
Senior Thesis in Mathematics

The Expectation Maximization
Algorithm & RNA-Sequencing

Author:
Maria Martinez

Advisor:
Dr. Johanna S. Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

May 5, 2017

Abstract

Next-generation sequencing (NGS) technologies, primarily RNA-seq tech-
nology has made great advancements in the study of gene expression. Gene
expression helps us cluster genes based on how similar their gene expression
are, and therefore we not only gain a better understanding on how and which
of these genes are related to one another based on their gene expressions, but
also we gain deeper knowledge on the purpose and function of these genes.
Here we describe a clustering algorithm, Expectation Maximization, which
allows us to improve the performance of these models compared to a heuristic
approach such as the k-means algorithm.

Contents

1 Introduction 1
1.1 Expectation Maximization Algorithm 1

1.1.1 Can one Find the MLE? 3
1.1.2 Expectation Maximization as an Alternative 4

2 Derivation of the Expectation Maximization 7
2.1 Derivation . 7

3 RNA-Seq 12
3.1 RNA-Seq Clustering . 12
3.2 Negative Binomial Distribution 13
3.3 Model Based Clustering . 15

3.3.1 K-Means Clustering & Initialization 15

4 Conclusion 18
4.1 Applications . 18

i

Chapter 1

Introduction

When estimating a parameter from a population, say the mean, one of the
most common statistical methods used is Maximization Likelihood Estima-
tion (MLE). MLE is a powerful tool that gives estimates of the parameters
that maximize the likelihood of your observed data occurring. In more sim-
ple words, if you have a dataset of heads and tails from flipping a coin 100
times, the MLE would give you a parameter that maximize the likelihood
of the specific data occurring. Now this is a good example, but now imagine
we were trying to solve a similar problem where we have lost the information
on whether the flip came from population A or population B and it is impor-
tant to know the probability of heads for both populations. Simply solving
for the MLE is no longer straightforward given that we have more parame-
ters to estimate. An algorithm that permits us to find the parameters that
maximize our data with missing information is known as the Expectation
Maximization Algorithm.

1.1 Expectation Maximization Algorithm

In this chapter we provide an explanation of the Expectation Maximization
Algorithm, better known as the EM Algorithm, and give a derivation to
detail some of the intuition behind the algorithm.

To fully grasp the EM Algorithm one has to understand when it is needed.
To do so, we will first introduce an example where the EM Algorithm is not
needed. Suppose we have i.i.d observations Xn

i from a Normal Distribution
that represent the hours people spend watching Netflix. Assume the data

1

comes with an unknown mean µ and a known variance σ2. In order to
estimate our parameter, µ, or the average hours spent by the population
watching Netflix, our best attempt is to find the MLE for that parameter.
We can do this by finding the derivative of our likelihood function and solving
for µ by setting the derivative equal to 0. In this particular Netflix example
we rely on the normal distribution, however, data does not always come from
a normal distribution and a more appropriate distribution can be used. In
particular we focus later on the Gaussian Mixture Models (GMM) where data
come from a variety of groups each with its own distribution. This leads us
closer to what will be examined in this paper; for example, the average hours
a population spends watching Netflix will look different if you consider there
being two distinct normal distributions; one of a female population and one
of males.

The previous Netflix example relied on the existence of only one pa-
rameter: an unknown µ. Now let’s extend the example where there exist
more than one unknown parameter. Suppose we have n random variables,
Xn
i . Each belong to an individual person in our dataset and represent the

amount of hours a person watched Netflix per week. The separate datasets
are assumed to have the same variance σ2 but different unknown means, µM
and µF . The two different means come from the fact that we now have an
unobserved label, Ci, that represents coming from the male or female pop-
ulations. Because of this unknown label, we do not know which population
each our Xi come from and therefore, we can not use standard MLE steps.
The following Bernoulli distribution helps characterize the breakdown of the
females and males:

pci(ci) = q1(ci=M)(1− q)1(ci=F) (1.1)

Equation 1.1 uses the indicator function to provide the probability of ci
which is the probability of coming from either the female or male population.
To simplify, we make πM = q and πF = 1 − q. At first glance the product
function gives the impression that we are working with multiple groups, but
in our simple case provided we only have two possible groups (female or
male). However, later on we will be working with more than one group.

pci(ci) =
∏

c∈{M,F}

π1(ci=c)c (1.2)

In equation 1.2 we assumed that the conditional distributions of each

2

class are Gaussian. In other words, the distribution of the length of time
someone spends on Netflix, given that they are female is approximated with
the normal distribution. The same applies to the male population. The
difference is the parameter µ

1.1.1 Can one Find the MLE?

In unsupervised learning, unlike in supervised learning, there are no labels
used when building a model; there is no training and testing your data.
Instead you attempt to find patterns in a dataset that could provide insight
about the data with respect to the group as well as with respect to the
model. On the other hand, you have supervised learning where you use the
labels provided in order to build a model. Unsupervised learning tends to be
harder than supervised. Continuing with the Netflix example, the unknown
labels represent the unsupervised learning nature of our problem. The gender
of Yi is the hidden information in the model building stage. The hidden
information is what makes this problem harder to solve in closed form.

When we are not provided with the labels, our goal is find a way to
maximize the likelihood in order to estimate the Gaussian parameter val-
ues including their label probabilities. This can be done by estimating the
parameters µF and µM and the class membership of the observations simulta-
neously. To demonstrate that we need to find all of these parameters in order
to successfully solve our problem, we will first attempt the standard way of
finding the MLE by computing the joint density, logging the function and
then differentiating in terms of either µ. The complete data is represented
by the following joint density:

PY (y) =
n∏
i=1

(πMN (yi;µM , σ
2) + πFN (yi;µF , σ

2)) (1.3)

We log the function:

ln(PY (y)) =
n∑
i=1

ln(πMN (yi;µM , σ
2) + πFN (yi;µF , σ

2)) (1.4)

Next, we differentiate with respect to one of our µ’s, in this case we choose
µF . Differentiating gives us equation 1.5:

3

n∑
i=1

1

πMN (yi;µM , σ2) + πFN (yi;µF , σ2)
πFN (yi;µF , σ

2)

(
yi − µF
σ2

)
= 0

(1.5)
Equation 1.5 cannot be used to solve for µF in closed form. It deals

with too many terms at once such as exponentials and linear terms that we
are unable to come up with a closed solution. Instead we must use another
approach to solve equation 1.5. Knowing we cannot solve with regular MLE
methods, we realize this is a much harder problem that can be resolved
through the Expectation Maximization (EM) Algorithm.

1.1.2 Expectation Maximization as an Alternative

As seen above, having missing information in the labels prevents us from
finding our MLE using calculus methods to differentiate. Instead we use al-
ternative iterative methods such as EM Algorithm to take into consideration
the unknown classes. Ideally, in our example, we want to find all the data
values where Ci = M to estimate µM and use the remaining points, where
Ci = F , to estimate µF . To attempt this, first we look at the distribution
of Ci. Bayes’ Rule states that P(A|B) = P (B|A)P (A)

P (B)
. We use Bayes’ rule to

write:

PCi|Yi(ci|yi) =
PYi|Ci

(yi|ci)PCi
(ci)

PYi(yi)
(1.6)

In equation 1.6, we interpret PCi|Yi(ci|yi) as the probability of being in a
certain group (in our case, male or female) given that you have a specific
feature. For example, the probability of being female given that you spend 8
hours watching Netflix. This sounds like the opposite to what we are trying
to find, but this calculation will help us find what we are truly looking for
which is estimating µF .

PCi
(ci) is defined as the unconditional probability of belonging to a certain

group (e.g. male or female) and PYi(yi) is the probability of spending 8
hours watching Netflix (regardless of gender) without the loss of generality.
Equation 1.6 is just a generic form of the equation. Now using equation 1.3 to
rewrite our denominator and equation 1.2, equation 1.6 can be rewritten for
a better understanding of what is going on as seen below (notice we assumed

4

a normal distribution):

PCi|Yi(ci, yi) =
(πcN (yi;µc, σ

2))1(ci=c)

πMN (yi;µM , σ2) + πFN (yi;µF , σ2)
= qCi

(ci) (1.7)

We rename this to simply qCi
(ci) for notation purposes, but keep in mind

that qCi
(ci) is a function of all of the parameters. If we let ci = F for female

group we get the following posterior probability:

PCi|Yi(F |yi) =
πFN (yi;µF , σ

2)

πMN (yi;µM , σ2) + πFN (yi);µF , σ2)
= qCi

(F) (1.8)

In essence we are a step closer to solving one of our original problems;
originally we were unable to solve for our parameters µM and µF because we
did not know which distribution our points where coming from. Now we have
qCi

(ci), the probability of class given the observed data, to help us solve for
the unknown as we will soon discuss. In equation 1.7 we found a simpler way
of solving by rewriting the equation with qCi

. This allows us to “solve” for
µF without actually solving for it since we will be ignoring that qCi

depends
on µF .

In equation 1.9 we have a function that will help us estimate µF in an
iterative way. This is the maximization step our algorithm.

n∑
i=1

qCi
(F)

yi − µF
σ2

= 0∑n
i=1 qCi

(F)yi∑n
i=1 qci(F)

= µ̂F

(1.9)

Note that µF is a weighted average of yi. If we go back to our Netflix
example, µF is the weighted average of the hours spent watching Netflix and
each time spent is weighted by the probability of being female. We could find
µM with the equivalent equation but instead with the probability of being
male.

Note that to solve for qCi
(ci) in equation 1.7 we need µF , but to solve

µF in equation 1.9 we need qCi
(ci) that is that in order to solve for the

parameters, we need to find the posterior probabilities, qCi
(ci), and in order

to find the posteriors we need the parameters, µF and µM . This circular way
of solving for the unknown leads us back to the EM Algorithm. Through
the 2-step iteration we are able to fix one and solve for the other and vice

5

versa. We initialize the missing parameters randomly and iterate the steps
until convergence. To summarize, the algorithm goes as follows:

Algorithm 1 Expectation Maximization Algorithm

1: Initialization: Randomly choose values for your parameters.
2: Expectation: The E step where you re-calculate probabilities of member-

ship to every distribution.
3: Maximization: The M where you re-calculate parameters by maximizing

the likelihoods
4: Iterate between steps 2-3 until convergence

So far we have found a way to solve for our parameters, but we are left
wondering if this will give us the parameters that maximize the likelihood of
our data. For that, we will derive the EM algorithm to show how it optimizes
our parameters. We also will explore finding an intuitive way to initialize that
randomly assigns group membership.

6

Chapter 2

Derivation of the Expectation
Maximization

From the the previous chapter, it seems amazing that by modifying a few
things we are able to iteratively solve the likelihood maximization problem for
our parameters. However, as all good algorithms go, we have technically not
shown that our algorithm give us an optimal solution. The next question to
answer is: how do the previous equations actually help us find the maximum
likelihood estimate?

First, we will set up our problem as before. Suppose we have an observed
random variable Y and hidden variable C. We know that the distribution of
Y depends on C and that we are interested in finding the unknown parameter
θ which comes from the distributions of C and Y . Now, in our example from
before we stated that Y = Y1, . . . , Yn indicated the time individuals spent
watching Netflix and C = C1, . . . , Cn were the hidden gender labels of each
individual respectively. Also, θ was the vector of all our missing parameters,
previously µF and µM , the average hours spent on Netflix for each gender.

2.1 Derivation

Our ultimate goal is to maximize the log likelihood of our observed data:

log(PY (y; θ))

By the definition of marginal probability, we are able to rewrite the log
likelihood as log (

∑
c PY,C(y, c; θ)). We rewrote the log likelihood of our ob-

served data (or having spent X amount of hours on Netflix) as the sum of

7

women and men who watch X hours since we have those two possible groups.
From here, we multiply by 1 by multiplying by qc(c)/qc(c) = 1. Next we turn
the equation into an expectation problem. Recall that we defined qc(c) to be
the posterior probability (i.e. conditional on Y) distribution updated with
the data.

logPY (y; θ) = log

(∑
c

qC(c)

qC(c)
× PY (y; θ)

)
Multiplied by 1

= log

(∑
c

qC(c)
PY,C(y, c; θ)

qC(c)

)
Marginalized with respect to C

= log

(
Eqc
[
PY,C(y, c; θ)

qC(c)

])
Made into an expectation wrt qC(c)

Now we introduce a theorem better known as Jensen’s Inequality that
permits us to put a lower bound to estimate the above equation. It also
simplifies our math since instead of logging an expected value, we do the
opposite.

Theorem 2.1. Jensen’s Inequality states:

log (E[X]) ≥ E [log(X)]

Using Jensen’s inequality we rewrite the above equation as:

log

(
Eqc
[
PY,C(y, c; θ)

qC(c)

])
≥ Eqc

[
log

(
PY,C(y, c; θ)

qC(c)

)]
(2.1)

From here on we work with the right side of the inequality since we have
been provided with a lower bound to our original log equation that we aimed
to maximize. Using log rules, we rewrite the right side of inequality 2.1 as:

Eqc
[
log

(
PY,C(y, c; θ)

qC(c)

)]
= Eqc [log(pY,C(y, c; θ))]− Eqc [log(qC(C))] (2.2)

Our end goal is to optimize the likelihood with respect to our parameters,
θ. Equation 2.2 allows us to do just that (it actually is the maximization
step). So by maximizing 2.2 we maximize our log likelihood. By rewriting,

8

we see that only the term Eqc [log(pY,C(y, c; θ))] depends on θ and therefore
we can ignore the other term. We eliminate that term and optimize equation
2.3.

θ̂ ← argmax
θ

(Eqc [log(PY,C(y, C; θ))]) (2.3)

Now if we assume to know qC(c), we can find θ̂. Recall from equation 1.9,
we defined µ̂M as:

µ̂M =

∑n
i=1 qCi

(M)yi∑n
i=1 qci(M)

We show the above equation is true an it is the parameter that optimizes our
likelihood (2.3) with the following derivation.

0 =
∂

∂µM

n∑
i=1

∑
c∈{M,F}

Eqc [1(Ci = c)] [log(PY,C(y, C; θ))]

=
n∑
i=1

∂

∂µM

[
Eqc [1(Ci = F)

(yi − µF)2

2σ2
+ Eqc [1(Ci = M)]

(yi − µM)2

2σ2

]
=

n∑
i=1

∂

∂µM

[
0 + Eqc [1(Ci = M)]

(yi − µM)2

2σ2

]
=

n∑
i=1

qCi
(M)

∂

∂µM

(yi − µM)2

2σ2

=
n∑
i=1

qCi
(M)

2(yi − µM)

2σ2
(−1)

=
n∑
i=1

qCi
(M)(yi − µM) =

0× σ2

−1
= 0

µ̂M =

∑
qCi

(M)yi∑
qCi

(M)
(2.4)

These steps have lead us to confirm that equation 2.3 will optimize our
parameters. This is the derivation of our maximization step of the EM Al-
gorithm. Through mathematical means we have found a way to optimize
our parameters. As stated previously the EM Algorithm is a 2-step iterative
algorithm, so we also need to derive the expectation step. In the expectation
step we aim to find the qC(c) that will optimize the likelihood. Fortunately,

9

with a different variation we are able to find it. We start with the same
Jensen’s Inequality we first stated above.

Eqc
[
log

(
PY,C(y, c; θ)

qC(c)

)]
= Eqc

[
log

(
PY (y; θ)PC|Y (c|y; θ)

qC(c)

)]
= log (PY (y; θ))− EqC

[
log

(
qC(c)

PC|Y (c|y; θ)

)]
(2.5)

First we rewrote the inside of our log equation using the definition of
conditional probability P (A&B) = P (B)× P (A|B). In the second step, we
rewrote the equation using log rules. Recall that we are trying to find the
qC(c) that will maximize our likelihood.

When we maximize with respect to qC(c), we derive the following and
optimized and are left with our expectation step, where we estimate the
probability of each observation belonging to every cluster conditionally on our
current parameter estimates, whereas in the maximization step we estimated
the parameters given the current cluster membership probabilities.

On the right side of our equation 2.5 we have

log(PY (y; θ))− Eqc
[
log

(
qc(c)

PC|Y (c|y; θ)

)]
(2.6)

Using KL divergence [Sridharan,], we know that the second part of equation

2.5, qc(c)
PC|Y (c|y;θ) will always be greater than 1, therefore the log of it will be at

least 0. In order to maximize the likelihood, we want to maximize equation
2.6 in respect to qC(c); this will happen when the log in the second part
of the equation is equal to zero (any other possible value will reduce the
likelihood). To make this happen we make qC(c) equal to PC|Y (c|y; θ) so that
the fraction is equal to 1 and the log of one is zero. Now the likelihood is
equal to log(PY (y; θ)) − 0. We’ve found the qC(c) that will maximize our
likelihood. We’ve successfully derived the expectation step or better known
as the E-step by optimizing qC(c) in order to be able to do expectations by
of our parameters.

So what did we do? Recall that the goal was to maximize the likelihood
of our given data. We could not use simple methods such as solving the
derivative with respect to θ and qc simultaneously. So instead we had to it-
erated between finding the max of the likelihood with respect to θ and based

10

on those results maximized with respect to qc(c) and vice versa. It is impor-
tant to acknowledge this iteration does not guarantee a global maximum for
the likelihood, but we rest assured that after every iteration our likelihood
can only increase (will eventually reach a threshold which might not be the
global maximum). To aid with this, the next chapter talks about a method
to choose the starting values to help improve the results.

11

Chapter 3

RNA-Seq

So far we have used a simple example of measuring the average numbers of
hours spent watching Netflix by two populations: female and male. However,
the EM Algorithm can be and is commonly used when there are more than 2
groups. In this paper we will explore a more realistic real-life example with
more than 2 groups. We will be working with RNA-seq data and be calling
the groups, clusters.

3.1 RNA-Seq Clustering

RNA-Seq is a relatively new technology that is part of Next-Generation Se-
quencing (NGS) technology and has become a competitor to the more com-
monly known technology, microarrays. In essence, RNA-seq allows for the
study of cluster analysis where genes are grouped based on similar gene ex-
pressions. These groups become clusters that allow scientist to better com-
prehend genes and their functions. In the past the technology has been used
to understand photosynthesis([Xu et al., 2015]).

To analyze such data, the heuristic method, k-means is commonly used for
its simplicity, however in this paper we explore the use of the model-based
algorithm, Expectation Maximization Algorithm. Model based algorithms
have been known to outperform heuristic ones. As Ka Yee Yeung puts it,
in model based clustering, we assume that the data comes from a “finite
mixture of underlying probability distributions” [Yeung et al., 2001]. Using
probabilistic models to approximate the distribution of these clusters permits
us to better analyze these groups. It is common amongst biologist and statis-

12

ticians to use the Poisson distribution, however more research has been done
looking into a different distribution: the negative binomial [Si et al., 2013].

3.2 Negative Binomial Distribution

The Negative Binomial Distribution model for gene clustering was first pro-
posed by Robinson and Smyth (2007). In numerous biology experiments that
deal with RNA-seq count data, the Poisson distribution is used to model the
distribution of the data [Marioni et al., 2008, Bullard et al., 2010]. The data
collected in biology like RNA-seq count data (counts means the number of
times a specific event happens) is most of the time not too complicated
and one-parameter distributions like Poisson are often used. The Poisson
distribution makes the consequential assumption that the mean and vari-
ance are equal. However, with RNA Seq data, the variance is not always
determined by the mean and a one-parameter distributions is not appropri-
ate. In most cases, which is our case with our RNA-seq count data, the
observed data are over-dispersed, meaning the sample variance is larger than
predicted. Instead we choose to use the negative binomial (NB) distribu-
tion [Robinson and Smyth, 2007]. Not taking into consideration the over-
dispersion, then the model can create biased estimates [Wang et al., 1996].
Therefore, the Negative Binomial distribution is an essential discrete proba-
bility model in biology.

One standard way of parameterizing the negative binomial distribution
is:

f(k; r, p) =

(
r − 1

k − 1

)
pk(1− p)r−k

Where r is the number of Bernoulli trials until k successes and p is the prob-
ability of success. However, to better fit our problem of clustering data,
Robinson and Smyth reformulated the probability function of the NB distri-
bution using parameters for the mean and variance instead of parameterizing
as Bernoulli trials distribution as follows:

f(y : µ, φ) = P (Y = y) =
Γ(y + φ−1)

Γ(φ−1)Γ(y + 1)

(
1

1 + µφ

)φ−1 (
µ

φ−1 + µ

)y
(3.1)

.
In equation 3.1 we let Y be an NB random variable with mean µ and

13

dispersion φ. Variance is parametrized as µ + φµ2. Y has a distribution
NB(µ, φ). In order to derive results we use the R package, MBCluster.Seq
[Si et al., 2013]. The following code provided is a small part of an internal
function, est.nb.mu.mle.one, used to demonstrate how the reformulation
of the distribution is used to find the MLE of our data:

for (i in 1:nU) {

m = c * mu0 * exp(u[i])

lglk = rowSums(lgamma(n + 1/v) - lgamma(n + 1) -

lgamma(1/v) - log(1 + m * v)/v -

log(1 + 1/m/v) * n)

id[lglk > lglk0] = i

lglk0[lglk > lglk0] = lglk[lglk > lglk0]

}

In this function, est.nb.mu.mle.one, µ0 is initially estimated (not seen
above) as the sum of the rows divided by the sum of sum of all our clusters
centers. Then we calculate the MLE. In this instance the MLE is calculated
by a for loop as seen in the line that states: i in 1:nU. The code is going
through many iterations to compare different values of µ to see which value
maximizes the likelihood. We do this numerical maximization because cal-
culus methods do not permit us to find the derivative of functions of gamma
functions. In a similar way, function, est.nb.v.QL.one, is able to estimate
the dispersion.

for (i in 1:nU) {

v = v0 * exp(u[i])

Qlglk = n * log(n/mu) - (n + 1/v) *

log((n + 1/v)/(mu + 1/v))

d = abs(2 * rowSums(Qlglk) - (nJ - 1))

id[d < d0] = i

d0[d < d0] = d[d < d0]

}

v = v0 * exp(u[id])

It is important to note again that we could not just find the derivative
because of the gamma function values in the NB distribution. The MLE
of data with a NB distribution, can only be estimated through iterative

14

methods. Even when there is no missing data, EM algorithm has been used to
estimate MLE of data with negative binomial distribution [Adamidis, 1999].

Using the Negative Binomial Distribution in our data with g groups/clusters
and equation 1.4 leads us to the following complete data likelihood.

PY (y) =
n∏
i=1

g∑
j=1

πj

(
Γ(yi + φ−1j)

Γ(φ−1j)Γ(yi + 1)

)(
1

1 + µφ

)φ−1 (
µ

φ−1 + µ

)y
(3.2)

Here i indexes the observed data value and j indexes the group/cluster.

3.3 Model Based Clustering

We model our data as coming from a mixture of probability distributions
as stated earlier. Each distribution is one cluster/group. Let’s start with
the assumption that there exists K clusters and each cluster has a center
µk with dispersion φk. Also assume independence amongst these genes since
it would prove too difficult to model correlation amongst the genes with no
prior knowledge on the relationship between the genes.

Another difficulty that comes with the expectation maximization algo-
rithm is its lack of a guaranteed global solution. Instead, similar to another
commonly used clustering algorithm, the k-means algorithm, it only guaran-
tees a local max. To combat this we provide a better initialization step such
that the final solution is hopefully closer to the global max, if not the actual
global max.

3.3.1 K-Means Clustering & Initialization

A widely used clustering algorithm is the k-means clustering algorithm. In
essence, k-means clustering algorithm is a heuristic approach to the NP-
hard problem of partitioning n observations into k clusters such that the
square distance between points in the same cluster is minimized. K-means is
actually similar to the EM Algorithm; the EM algorithm on Gaussian data
is the generalized version of k-means algorithm.

One big difference between the two algorithms is k-means uses hard clus-
tering, but the probabilistic nature of EM makes it use soft clustering instead;
in place of assigning every data-point to exactly one cluster in hard cluster-
ing, soft clustering is where a data-point is assigned to multiple clusters each

15

with the probability of belonging to that specific cluster. The algorithm to
k-means is simpler than the EM. It follows:

Algorithm 2 K-Means Clustering

1: Pick k random points to act as your k cluster centers.
2: For the remaining n−k points use Euclidean distance to cluster the point

with the nearest cluster center.
3: Calculate k new centers by averaging the points in each cluster.
4: Reclassify all n points based on new cluster centers.
5: Recalculate new centers based on new classifications.
6: Repeat steps 4-5 until none of the points are reclassified.

The Expectation Maximization Algorithm is a generalized version of the
k-means clustering algorithm giving us more flexibility. This flexibility in-
cludes the ability to classify non-normal data using other measuring methods
that do not rely on Euclidean distance. However, the algorithms do not differ
much in their initialization step. They begin with k arbitrary cluster centers
that are usually chosen at random by giving all the points a uniform proba-
bility of being chosen. These k initial cluster centers are the reason why these
algorithms find local maximums instead of the global max. Considering how
important this step is, we aim to find stochastic processes that will ideally
lead us closer to a global max.

To reduce the risk of being cemented at a local minimum instead of finding
the global minimum, it is important to consider your initialization. Through
careful initialization, not only are the end results positively impacted, but the
algorithms speed can increase [Fraley and Raftery, 2002]. Fraley and Raftery
also proposed using the Bayesian Information Criterion (BIC) to determine
the number of groups/clusters present .

Arthur and Vassilvitskii proposed a better initialization step in 2007.
This method, is closely related to the k-means clustering algorithm and
therefore is adequately is referred to as the K-Means++ clustering algorithm
[Arthur and Vassilvitskii, 2007]. K-means++ only refers to the initialization
part. The initialization is shown below in Algorithm 3:

16

Algorithm 3 K-Means++ Clustering

1: Choose one random cluster center from all the genes
2: For the remaining genes calculate D(x), the distance between the point

and the nearest cluster centers available.
3: Choose the next cluster from the remaining genes based on the weighted

probabilities that are proportional to D(X).
4: Repeat 2-3 until you have k clusters.

Using the K-means++ clustering algorithm initialization step for our ini-
tial part of the EM algorithm, we now have an algorithmic start instead of
a random start. This permits us to perform better and be a step closer to a
global maximum. However, note that D(x) is Euclidean distance, so initial-
ization works well when using EM Algorithm with Gaussian data. However,
other distributions that do not rely on Euclidean distance such as Negative
Binomial would not work as well.

17

Chapter 4

Conclusion

We derived the Expectation Maximization algorithm and used it to calculate
clusters of gene expression data. This data was represented having a negative
binomial distribution specifically to count for over-dispersion.

4.1 Applications

Through the package MBCluster.Seq [Si et al., 2013], simulations can be
run where you give your normalized data and the number of clusters,k,
to the Cluster.RNASeq function and using a negative binomial and the
EM algorithm, the function is able to cluster all the genes into k clusters.
Cluster.RNASeq is able to reproduce the clusters in a vector, however, we
are able to better represent this data through some plots as shown below in
figures 4.1,4.2 and 4.3

The Hybrid.Treeplot and Hybrid.Tree functions permit us to have a
visual representation of our clusters. In the figures shown below we inputted
the same data into all three plots, however we used different number of
clusters where k = 5, 10 and 20. In the x-axis we have the 1000 genes of the
sample data set with RNA-seq expressions for all of the genes, 4 treatment
and 2 replicates (dataset obtained from the MBCluster.Seq R package). In
the y-axis there are the four different treatments performed. Below the x-axis
we are able to see the different k clusters.

18

1

4

2

5

3

< −1.93

−1.25

−0.81

−0.53

−0.31

−0.13

0.04

0.23

0.50

0.81

1.21

> 2.05

Figure 4.1: Hybrid Tree K = 5

1

5

7

6

10

8

2

3

4

9

< −1.93

−1.25

−0.81

−0.53

−0.31

−0.13

0.04

0.23

0.50

0.81

1.21

> 2.05

Figure 4.2: Hybrid Tree K = 10

1

5

9

12

13

15

16

17

3

6

4

2

19

7

8

11

10

18

20

14

< −1.93

−1.25

−0.81

−0.53

−0.31

−0.13

0.04

0.23

0.50

0.81

1.21

> 2.05

Figure 4.3: Hybrid Tree K = 20

19

Each different k number of clusters, gave us different results since the
same amount of genes had to be separated in more buckets each time. In
order to see how much difference existed between the k values we calculate
the adjusted rand index. The adjusted rand index gives us a number between
0 and 1; the higher the number the more the two different k’s in question
agreed on which cluster to assign the genes. When the rand index is 1,
then the two groups agreed perfectly. We did not expect a perfect 1 in our
data, since that would be impossible, but we were more interested in where
this number lied. The adjusted rand differs from the normal rand index by
assuming a hyper-geometric distribution to take into account randomness
[Yeung and Ruzzo, 2001]. The rand index is typically higher in value than
the adjusted rand index.

Table 4.1: Adjusted Rand Index
Average Adjusted Rand Index after 10 Iterations

k 5 v 10 5 vs 20 10 v 20
Adjusted Rand Index 0.446 0.307 0.494

Throughout this paper, we talked about the Expectation Maximization
Algorithm as a clustering algorithm through the mixture of NB models. The
EM algorithm was used with a K-means++ initialization to reduce our risk
of a local maximum. Through this algorithm we are able to cluster RNA-
seq data more efficiently than heuristic methods such as the regular k-means
algorithm.

20

Bibliography

[Adamidis, 1999] Adamidis, K. (1999). Theory and methods: An em algo-
rithm for estimating negative binomial parameters. Australian and New
Zealand Journal of Statistics, 41:213–221.

[Arthur and Vassilvitskii, 2007] Arthur, D. and Vassilvitskii, S. (2007). K-
means++: The advantages of careful seeding. Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1027–1035.

[Bullard et al., 2010] Bullard, J. H., Purdom, E., Hansen, K. D., and Du-
doit, S. (2010). Evaluation of statistical methods for normalization and
differential expression in mrna-seq experiments. BMC Bioinformatics, 11.

[Do and Batzoglou, 2008] Do, C. B. and Batzoglou, S. (2008). What is the
expectation maximization algorithm? (8).

[Fraley and Raftery, 2002] Fraley, C. and Raftery, A. E. (2002). Model-based
clustering, discriminant analysis and desity estimation. Journal of the
American Statistical Association, pages 611–631.

[Marioni et al., 2008] Marioni, J. C., Mason, C. E., Maine, S. M., Stephens,
M., and Gilad, Y. (2008). Rna-seq: An assessment of technical repro-
ducibility and comparison with gene expression arrays. Genome Research,
18:1509–1517.

[McLachlan and Basford, 1988] McLachlan, G. J. and Basford, K. E. (1988).
Mixture Models: Inference and Applications to Clustering, volume 84. Mar-
cel Dekker.

21

[Robinson and Smyth, 2007] Robinson, M. D. and Smyth, G. K. (2007).
Small-sample estimation of negative binomial dispersion, with applications
to sage data. Biostatistics, pages 321–332.

[Si et al., 2013] Si, Y., Liu, P., Li, P., and Brutnell, T. P. (2013). Model-
based clustering for rna-seq data.

[Sridharan,] Sridharan, R. Gaussian mixture models and the em algorithm.

[Wang et al., 1996] Wang, P., Puterman, M. L., Cockburn, I., and Le, N.
(1996). Mixed poisson regression models with covariate dependent rates.
Biometrics, 52(2):381–400.

[Wong et al., 2017] Wong, G. T., Bonocora, R. P., Schep, A. N., Beeler,
S. M., Fong, A. J. L., Shull, L. M., Batachari, L. E., Dillon, M., Evans, C.,
Becker, C. J., Bush, E. C., Hardin, J., Wade, J. T., and Stoebel, D. M.
(2017). Genome-wide transcriptional response to varying rpos levels in
escherichia coli k-12. Journal of Bacteriol, 199.

[Xu et al., 2015] Xu, L., Cruz, J. A., Savage, L. J., Kramer, D. M., and
Chen, J. (2015). Plan photosynthesis pehnomics data quality control.
Bioinformatics, pages 1796–1804.

[Yeung et al., 2001] Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., and
Ruzzo, W. L. (2001). Model-based clustering and data transformations for
gene expression data. Technical report, University of Washington.

[Yeung and Ruzzo, 2001] Yeung, K. Y. and Ruzzo, W. L. (2001). Details
of the adjusted rand index and clustering algorithms supplement to the
paper “an empirical study on principal component analysis for clustering
gene expression data” (to appear in bioinformatics).

22

	Introduction
	Expectation Maximization Algorithm
	Can one Find the MLE?
	Expectation Maximization as an Alternative

	Derivation of the Expectation Maximization
	Derivation

	RNA-Seq
	RNA-Seq Clustering
	Negative Binomial Distribution
	Model Based Clustering
	K-Means Clustering & Initialization

	Conclusion
	Applications

