̂mk(1−p̂mk)

=L12p̂m1p̂m2 + L21p̂m2p̂m1

=(L12 + L21)p̂m1p̂m2

=(L12 + L21)
∑
k 6=k′

p̂mkp̂mk′

Therefore, in this case, the generalized Gini index scales the regular Gini
index (Gm =

∑
k 6=k′ ˆpmk ˆpmk′) by a magnitude of (L12 + L21). Thus, the

generalized Gini index is proportional to the regular Gini index, implying
that the inclusion of losses has no effect in the split decision in the two
case scenario. It only changes the magnitude of the Gini when the split is
evaluated, but does not change the split decision.

When k > 2, the generalized Gini index can be used to evaluate the
splits if as a function of k, Lkk does not depend on k

′
. In each terminal node,

the observations are then classified to class k(m) = arg min
∑

l Llk ˆpml. The
ordinary Gini index defined in the previous chapter is a special case of the
generalized Gini Index where Lkk′ = 1 ∀k 6= k′.

Altered Priors

In Bayesian statistics, a prior probability distribution of an uncertain quan-
tity is the probability distribution that would express one’s beliefs about
this quantity before some evidence is taken into account. In this section,
we will investigate the splitting criteria and class assignment rule by using
prior probabilities. Given experimental data, the default probability of a
class k is the proportion of observations in the data that belong to class k.
When working with classification methods, the prior probability of each class
k (= πk) can be estimated from the data by using empirical probability of
the class k , before the classification technique is applied to the data.

12

Let the total number of observations in the data be N . Then Nj denotes
the total number of observations in the data that belong to class j. Then,
the observations across all classes should sum up to the total number of
observations in the data.

K∑
j=1

Nj = N

If the prior probability of class j is estimated from the data, then

π̂j =
Nj

N

Let N(t) denote the number of observations in node t, and Nj(t) denote
the number of observations belonging to class j in node t. Then for any
node t, observations across all classes should sum up to the total number of
observations in that node.

K∑
j=1

Nj(t) = N(t)

Let P (t|j) denote the estimated probability of an observation going to
node t given that it belongs to class j. P (t|j) is the proportion of observations
belonging to class j that go to node t.

P (t|j) =
Nj(t)

Nj

Then, the joint probability of an observation belonging to class j and
going to node t is denoted by P (j, t).

P (j, t) =P (t|j)P (j)

=P (t|j)π̂j

=
Nj(t)

Nj

Nj

N

=
Nj(t)

N

Here, P (j) is the probability that an observation belongs to class j. Thus,
it can be estimated by using our definition of π̂j.

13

Let P (t) be the probability that an observation is in node t. Given that
N(t) is the total number of observations in node t,

P (t) =
N(t)

N

Let P (j|t) denote the probability that an observation belongs to class j
given that it is in node t.

P (j|t) =
P (j, t)

P (t)

=
Nj(t)

N

N

N(t)

=
Nj(t)

N(t)

Observations in node t are then classified to belong to the class to which
the largest proportion of cases belong in node t. Therefore, the class assign-
ment rule is

K(t) = arg max
j

Nj(t)

N(t)

= arg max
j
P (j|t)

Altered prior probabilities can be used in order to incorporate loss func-
tions into the splitting criteria. Altered priors can be defined as:

π̃k =
π̂k

∑
k′ L(k, k′)∑

j π̂j
∑

j′ L(j, j′)

Substituting πj with π̃j in the equation for P (j, t):

P (j, t) =P (t|j)π̃j

=
Nj(t)

Nj

π̃j

Now the probability of an observation belonging to class j given that it
is in node t (= P (j|t)) is

14

P (j|t) =
P (j, t)

P (t)

=

Nj(t)

Nj
π̃j

N(t)
N

=
Nj(t)

Nj

N

N(t)
π̃j

The class assignment rule for node t remains the same, i.e., observations
in node t are classified to belong to K(t) = arg maxj P (j|t).

Thus, in this method, the prior probabilities of classes are altered by
weighting observations with the loss of misclassifying them. When altered
priors are used, they affect only the choice of split. The ordinary losses and
priors are used to compute the risk of the node. The altered priors simply
help the impurity rule choose splits that are likely to be good in terms of the
risk.

Oversampling

As explained in chapter 2, decision trees make class assignments based on
majority representation - observations in node m are classified to belong to
the majority class in node m. Another approach to ensuring that classes
that have high misclassification losses associated with them get classified
correctly is to increase their representation in the data. This can be achieved
by using oversampling. Oversampling observations from class k means that
observations belonging to class k in the data are randomly replicated and
included in the data. The idea behind this approach is to adjust the sample
data, such that the representation of class k in the sample is proportional
to its misclassification loss. Then, the regular measures of impurity are used
to make the splits, and the observations in each of the terminal nodes are
classified to belong to the majority class in that node.

15

Chapter 5

Performance Metrics

Accuracy

The most commonly used metrics for evaluating the performance of classifi-
cation models are accuracy and error rate. A classification model maps each
instance to a predicted class. Consider the two-class classification problem.
By convention, the class label of the minority class (in the case of imbalanced
data) or the class label of the class that has a high cost of misclassification
associated with it, is considered positive, and the class label of the majority
class (or the class with low cost of misclassification) is considered negative.
Let p, n represent the set of true class labels - positive and negative. Let
Y, N denote the set of predicted classes. Then the classification model maps
each instance to either a Y or an N. Given a classifier and an instance, there
are four possible outcomes.

• If the instance is positive, and is classified as positive, it is counted as
a true positive

• If the instance is positive, and is classified as negative, it is counted as
a false negative

• If the instance is negative, and is classified as negative, it is counted as
a true negative

• If the instance is negative, and is classified as positive, it is counted as
a false positive

16

p n

p’ TP FP
n’ FN TN

Confusion Matrix

Given a classifier, and a set of instances, a 2 x 2 confusion matrix can
be constructed to represent the performance of the classifier on the set of
instances. The table above shows a confusion matrix. The diagonal of the
matrix represents the correct classifications made by the model - the count
of instances that belong to the positive class and were predicted to belong
to the positive class, and those that belong to the negative class and were
predicted to belong to the negative class. The accuracy and error rate of a
model are defined as

Accuracy =
TP + TN

P +N

ErrorRate = 1− Accuracy
where TP is the number of true positives, TN is the number of true negatives,
P is the total number instances that belong to the true positive class and N
is the total number of instances that belong to the true negative class.

These metrics provide a simple way of assessing the performance of a
classification model, but are highly sensitive to changes in the data. A model
is considered ”good” if it demonstrates a high rate of accuracy on previously
unseen data. However, when dealing with highly imbalanced data, or data
that has highly skewed misclassification losses associated with the classes,
a high rate of accuracy may not give the most ”accurate” representation of
the model’s performance. A major issue with accuracy is that it assumes
equal costs of misclassification across all classes. Consider, for example, a
dataset that includes 95 percent of instances from the majority class and 5
percent of instances from the minority class. A classification model could
classify every instance in the set to belong to the majority class and achieve
an accuracy rate of 95%. Such a high accuracy rate across the dataset would
imply that the model performs well. However, it fails to reflect the fact
that 0% of the instances that actually belonged to the minority class were
correctly classified. In classification problems where there are high costs

17

associated with the misclassification of the minority class (like the diagnosis
of cancer cells), the accuracy metric does not provide adequate information
on a classifiers functionality with respect to the type of classification required.

ROC Analysis

Receiver Operating Characteristics (ROC) graphs are two dimensional graphs
that are used to represent the relative tradeoffs between hit rates (or true
positives) and false alarm rates of classification models. In such a graph,
the true positive rate is plotted on the Y axis, and the false positive rate is
plotted on the X axis. As described by Fawcett, the lower left point (0,0)
depicts a strategy where every observation is classified to belong to the neg-
ative class - such a classifier commits no false positive errors but also gains
no true positives. The upper right point (1,1), on the other hand, represents
a strategy where all observations are classified to belong to the positive class
- it correctly classifies all cases belonging to the true positive class, but also
wrongly classifies all cases belonging to the true negative class. The point
(0,1) represents the perfect classification - the model correctly classifies all
cases. In general, since we are more interested in correctly classifying obser-
vations belonging to the positive class, a point in the ROC space is considered
more desirable than another if it lies to the northwest (the TP rate is higher,
FP rate is lower or both) of the other.

Classification models such as trees are designed to output the predicted
class label for each observation. When applied to a test set, they yield a
single confusion matrix that corresponds to a single point in the ROC space.
However, it is also possible to obtain fitted values for each observation, which
are the numerical scores used by the model to predict the class labels. Such
numerical scores represent the degree to which an observation belongs to
a class. For decision trees, A decision threshold is applied to these scores
- if the score is above the threshold value, the observation is predicted to
belong to the positive class, and if the score is below the threshold value,
it is predicted to belong to the negative class. Each threshold value yields
a confusion matrix, and thus, corresponds to a point in the ROC space.
A series of threshold values can be used to generate an ROC curve for a
particular classification tree.

18

Chapter 6

Conclusion

The issues that arise from dealing with imbalanced data or data that has
unequal costs of misclassification across different classes, can be tackled by
using loss functions. From the simulations, we see that the class of interest
is more accurately classified when such loss functions are incorporated in the
classification tree algorithm. We also explored the accuracy paradox in such
situations - a high rate of accuracy may not be indicative of the class of in-
terest actually being classified correctly, and other measures of performance,
such as ROC curves can be used to better evaluate the performance of the
model. In the future, I would like to explore different approaches to modeling
loss, such as if the loss was determined stochastically. I would like to explore
whether the different approaches to incorporating loss in the model, through
sampling techniques or by modifying the learning algorithm, yield different
results.

19

Bibliography

[1] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements
of statistical learning. Vol. 1. New York: Springer series in statistics,
2001.

[2] Scott, Clayton, and Robert Nowak. ”A Neyman-Pearson approach to
statistical learning.” IEEE Transactions on Information Theory 51.11
(2005): 3806-3819.

[3] Scott, C. ”Comparison and design of neyman-pearson classifiers.”
(2005).

[4] Fawcett, Tom. ”An introduction to ROC analysis.” Pattern recognition
letters 27.8 (2006): 861-874.

[5] Terry Therneau, Beth Atkinson and Brian Ripley (2017). rpart: Re-
cursive Partitioning and Regression Trees. R package version 4.1-11.
https://CRAN.R-project.org/package=rpart

20

	Introduction
	Background
	Homogeneity
	Incorporation of Loss
	Performance Metrics
	Conclusion

