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1 Introduction

1.1 Portfolio Theory

Why does an investor want to invest in a diversified portfolio? Did not leg-
endary investor Warren Buffett once was quoted by Suttmeier(2013) saying
that “Diversification is protection against ignorance”? It is true that an
investor of Mr. Buffett’s expertise level only needs to focus on the invest-
ment vehicles that generate more than 20% annualized return on book value.
However, few investors can beat the performance of Mr. Buffett’s company,
Berkshire Hathaway. Moreover, even an investment guru like Mr. Buffett
suffers from volatility. In the Great Recession, the share price of Berkshire
Hathaway dropped by more than 50% before it finally recovered.

Ordinary investors like us hate to bear the risk of losing our hard-earned
money in the stock market. They would rather sacrifice some of the returns
in exchange for a much lower risk. David Swensen, the portfolio manager of
the Yale Endowment fund, is an advocator and pioneer of investing in a diver-
sifited portfolio. Led by David Swensen, the Yale Endowment Fund allocates
the assets in foreign stocks and bonds, private equity, hedge funds, natural
resources, and real estate rather than the traditional 60-40 allocation in do-
mestic stocks and bonds. According the the Yale Endowment Report (2012),
the portfolio returned 13.7% annually over the last 20 years, which boosted
the endowment size by a factor of seven. In his book Unconventional Success,
Mr. Swensen claimed that 90 percent of the returns comes from the portfolio
allocation rather than stock picking and market timing. In fact, according to
Frazzini (2012) Swensen’s Sharpe ratio (a measure of risk-adjusted return)
from 1985 to 2008 was 1.12, about 50% higher than 0.76 Buffett achieved
over his investment horizon.

Because of its effect on reducing risks while compromising to a slightly
lower returns, constructing a diversified portfolio is a crucial task for in-
vestors. Markowitz (1959), who was awarded Nobel Economic Prize in 1990,
discussed what is known as Modern Portfolio Theory and claimed that the
efficient frontier is what every investor wants to achieve. However, in prac-
tice, an investor has to make numerous assumptions on the future returns,
volatility and correlation. The model is very sensitive to the inputs, too. A

1



tiny change in one of the inputs may lead to a dramatically different target
optimal portfolio allocation. Thus, an investor that has little confidence on
his subjective judgment of stocks and bonds will be confused about how to
proceed with the model. Kelly (1956) discussed a novel way to determine the
size of the bets that will maximize the long-term geometric returns. Some
mathmaticians such as Edward Thorpe claimed to make money in risk arbi-
trage investments while using the system to decide portfolio sizes. However,
this method also requires the inputs of predicted probability of winning, odds
implied by the market price and correlations among investments, which are
very hard to estimate precisely in the context of financial markets. Moreover,
because the Kelly Criterion is an one-period model, it is difficult to compare
investments with different time horizons.

Alternatively, by observing certain financial data, an investor can predict
the future returns based on a simple linear regression. The regression method,
although very crude, does not rely on any subjective judgment calls. Since
a regression model is likely to have a very low R2, a rational investor should
not fully rely on the predictive values from a single-variate regression when
making asset allocation decisions. Nonetheless, the investor is able to use the
predicted return distributions as guides in adjusting his portfolio such that
he maximizes his expected utility because even a skeptical prior distribution
will lead to moderate market timing of the investor. The ability to maximize
the expected utility for an investor using his prior belief as well as all the
available data is the essential reason for using the Bayesian methods in the
portfolio theory.

This paper is based on “Predictable returns and asset allocation: Should
a skeptical investor time the market?” by Wachter and Warusawitharana
(2009).

Consider an investor making an investment decision between stocks, bonds,
and T-bills on January 1st, 2013. He has stock and bond return data from
January 1900 to December 2012:

rt = α + βxt−1 + ut (1)

Where rt is the continuous return vector on the S&P 500 stock index and
Treasury Bonds separately in month t in excess of T-bills, α is a 2x1 vector
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of intercepts, β is a 2x1 vector of coefficients and xt−1 is a predictive variable
such as the dividend yield at period t− 1, which is used to predict the stock
returns and the bond returns. The OLS estimators and the two R2s of the
equations can be calculated with the past data. Also known is xT , which is
the most recent dividend yield in December 2012. How will he allocate his
portfolio according to this information?

1.2 Literature Review

Fama and Bliss (1987) and Cochrane and Piazzesi (2002) developed predic-
tors of treasury bond returns based on forward rates.Cochrane and Piazzesi
found that a tent-shaped function of one- to five-year forward rates forecasts
bond returns.Fama and French (1989) and Campbell and Shiller (1991) found
that a large term spread predicts higher excess bond returns. In addition,
Fama and French (1988) claimed that the dividend yield is a good indicator
for stock returns, especially in the long run. Kandel and Stambaugh (1995)
argued that usual statistical measures underestimate the economic signifi-
cance of predictive function when used by Bayesian investor. For example,
in looking at a predcitive model which has R2 = 0.02, people may think this
predictive model has little influence on the asset allocation and dismiss the
predictive function as insignificant. However, the usual measure of R2 under-
estimates the economic significance of the predictive function. Kandel and
Stambaugh suggested that even an uninformative prior with very low expec-
tation on R2 can have great influence on the asset allocation of an investor.
Avramov (2002) used Bayesian Models to analyze the return predictability.
He concluded that the Bayesian Model lead to superior models in terms of
predictability as well as raw returns. Shanken and Tamayo (2004) expanded
on Kandel and Stambaugh (1995) to accommodate the variation in expected
risks as well as in expected returns when deploying the Bayesian Method.
Specifically, they argued that the risk actually increases as dividend yield
increases. A high dividend yield may reflect the fact that the stock prices
have fallen substantially since the last dividend payment, which is a sign that
the company may be in trouble. Alternatively, there might be a substantial
decrease in the dividend in the next period, resulting in an inflated dividend
yield if the last dividend payment is used as the input. Therefore, buying
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stocks when the dividend yield is high could lead to collecting a basket of
companies in trouble. As a result, the optimal allocation may allocate less in
stocks than the Kandel and Stambaugh (1995) model suggested.

The paper is organized as follows. Chapter 2 describes the likelihood func-
tion, the prior distributions, the calculation of the posterior, the Metropolis-
Hastings Algorithm, and the calculation of optimal weights. Chapter 3 de-
scribes the results in Wachter (2009) including a comparison between the
prior and posterior, the resulting portfolio weights, and the out-of-sample
performance across different choices of priors. Chapter 4 concludes the whole
paper.

2 Model Setup

2.1 Likelihood Function

At time t, investors can observe the data from T=0 to T=t. rt is an Nx1
vector describing excess returns of N risky assets in period t, and xt is a scalar
describing the predictive variable at time t. We are using one independent
variable to predict the returns of two assets. Let D = [r1, ..., rt, x1, ..., xt] be
the set of all the available information. In the paper, the predictive variable
is either the dividend-price ratio or the yield spread between the five-year
treasury note and three-month treasury bill. Here, because we only consider
two risky assets in the model, namely the S&P 500 Index and the treasury
bond, N=2. The data generating process is defined as follows:

rt+1 = α + βxt + ut+1 (2)

xt+1 = θ + γxt + vt+1 (3)

α and β are 2x1 vectors: αT = [α1, α2], and βT = [β1, β2]. α1 and β1 are
coefficients for stock returns, while α2 and β2 are coefficients for bond returns
in the predictive model. The residuals in the above two equations, ut+1 and
vt+1 have the size 2x1 and 1x1, respectively. They are assumed to follow a
normal distribution with mean zero. The 3x3 matrix, Σ can be partitioned
as:
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Σ =

(
Σu Σuv

Σvu Σv

)
Where Σu is a 2x2 matrix describing the variance and covariances of ut+1,

Σuv is a 2x1 vector describing the covariance of ut+1 and vt+1. Σv is a scalar
describing the variance of vt+1.
In other words, [ut+1, vt+1] | [r1, ..., rt, x0, ...xt] ∼ N(0,Σ).

In simple form, the predictive function can be written as E[Y ] = XB,
where

Y= rT1 x1
...

...
rTT xT


X= 1 x0

...
...

1 xT−1


B= (

αt θ

βt γ

)
Y is a Tx3 matrix; X is a Tx2 matrix, and B is a 2x3 matrix. Let p(D| B,Σ,

x0) be the likelihood function. Consider x1, x2,...,xt drawn from a normal
distribution, if they form a simple regression y = xb + et, the likelihood
function is

p(D | b, σx, x0) = (2πσ2x)
−T

2 exp(−
T∑
t=1

(
1

2σ2x
[(yt − xtb)2]) (4)

The likelihood function is calculated by multiplying the probability densi-
tity function of x1 through the probability density function of xt. Similarly,
when we have a multi-variate regression, we only need to make some small
changes. From results in Zeliner (1996), the modified version of the likelihood
function is as follows:

p(D | B,Σ, x0) =| 2πΣ |−
T
2 exp(−1

2
tr[(Y −XB)T (Y −XB)Σ−1]) (5)
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Here, the x0 is treated as an observation we have, or a fixed number rather
than a stochastic number. According to Stambaugh (1999), this treatment
needs some in-depth discussion. If x0 is a draw from normal distribution,
it contains information on θ, γ, and σ, the information that a fixed point
lacks. According to Stambaugh (1999), the bias can be as much as one third
of the estimates. In addition, Kandel and Stambaugh (1995) suggest that if
x0 is regarded as nonstochastic, an investor loses information on x0 because
it assumes that the prior belief does not depend on x0, even though his
information set includes the pre-sample x0 and the observed data x1,...xT .

According to the calculation by Poirier (1978), the difference between the
unbiased method and the biased method is significantly non-zero. Therefore,
we need to modify equation (5) to make it unbiased by treating x0 as a draw
from a normal distribution.

As Hamilton(1994) suggested, x0 is treated as a draw from a normal dis-
tribution, and we use the following autoregressive function
xt+1 = θ+γxt+ vt+1. Two assumptions are required here: vis are indepenent
and γ is less than 1. According to Hamilton(1994), the following steps can
be taken to derive the likelihood of x0. First, plug in the previous iteration:
xt = θ + γxt−1 + vt, and
xt+1 = θ + θγ + γ2xt−1 + γvt + vt+1. Continue the iteration process and use
the formula for the sum of geometric series, we get the following:

xt+1

= θ + vt+1 + γ(θ + vt) + γ2((θ + vt−1) + ...

= θ/((1− γ) + vt+1 + γvt + γ2vt−1)...

The expectations of vi are zero as we assumed. By taking the expectation
of xt+1, we see that

µx

= E[xt+1 | B,Σ] = θ/(1− γ) + 0 + γ ∗ 0 + γ2 ∗ 0...

= θ/(1− γ)
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Therefore, the mean of xt+1 is µ = θ
1−γ . Given the assumption that the

variances of vi are constant and equal to σ2v and vi are independent, the
variance of xt+1 is calculated by:

σ2x
= E[(xt+1 − µx)2 | B,Σ]

= E(vt+1 + γvt + γ2vt−1...)
2

= (1 + γ2 + γ4 + ...)σ2v

=
σ2v

1− γ2

.
Using the formula for geometric series, the expectation of (xt − µx)

2 is

given by σ2
v

1−γ2 . The likelihood function of x0 is given by a standard normal
distribution likelihood

p(x0 | B,Σ) = (2πσ2x)
− 1

2 exp(− 1

2σ2x
(x0 − µx)2)

Combining the likelihood conditional on x0 and the likelihood of x0, we get
the likelihood function of D, or the entire information set.

p(D | B,Σ) = p(D | x0, B,Σ)p(x0 | B,Σ) (6)

= (2πσx2)
− 1

2 | 2πΣ |−
T
2 exp(−1

2
σ−2x (x0 − µx)2 −

1

2
tr[(Y −XB)T (Y −XB)Σ−1])

Equation (6) is the likelihood function we will use.

2.2 Prior Beliefs

Depending on the investor’s beliefs, the prior belief β can be diffuse, meaning
the predictive function does not contain much information and therefore has
little or no predictability; or the prior belief on β can be dogmatic, meaning
the predictive function gets a lot of trust. In between these two extremes lies
the informative prior, which contains some information but not too much.
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In the same line with other academic papers, investor’s prior belief on β is
assumed by Wachter and Warusawitharana (2009) to follow a normal distri-
bution in this paper. β is the most important parameter that determines the
predictability of the predictive function. The prior belief on β, however, is
not isolated. It is also related to the other parameters.

Let CuC
T
u be the Cholesky decomposition of Σu. (i.e. CuC

T
u = Σu). Basi-

cally we are taking the square root of Σu, a matrix.
Let η = C−1u σxβ to be the normalized β. Wachter and Warusawitharana

(2009) made the following assumption about η: η ∼ N(0, σ2ηIn), where In is
identity NxN matrix. σeta is a constant assumed by investors.

B contains β, α, γ and θ. Assume that the prior belief for β is conditional
on the other parameters:

p(B,Σ) = p(β | α, θ, γ,Σ)p(α, θ, γ,Σ) (7)

Since η ∼ N(0, σeta
2In), and η = C−1u σxβ, the mean of β is also 0 and the

variance of β is σeta
2σ−2x CuInC

T
u = σ2nσ

−2
x Σu. It is much easier to find a prior

on η than on β because η is closely related with R2, which will be shown in
the later part of the thesis. Therefore, the specification of distribution of β
is:

β | α, θ, γ,Σ ∼ N(0, σ2ησ
−2
x Σu) (8)

The priors on the rest of the parameters are independent, and the joint
prior is the product of the priors. According to Stambaugh(1999) and Zell-
ner(1996), the uninformative Jeffery’s prior has the following form:

p(α, θ, γ,Σ) ∝ σx | Σu |
1
2 | Σ |−

N+4
2 (9)

Therefore, according to the appendix C and appendix D in Wachter and
Warusawitharana (2009), the joint distribution of the prior is given by

p(B,Σ) = p(β | α, θ, γ,Σ)p(α, θ, γ,Σ) ∝ σN+1
x | Σ |−

N+4
2 exp(−1

2
βT (σ2ησ

−2
x Σu)

−1β)(10)

Since the prior distribution for β is a normal distribution, and the data
are assumed to be normal, the posterior for β should also be in the form of
a normal distribution.
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The reason for separating out β in the prior is that β is closedly related to
the R2 of the predictive function. In fact, in the case of one asset,
R2 = β2σ2x(β

2σ2x + Σu)
−1 = η2

η2+1

In the case of multiple assets, maxR2 = ηηT

ηηT+1 Since R2 can be expressed by

functions containing η alone, a prior on η implies a prior on R2. Depending
on different beliefs of R2, the specifications of η also varies.

2.3 Posterior Beliefs

According to Bayes’ rule, the posterior is equal to a constant times likelihood
function times prior. The mathematical formula is denoted by:

p(B,Σ | D) ∝ p(D | B,Σ)p(B,Σ) (11)

Where p(D | B,Σ) is the likelihood of the data and p(B,Σ) is the joint prior
distribution on all the parameters. After we plug in the results from previous
parts, the equation does not take the form of standard density function. Thus,
it is intractable to get the constant and come up with the exact distribution
function. However, with the Metropolis-Hastings algorithm, we are able to
approximate the posterior distribution. In a Metropolis-Hastings algorithm,
we start from a point and a starting distribution and in each subsequent
step, we sample a candidate point from the jumping distribution q, which is
| Σ |−T+N+4

2 exp(−1
2tr[(Y−XB)T (Y−XB)Σ−1]) when we sample Σ. Then, the

acceptance ratio calculated and the next candidate point is given by either
the new candidate point or the previous candidate point. In the end, the
distribution of the simulated values will converge to a stationary posterier.
The acceptance/rejection rule is that we accept the new candidate point with

the probability of a = min(1, π(x∗)q(xt|x∗)π(xt)q(x∗|xt) ), where π(x) is the target posterior
distribution of Σ. Otherwise, the old point is kept. The Metropolis-Hastings
allows the jumping distribution to be asymmetrical, meaning q(x∗ | xt) does
not have to equal to q(xt | x∗). The speed for finding the stationary point
in substantially increased, while both methods lead to convergence to the
unique stationary distribution.

Here, we want to show that the Metropolis-Hastings method will approx-
imate the posterier disbution that we are looking for. There are two steps
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involved in the proof: first, to prove that the algorithm generates a unique
stationary distribution, and second, to prove that the stationary distribution
equals the target posterior distribution.

First, we show that the algorithm generates a unique stationary distribu-
tion. According to Tierney(1994), suppose q is the jumping distribution and
Π is a stationary distribution for the markov chain process. If a markov chain
process is Π − irreducible and Πq = Π , then the process is positive recur-
rent and Π is the unique stationary distribution. If the process is aperiodic,
then the unique stationary distribution converages no matter what the initial
distribution is. For a Metropolis-Hastings algorithm, irreducible means that
any state has a positive probability of reaching to any other state; and ape-
riodic means the common divisor of the set of times that the chain returns
to the initial point is 1. Πq = Π imply that if the initial distribution equals
π, then the distribution at time 1 also equals Π. With these conditions, the
Metropolis-Hastings algorithm with jumping distribution q will generate a
stationary distribution.

It is assumed that the algorithm used in the Metropolis-Hastings method
has the characteristics of irreducible, positive recurrent and aperiodic. There-
fore, the Metropolis-Hastings algorithm will generate a unique stationary dis-
tribution.

Second, we would like to show that the stationary distribution Π equals
the target posterior distribution π. In the case of this paper, the posterior of
Σ was derived first. The proof idea is from Christensen, Johnson, Branscum
Hanson (2010).

Theorem: Choose any initial point Σ0. For each step j=1,2,...M, a can-
didate point Σj∗ is sampled from the jumping distribution q(Σj∗ | Σj). Let
Z = Σj∗, Y = Σj, and U have a uniform distribution U(0, 1). Let

X = Σj+1 =

{
Σj∗, if U <a(Z | Y ) (12)

Σj, otherwise (13)

where a(Z, Y ) = min(1, π(Z)q(Y |Z)π(Y )q(Z|Y )). Assume that the following equation is
satisfied:

a(Z, Y )π(Y )q(Z, Y ) = a(Y, Z)π(Z)q(Y, Z).
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We will show that if the density of Y is π(Y ) then the density of X, g(X),
equals to the target posterior distribution π(X).

Proof of the theorem: Consider the two possible outcomes of the step:
U < a(Z | Y ) and U > a(Z | Y ). In the first case, Z becomes the new X.
In the second case, X remains at Y. Assume that δ(X − Y ) = 1 if X = Y
and δ(X − Y ) = 0 otherwise; δ(X − Z) = 1 if X = Z and δ(X − Z) = 0
otherwise. Then, we have the derivations below.

g(X) =
∑
Z

∑
Y

π(Y )q(Z | Y )a(Z, Y )δ(X − Z) +∑
Z

∑
Y

π(Y )q(Z | Y )(1− a(Z, Y ))δ(X − Y )

g(x) is the sum of two cases mentioned above

=
∑
Y

π(Y )q(X | Y )a(X, Y ) +∑
Y

δ(X − Y )
∑
Z

[1− a(Z, Y )]q(Z | Y )π(Y )

Since in the first case Z is accepted as X, we can replace Z with X.

= H1 +H2

Let H1 and H2 denote the two parts of the g(X). First consider the case
in which U < a(Z | Y ) happened, denoted by H1. Divide the case into two
subcases: a(X, Y ) = 1 and a(X, Y ) 6= 1. Then, plug in the value of a(X,Y)
and we have the following function.
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H1

=
∑
Y

π(Y )q(X | Y )a(X, Y )

=
∑

(Y :a(X,Y )=1)

π(Y )q(X | Y )a(X, Y )

+
∑

(Y :a(X,Y )6=1)

π(Y )q(X | Y )a(X, Y )

Divide the case into two subcases: a(X,Y)=1 and a(X, Y ) 6= 1

=
∑

(Y :a(X,Y )=1)

π(Y )q(X | Y )

+
∑

(Y :a(X,Y )6=1)

π(Y )q(X)

∗π(X)q(Y | X)

π(Y )q(X | Y )

Plug in the values of a(X,Y) in the two subcases, based on the definition

of a(X,Y) specified earlier.

=
∑

(Y :a(X,Y )=1)

π(Y )q(X | Y ) +
∑

(Y :a(X,Y )6=1)

π(X)q(Y | X)

Then, consider the case in which U > a(Z | Y ) happened, denoted by H2.
Again, divide this case into two subcases and plug in the values of a(Z, Y ) in
each subcase.
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H2

=
∑
Y

δ(X − Y )
∑
Z

[1− a(Z, Y )]q(Z | Y )π(Y )

=
∑
Y

δ(X − Y )
∑

(Z:a(Z,Y )=1)

[1− a(Z, Y )]q(Z | Y )π(Y ) +

∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

[1− a(Z, Y )]q(Z | Y )π(Y )

Divide the case into two subcases: a(X,Y)=1 and a(X, Y ) 6= 1

= 0 +
∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

[1− a(Z, Y )]q(Z | Y )π(Y )

After we plug a=1 for the first term, we see that

the first term become 0. Only the second term is left.

=
∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

q(Z | Y )π(Y )−

∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

q(Z | Y )π(Y )a(Z, Y )

=
∑
Y

δ(X − Y )
∑

(Z:a(Z,Y )6=1)

q(Z | Y )π(Y )−

∑
Y

δ(X − Y )
∑

(Z:a(Z,Y )6=1)

q(Z | Y )π(Y )

∗π(Z)q(Y | Z)

π(Y )q(Z | Y )

Here we plug in the value of a(Z, Y )when a(Z, Y ) 6= 1

=
∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

q(Z | Y )π(Y )−

∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

π(Z)q(Y | Z)

=
∑
Y

δ(X − Y )
∑

(Z:a(Z,Y ) 6=1)

[q(Z | Y )π(Y )−

π(Z)q(Y | Z)]

=
∑

(Z:a(Z,X)6=1)

[q(Z | X)π(X)− π(Z)q(X | Z)]

In this case, the value of Y is adopted as the value for X

=
∑

(Y :a(Y,X) 6=1)

[q(Y | X)π(X)− π(Y )q(X | Y )]

Change the variable name from Z to Y
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By definition of the function a(X,Y), (Y : a(X, Y ) = 1) = (Y : a(Y,X) 6=
1)∪ (Y : q(Y | X)π(X) = π(Y )q(X | Y ) because the left side of the equation
implies either a(Y,X) = 1 or a(Y,X) < 1. We will use this condition in the
following derivation. In addition, we know that

∑
Y q(Y | X) = 1 as q(Y

| X) is a well-defined conditional density. Then, the above equation can be
modified as follows.
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g(X)

=
∑

(Y :a(Y,X)6=1)

[q(Y | X)π(X)−

π(Y )q(X | Y )] +
∑

(Y :a(X,Y )=1)

π(Y )q(X | Y ) +

∑
(Y :a(X,Y )6=1)

π(X)q(Y | X)

Take the sum of H1 and H2

=
∑

(Y :a(Y,X)6=1)

[q(Y | X)π(X)−

π(Y )q(X | Y )] +
∑

(Y :a(X,Y ) 6=1)

π(X)q(Y | X) +

∑
(Y :a(Y,X)6=1)

π(Y )q(X | Y ) +

∑
(Y :q(Y |X)π(X)=π(Y )q(X|Y )

π(Y )q(X | Y )

Use the condition that(Y : a(X, Y ) = 1) = (Y : a(Y,X) 6= 1) ∪
(Y : q(Y | X)π(X) = π(Y )q(X | Y ))

=
∑

(Y :a(X,Y )6=1)

π(X)q(Y | X) +

∑
(Y :q(Y |X)π(X)=π(Y )q(X|Y )

π(X)q(Y | X) +

∑
(Y :a(Y,X)6=1)

π(X)q(Y | X)

Under the condition of (q(Y | X)π(X) = π(Y )q(X | Y ),

we can exchange q(Y | X)π(X)with π(Y )q(X | Y )

Also, the plus and minus
∑

(Y :a(Y,X)6=1)

π(Y )q(X | Y )

cancel out each other

= ΣY q(Y | X)π(X)

The previous step included all three possible scenarios of Y

= π(X)

because
∑
Y

q(Y | X) = 1
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Therefore, g(X) = π(X) and X has the distribution π, which is the target
posterior distribution. We have shown that starting from any distribution,
using Metropolis-Hastings algorithm we will get the stationary distribution
Π that is equal to the target distribution π.

According to Chib and Greenberg (1995), it is faster to use the block-at-a-
time algorithm. Here, suppose the vector B is devided into two blocks, with
b1 consists of all the αi and βi, and b2 consists of the θ and γ in the predictive
functions. Then, by the block-at-a-time algorithm, Wachter and Warusawith-
arana (2009) first sample from p(Σ | B,D), then sample from p(b1 | b2,Σ, D),
and finally sample from p(b2 | b1,Σ, D). The jumping distribution for Σ is
| Σ |−T+N+4

2 exp(−1
2tr[(Y −XB)T (Y −XB)Σ−1]). The proposal distribution

for b1 and b2 are both normal. After sampling from the conditional posteriors
with the order of Σ, b1, and b2 , it is possible to arrive at the converging full
posterior on all of the variables.

2.4 Predictive Distribution

Given the histogram of posterier distribution p(B,Σ | D), we want to use the
information to determine portfolio decisions. To do so, we need to derive the
predictative probability function p(rT+1 | D). First, we multiply the posterier
by the likelihood function of future observation.

p(rT+1, B,Σ | D) = p(rT+1 | B,Σ, D)p(B,Σ | D) (14)

Integrating the joint density function gives the predictive density distribu-
tion function.

p(rT+1 | D) =

∫
p

(rT+1, B,Σ | D)dBdΣ =

∫
p(rT+1 | B,Σ, D)p(B,Σ | D)dBdΣ(15)

Utility is a measurement of happiness of an investor associated with the
return in a specific state. An investor has to maximize the expected utility
E(U) next period given all the available information at time T. He has to
achieve maxET [U(WT+1) | D] by adjusting his portfolio weights between
the stock index, risky bond, and risk-free bonds. WT+1 is the wealth of
the investor in the next period and is calculated by taking the weighted
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average of expected returns of the asset returns in his portfolio according to
his allocation weights. The wealth next period is thus given by:

WT+1 = WT [w1(rt+1,1 + iT+1) + w2(rt+1,2 + iT+1) + (1− w1 − w2)iT+1] (16)

Where rt+1,1 is the predicted return for the stock index at time T +1, rt+1,2

is the predicted return for the Treasury bonds at time T + 1, and iT+1 is the
return for risk-free cash savings observed at time T. w1, w2 are weights for
the stock index and bonds at time T , respectively. 1-w1−w2 is the weight on
the risk-free asset. The function is set up so that the total return in the next
period is determined by the weighted average of returns in different assets in
the current period.

Depending on different assumptions on the utility, the optimal weight is
also different. Wachter and Warusawitharana (2009) used a quadratic utility
function. The function is easy to analyze mathematically. However, the
function is unusual because economics theory usually suggests a diminishing
yet positive marginal utility. A diminishing marginal utility implies that for
someone who has USD 100 of wealth another USD 100 gives him substantial
utility; while for someone who has USD 10000000 of wealth, another USD 100
means almost nothing to him. In contrast, in a quadratic utility function,
there is a satiation level beyond which the investor prefers less returns to
more. This is an implausible assumption as people typically do prefer a high
return. A typical risk-averse person in economics is sometimes assumed to
have iso-elastic utility instead. An iso-elastic utility function describes a risk-
averse person that has diminishing marginal utility. Iso-elastic functions have
the same elasticity, which is the ratio of percentage change in the dependent
variable to the percentage change in the independent variable. Suppose that
we do use the quadratic utility. Then, the investor demands the greatest risk-
adjusted return R = E[rp] − A

2 var[rp], where A is the risk-averse coefficient
with a larger value indicating a less risk-averse person. The risk-adjusted
return is also called certainty-equivalent return (CER). The risk-adjusted
return under the quadratic utility assumes that people are risk averse. Thus,
a certain 3% return is better than a fair coin flip with 0% and 6% payoff.
Moreover, given the same expected return, the larger the variance of the
payoffs, the less desirable the strategy is. Furthermore, if the risk-averse
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coefficient for someone is large, he dislikes volatility and will get a lower
utility than someone with a small risk-tolerant coefficient when judging a
same portfolio.

To maximize the risk-adjusted return, we just need to solve the problem:
max[w1(rt+1,1+iT+1)+w2(rt+1,2+iT+1)+(1−w1−w2)iT+1]− A

2 var[w1(rt+1,1+
iT+1)+w2(rt+1,2+iT+1)+(1−w1−w2)iT+1], such that the sum of three weights
is 1

Simplifiying the above equation, it is equivalent to max[it+1 + w1rt+1,1 +
w2rt+1,2− A

2 (
∑2

i=1

∑2
j=1 σijwiwj], where σij is the variance-covariance matrix

of stock returns and bond returns:

σij =

(
σ1,1 σ1,2
σ2,1 σ2,2

)
Take the first derivative and let the derivative equal to zero, we have E −

A
∑2

j=1 σijwj = ~0 where ET is a 2x1 vector [rt+1,1, rt+1,2]. Then, it is possible
to solve for the weight in stocks and bonds. Since the sum of weights allocated
in stocks, bonds, and riskless assets equals to 1, we can solve for the weight
of wealth allocated to riskless asset once we know w1 and w2 By solving the
equation above, we get w = σ−1E

A . This weight vector is the one that optimizes
the overall utility of an investor, given all the data, the investor’s prior beliefs
and the investor’s risk tolerance level. After the weight vector is calculated
each period, the investor’s actual return in the period can also be calculated
by the end of the period. It is then possible to compare realized annualized
returns from different prior beliefs and different risk tolerance levels.

3 Results and Discussion

Wachter and Warusawitharana (2009) tried to build an asset allocation with
risk-free bonds, long term treasury bonds, and the S&P 500 index. Two sets
of regressions are run, first using the dividend-to-price ratio, and second using
the yield spread. Furthermore, Wachter and Warusawitharana (2009) seeked
to optimize the utility which is assumed to be quadratic.
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3.1 Data

Quarterly stock index, 3-month treasury bond, and 10-year treasury bond
data are collected. The excess returns for stocks and bonds are calculated by
subtracting the quarterly returns of 3-month treasury bond from the that of
the stock index and the 10-year treasury bond. The dividend-price ratio is
the amount of total dividends paid in the index in the previous 12 months
divided by the price level. The yield spread is calculated by subtracting the
yield of 3-month treasury bond from the yield of 5-year treasury bond. The
data were collected from 1952 to 2004.

3.2 Comparing the Posterior and Prior

Wachter and Warusawitharana (2009) ran one simulation on each of the pre-
dictive variables to get the histogram of posterior on R2. The simulation
is performed using the Metropolis-Hastings method specified above. Some
100,000 initial burn-in data are discarded because they are noisy. Since the
prior on η is also the same as the prior on R2 as we demonstrated before, we
can construct the posterior on R2 based on other primative variables such as
α and β, and then compare the prior and the posterior distribution on R2.

The left side of the graph shows that the investor’s belief on the predictability
changed from prior to posterior. In other words, the data changed the way
the investor think about the prediction model.

From the graph, it’s obvious that the posterior probability that R2 exceeds
k is greater than the prior probability when k <0.02 when the posterior is
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based on the dividend yield. After k=0.02, the posterior probability is lower
than the prior probability. When the posterior is based on the yield spread,
on the other hand, the posterior probability that R2 exceeds k is always above
the prior probability.

The right side of the graph shows the different probability density function
over the whole range of R2. Again, the data changed the investor’s percep-
tion of the predictability of the model. While the probabily density function
for the prior is strictly decreasing over the whole R2, both of the probability
density functions for posterior first rise, then peak at around R2=0.02 before
they fall back. Since the posterior with the yield spread data generally was
always above the posterior with the dividend yield data, it reflects a more
diffuse belief, and the probability density function is flatter and has a fatter
tail.
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Also shown are the posterior means for values of ση equal to 0, 0.04, 0.08,
and ∞. This corresponds to a P (R2 > 2%) of 0, 0.0005, 0.075, and 0.999,
respectively. The different values of ση reflects the different prior belief char-
acteristics. A low P (R2 > 2%) reflects a dogmatic view that the regression
function has no predictive power, while a higher value reflects a diffuse view
and uninformative prior. The results of posterier means are also compared
with the results from a simple OLS.

As Panel A shows, the βs for stocks are positive and not close to zero when
P (R2 > 2%) = 0.0005, 0.075, and 0.999, although not statistically significant,
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implying that dividend yield does predict the stock returns. The dividend
yield does not predict bond returns as the βs for bonds are close to zero. As
the prior becomes more informative, the β on stocks become closer to zero,
since the investor believes that the regression function has less predictive
power now. For example, when P (R2 > 2%)=0.999, the β for stock is 1.46.
When P (R2 > 2%)=0.0005, the β for stock is only 0.69.

As Panel B shows, yield spread predict the bond returns well since the
coefficients for β are significantly non-zero when . Similarly, as the prior
becomes more dogmatic, the β for bonds decreases.

The coefficient for the autoregressive model in Panel A and Panel B, which
are denoted as θ1 in the table, are very close to 1 and statistically significant,
showing that the predictive variables themselves have strong correlations over
time.

Interestingly, the long-run excess returns for stocks and bonds, which are
E[rbond | B,Σ] and E[rstock | B,Σ], are relatively stable in each Panel, no
matter what prior we use. For example, in Panel A, E[rbond | B,Σ] equals
0.18 or 0.17 within the whole range of P (R2 > 2%). The 0.18 number is also
close to the excess return result from the OLS regressions, which gives 0.23
excess returns.

The expected value for the prediction variable, E[x | B,Σ], also shows
stability under different priors. In Panel A, E[x | B,Σ] equals -3.49 or -3.50;
in Panel B, the expected value equals 0.97.

22



The upper part of the graph shows the quarterly excess returns on stocks
and bonds under different priors with dividend yield as predictive variable.
On the x-axis is the Log Dividend Yield(predictive variable xt); on the y-axis
is the percentage excess returns. The solid lines denote diffuse priors, and
the dotted lines denote dogmatic priors. The slope of the lines correspond to
β from the table 1. While the excess returns for bonds don’t change much
because of poor predictability of the dividend yield on bond returns, the
excess return for stocks increases substantially as dividend yield increases
for diffuse priors. The excess returns keep at a similar level for dogmatic
priors. The bottom part of the graph shows the suggested weight of stocks
and bonds. For a diffuse prior, the weights on stocks can vary from 0% to
more than 50% as log dividend yield rises from -4.2 to -2.8. The stock weights
for dogmatic prior remains at about 30% as the log dividend yield changes.
Similarly, the weights on bonds for a diffuse prior falls from less than 50% to
less than 0% as the log dividend yield rises; while the weights do not change
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much for a dogmatic prior.

The upper part of the graph shows the quarterly excess returns on stocks and
bonds under different priors with yield spread as predictive variable. Same as
the previous graph, on the x-axis is the Yield Spread (predictive variable xt);
on the y-axis is the percentage excess returns. The solid lines denote diffuse
priors, and the dotted lines denote dogmatic priors. The slope of the lines
again correspond to β from the table 1. For a diffuse prior, the excess returns
for stocks and bonds increases as yield spreads increases. For example, the
excess return for bonds increases from −2% to 2% as yield spread increases
from −1% to 3%. The dogmatic prior sees the excess returns remain almost
unchanged as yield spread increases. The bottom part of the graph shows
the suggested weight of stocks and bonds. For a diffuse prior, the weights
on stocks and bonds vary from 0% to more than 75% and from −200% to
200% respectively as yield rises from -1 to 3. The stock and bond weights for
dogmatic prior remains about the same as the log dividend yield changes.
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3.3 The Implication on Asset Allocation

Wachter and Warusawitharana (2009) simulated the posterior starting in
1972 to allow for enough data. The posterior is approached by simulating
2,000,000 data and discarding the first 50,000. The investor was assumed
to have a diffuse prior and risk aversion coefficient of A=5. The investor
rebalances the portfolio at the beginning of each quarter. From the sim-
ulation, Wachter and Warusawitharana (2009) were able to calculate the
out-of-sample performance in the next section. In the graph, the x-axis is
time and the y-axis is portfolio weights. Since the graph shows the asset
allocation using the most diffuse priors (ση = 0), the asset allocation is in-
evitably more volatile than the allocation with more dogmatic priors . Panel
A shows the weights with the dividend yield as the predictive variable. Over
the whole period, the weight for long-term bond holding, denoted by the dot-
ted line, was negative (shorting), showing that the bond exhibit unfavorable
risk-adjusted returns over the period. The weights for stocks, denoted by
dashed line, has been positive until 1993, when the internet bubble and the
“new economy” started to develop. From this time, the correlation between
stocks and the dividend yield started to decrease. Notice that the dividend
yield and the stock holding weights are positively correlated, showing that
the higher the dividend yield, the higher the expected stock returnss, and
therefore the higher weights are assigned to stocks. The bonds exhibit much
smaller correlation with dividend yield.

Panel B shows the change in weights over time with yield spread as the
predictive variable. Again, the weights hown here were used to calculate the
returns in the next section. Here, the bond weights, denoted by dotted lines,
follow the yield spread closely. For example, when the yield spread dropped
substantially in 1980, the bond weights also dropped from 0% to −400%.
When the yield spread spiked from 2002 to 2003, the bond weights followed
the trend and increased from −200% to 200%. The stock weights, denoted
by dashed lines, levelled off after mid-1990s.
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3.4 Performance

To assess the performance of the model, the concept of risk-adjusted return is
again used. This measure tell us how much the strategy worth by calculating
how much the investor is willing to accept as certainty returns in exchange
for giving up the current strategy. The following table shows the realized
risk-adjusted returns for different priors and risk-tolerance coefficients based
on two datasets over the twenty-two year period.
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The panel A of the above table hows the Sharpe ratios and the risk-adjusted
returns when dividend yield is the predictor. The higher the Sharpe ratio and
the risk adjusted return, the better. It is interesting that market timing does
increase the out-of-sample performance relative to OLS and the dogmatic
prior. In fact, P (R2 > 2%) = 0.0005 has the best risk-adjusted return
performance and the highest Sharpe ratio.

Panel B of Table 2 shows analogous results for the yield spread as the
predictor variable. OLS again performs the worst in the risk-adjusted re-
turn metric, and the diffuse and dogmatic priors perform better. However,
skeptical priors perform best. When A (the risk tolerance parameter) equals
2, a diffuse prior results in 5.47% annualized return, while a dogmatic prior
returns 5.61% annually. However, For the prior with P (R2 > 2%) = 0.075,
the annualized return is 9.19%. These results show that the skeptical prior
lead to superior out-of-sample performance over the postwar period, as well
as to less extreme portfolio allocations.
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As shown from the above graph, the strategy performs quite consistently
over subperiods as well. In Panel A, when A=2 and the time period is from
1974 to 1984, we see that an investor with skeptical priors generated risk-
adjusted return of 7.99%, which was higher than the 6.64% return generated
with dogmatic prior. When A=5, the skeptical investor generated 8.62% in
risk-adjusted returns, which is 54 basis points higher than an invesor with
dogmatic return. In each subperiod, the skeptical priors outperform the dog-
matic priors with the values of risk-tolerance coefficient being 2 or 5.

4 Conclusion

The paper models the portfolio choice problem based on the different beliefs
on the prior, ranging from dogmatic to skeptical and diffuse. When the
method is used in the post-war data, it is shown that even a very skeptical
investor would moderately time the market. In addition, the weights are less
volatile and deliever superior out-of-sample performances when the investor
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is skeptical of the predictability of the regression model.
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