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Abstract

This paper describes methods for determining the proportion of subjects who
benefit from a treatment in a Randomized Controlled Trial. The methods are
examined in a setting where there is one treatment and one control group,
the outcome is ordinal, and there are baseline variables available for the
subjects. The first method relies on a Linear Programming approach and
provides bounds on the proportion who benefit from a treatment. The second
method is a novel Ordinal Forest approach that provides a point estimate for
the proportion who benefit. The two methods are evaluated in a simulation
study, and a discussion on the topic is provided.
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Chapter 1

Introduction

Randomized Controlled Trials, commonly referred to as RCTs, are an experi-
mental method designed to assess the effectiveness of a new treatment. In an
RCT, subjects are assigned to either a “treatment group”, where a treatment
is applied to them, or a “control group”, used to measure the impact of the
treatment. The control group receives the “status quo” treatment, and not
the new treatment whose impact we are interested in evaluating. Subjects
are assigned to either the control or treatment group by randomization. A
simple example of such a randomization technique would be deciding on the
group assignment by the toss of a coin. While it is possible to compare more
than two treatment groups, we will restrict our analysis to the simplest case
of one treatment group and one control group. Randomized Controlled Trials
are considered the gold standard in experimental methods used to establish
causation, and are often used to evaluate the impact of policy or medical
interventions. However, we can successfully establish causation only if the
groups are as alike as possible in all respects other than the treatment re-
ceived. This is only possible if the randomization for group assignment is
done successfully.

Typically, the effectiveness of the treatment is analyzed by comparing the
mean outcome of the treatment group to the mean outcome of the control
group. This is known as the Average Treatment Effect (ATE). Let YC be
the outcome variable if the subject is in the control group, and let YT be the
outcome variable if the subject is in the treatment group. Then, the Average
Treatment Effect is given by E(YT − YC). Observe that exactly one of YC
and YT is observed for each subject.

There are several limitations to evaluating the effectiveness of a treatment
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through the ATE. Since the ATE represents only the central tendency of the
impact of the treatment, any heterogeneity in treatment effect at different
points in the distribution of the ourcome is lost. It is possible that the
outcome distributions are different in the treatment group as compared to
the control group, and the ATE doesn’t capture this difference as it only
captures the central tendency of the distribution. Secondly, ATE fails to
capture critical information when the outcome is ordinal. Consider a case
when the outcome is ordinal, defined as an integer between 0 and 15. To
calculate an estimator analogous to the ATE, we could calculate the difference
in fraction of people with outcome ≥ 7 between the control and treatment
group. Since it divides the outcome into two categories ( < 7 or ≥ 7), this
estimator misses benefits within a category. This would occur if the majority
get zero benefit but the minority gets a large benefit. Lastly, the ATE does
not address whether the treatment benefits are widespread or limited to a
selected few. More specifically, the ATE doesn’t allow us to determine the
probability that a particular subject would be better off in the treatment
group rather than the control group. In the case of ordinal outcomes, the
ATE, i.e. the mean difference in the outcome between treatment and control,
can be large while the proportion who would be better off in the treatment
group is small. The probability of being better off is not directly calculable
since we do not observe both YC and YT for the same subject, requiring us
to work in a potential outcomes framework.

Each subject has two potenital outcomes - one outcome is if the subject
was assigned to the treatment and another is if the subject was assigned to the
control group. Our aim is to calculate the fraction who benefit from the treat-
ment, i.e. the fraction of people who have a better outcome when assigned
to the treatment group as compared to the control group. As mentioned
earlier, since we do not observe both bounds, this parameter is generally
non-identifiable.

Huang et al. (2017) describes a method to obtain bounds on the pro-
portion who benefit from a treatment when the outcomes are ordinal. The
bounds are obtained using a Linear Program method. The current paper
contributes to the existing literature by proposing a novel method to obtain
a point estimate on the proportion who benefit from a treatment when the
outcomes are ordinal. The point estimate is obtained using a random forest
approach, developing on the usage of random forests in analyzing experimen-
tal data.(Foster et al., 2011) An Ordinal Random Forest (further referred to
as Ordinal Forest) developed by Hornung (2019) is used to obtain the point
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estimate.
The structure of this paper is as follows. Chapter 2 describes the linear

programming approach described by Huang et al. (2017) to obtain bounds
on the proportion who benefit from a treatment. Chapter 3 describes the
Ordinal Forest algorithm developed by Hornung (2019) and describes an
approach to obtain a point estimate on the proportion who benefit from
a treatment. Chapter 4 describes a simulation study to compare results
of the linear programming method and Ordinal Forest method. Chapter 5
provides concluding remarks and lists the advantages and disadvantages of
both methods.
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Chapter 2

Linear Program Method

In the previous chapter, we established what an RCT is, the conventional
method for calculating the average treatment effect, and the information
that the average treatment effect fails to capture. We motivated the need
for an alternate method to analyze RCTs and established the potential out-
comes framework. In this chapter, we will establish the method proposed by
Huang et al. (2017) to calculate bounds on the proportion who benefit from
a treatment applied during an RCT.

Let YC denote the potential outcome random variable under control and
let YT denote the potential outcome random variable under treatment. Sup-
pose that the outcome is ordinal with L levels, ordered from least favorable
outcome to most favorable outcome. Let X be a baseline prognostic vari-
able that is known to be correlated with the outcome. Suppose that X is
also ordinal with K levels. Let A equal 1 if the subject is assigned to the
treatment, 0 otherwise. Let Y = AYT + (1 − A)YC . For each subject, the
unobserved potential outcomes vector is (X, YC , YT ) and the observed vector
from the data is (X,A, Y ).

Our aim is to calculate the probability that a subject benefits from a
treatment, which is the probability that the potential outcome under the
treatment, YT , is greater than the potential outcome under the control, YC .
Thus, our aim is to find the parameter

ψ = P (YT > YC). (2.1)

Let πi,j be the fraction of the population with (YC , YT ) = (i, j), i.e., πi,j =
P (YC = i, YT = j). Figure 2.1 illustrates the joint distribution of the poten-
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Figure 2.1: Joint Distribution of Potential Outcomes

tial outcomes where L = 4, with our aim being to determine the sum of πi,j’s
highlighted in green. Therefore, ψ = π1,2 + π1,3 + π1,4 + π2,3 + π2,4 + π3,4.

As both YC and YT are not observable for the same subject, ψ is not ob-
servable. Huang et al. (2017) use linear programming to find the maximum
and minimum value of ψ, subject to constraints provided by the cumula-
tive distributions of the observed outcomes. Let the observed CDF for the
controls be defined such that,

F̂C(y) =

∑n
m=1 1(Ym ≤ y, Am = 0)∑n

m=1 1(Am = 0)
(2.2)

Let the observed CDF for the treatment be defined such that,

F̂T (y) =

∑n
m=1 1(Ym ≤ y, Am = 1)∑n

m=1 1(Am = 1)
(2.3)

Here, 1(P ) is an indicator function that takes value 1 if P is true, 0 otherwise.
Note that we have excluded the prognostic variable from our current analysis
for the ease of illustration. We proceed by describing the constraints on π̂i,j
∀i, j = 1, 2, .., L.

π̂i,j ≥ 0 ∀ i, j = 1, 2, ..., L

L∑
i=1

L∑
j=1

π̂i,j = 1
(2.4)
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Equation 2.4 establishes the probability constraints on π̂i,j. F̂C(y) and

F̂T (y) have alternative expressions given in terms of π̂i,j.

F̂C(y) =

y∑
i′=1

L∑
j=1

π̂i′,j ∀ y = 1, ..., L− 1

F̂T (y) =

y∑
j′=1

L∑
i=1

π̂i,j′ ∀ y = 1, ..., L− 1

(2.5)

Equation 2.5 establishes the constraints imposed on the π̂i,j’s by the ob-

served cumulative distribution functions, F̂T (y) and F̂C(y). This implies that
while we know that while πi,j is unobservable, they must sum up to the ob-
servable CDF. This can be illustrated using Figure 2.1. We know that, π̂1,1 +

π̂2,1+π̂3,1+π̂4,1 = F̂C(1), but we don’t know the values of π̂i,1 for i = 1, 2, 3, 4.

Similarly, we know that, π̂1,1+π̂2,1+π̂3,1+π̂4,1+π̂1,2+π̂2,2+π̂3,2+π̂4,2 = F̂C(2).
Subject to these constraints provided in Equations 2.4 and 2.5, we want to

find the maximum and minimum possible values of
∑

j>i π̂i,j ∀i, j. The max-
imum value is calculated in Linear Program 2.1. To calculate the minimum
value, we simply replace the maximum with the minimum.

Maximize
∑
j>i

π̂i,j ∀i, j

subject to

F̂C(y) =

y∑
i′=1

L∑
j=1

π̂i′,j ∀ y = 1, ..., L− 1

F̂T (y) =

y∑
j′=1

L∑
i=1

π̂i,j′ ∀ y = 1, ..., L− 1

π̂i,j ≥ 0 ∀ i, j = 1, 2, ..., L

L∑
i=1

L∑
j=1

π̂i,j = 1

(Linear Program 2.1)
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2.1 Calculating Bounds by Inspection

Linear Program 2.1 can be solved using the Simplex Algorithm. A description
of the Simplex Algorithm is beyond the scope of this thesis. To provide more
intuition for the process of obtaining ψ by solving a Linear Program, this
section will apply the Linear Programming method of calculating bounds
on ψ to a simple dataset with 4 observations and with L = 4. In simple
cases, the linear program can be solved by inspection. This example will also
illustrate that if the levels in the outcome variable are non-trivial compared
to the sampe size, the bounds become uninformative.

Consider the dataset:

A Y

0 1
0 3
1 2
1 4

From the above observed data, we can calculate F̂C(y) and F̂T (y) for y =
1, 2, 3, 4.

F̂C(1) = 0.5, F̂C(2) = 0.5, F̂C(3) = 1, F̂C(4) = 1 (2.6)

F̂T (1) = 0, F̂T (2) = 0.5, F̂T (3) = 0.5, F̂T (4) = 1 (2.7)

Therefore, the linear program in Linear Program 2.1 can be written as:
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Maximize π1,2 + π1,3 + π1,4 + π2,3 + π2,4 + π3,4

subject to
4∑

j=1

π1,j = 0.5

2∑
i=1

4∑
j=1

πi,j = 0.5

3∑
i=1

4∑
j=1

πi,j = 1

4∑
i=1

πi,1 = 0

2∑
j=1

4∑
i=1

πi,j = 0.5

3∑
j=1

4∑
i=1

πi,j = 0.5

πi,j ≥ 0 ∀ i, j = 1, 2, 3, 4
4∑

i=1

4∑
j=1

πi,j = 1

(Linear Program 2.2)

We can observe that
∑4

i=1 πi,1 = 0, which implies that all values in the
first column of Figure 2.1 must be 0. Since we are trying to maximize the
highlighted values, we set π1,2 = 0.5 and still satisfy all the constraints. After
setting π1,2 = 0.5, we force all values in column three to be 0. We know that,∑2

i=1

∑4
j=1 πi,j = 0.5 and

∑3
j=1

∑4
i=1 πi,j = 0.5. Given that π1,2 = 0.5, π3,4

must be 0.5. Therefore, π1,2 + π1,3 + π1,4 + π2,3 + π2,4 + π3,4 = 1 as illustrated
in Figure 2.2, and hence, ψmax = 1 is the maximum value of the objective
function.

Now, instead of maximizing the objective function in Linear Program 2.2,
we can attempt to minimize it by inspection. We can observe that since∑4

i=1 πi,1 = 0, all values in the first column of Figure 2.1 must be 0. Since
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Figure 2.3: Minimum Joint Distribution of Potential Outcomes
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we are trying to minimize the green values, we set π2,2 = 0.5 and still satisfy
all the constraints. Setting π2,2 = 0.5 forces all values in column three to
be 0. We also know that

∑3
i=1

∑4
j=1 πi,j = 1, which implies that π3,4 = 0.5.

Therefore, π1,2 + π1,3 + π1,4 + π2,3 + π2,4 + π3,4 = 0.5 as illustrated in Figure
2.3, and ψmin = 0.5 is the minimum value of the objective function. It should
be noted that different values of πi,j’s might yield the same ψmin and ψmax,
but ψmin and ψmax are unique for a set of πi,j values.

2.2 Incorporating Baseline Variables

The bounds calculated on the proportion who benefit from a treatment can
be extended to incorporate a baseline variable. This section offers a descrip-
tion of the method provided by Huang et al. (2017) to incorporate a baseline
variable. This baseline variable is recorded before randomization, is a cat-
egorical variable, and is known to be correlated with the outcome variable.
Incorporating a baseline variable or restriction leads to a larger or equal lower
bounds, and smaller or equal upper bound.

Let there be a baseline variable X, with K levels, x1, x2, ..., xK . Let pX
be the probability mass function, with pX(xk) = P (X = xk) > 0 ∀ k. We
proceed with our analysis as above, but we divide or stratify our population
into K subpopulations, based on X. For each k, let F k

C and F k
T be the

distribution functions on YC and YT conditional on X = xk.

F̂ k
C(y) =

∑n
m=1 1(Ym ≤ y, Am = 0, Xm = xk)∑n

m=1 1(Am = 0, Xm = xk)
(2.8)

F̂ k
T (y) =

∑n
m=1 1(Ym ≤ y, Am = 1, Xm = xk)∑n

m=1 1(Am = 1, Xm = xk)
(2.9)

We solve the linear program in Linear Program 2.1, but we proceed by
solving it for each subpopulation or stratum of the baseline variable, and so
our parameter is calculated for each stratum. Let p̂X(xk) = 1

n

∑n
m=1(Xm =

xx). The sample estimate for the population parameter of the lower bound is
then defined as a weighted average of the estimate in each stratum. We use
Linear Program 2.1 to estimate, ψl,1, ψl,2,...,ψl,k. We also know that pX(xk)
is the probability that the observation in the kth stratum. Therefore, using
the law of total probability,
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ψl =
K∑
k=1

ψl,kp̂X(xk) (2.10)

The upper bound is defined similarly. Huang et al. (2017) provide a
method to include only one baseline variable. Only ordinal baseline variables
can be used. Continuous variables must be discretized if they are to be used
as a baseline variables, since the distribution funcitons in Equation 2.8 and
2.9 cannot be obtained for continuous variables. Huang et al. (2017) observe
that the bias and standard error of the estimated bounds are not adversely
affected when the baseline variable is discretized finely compared to coarsely.

Huang et al. (2017) observe that the estimator for the bounds can have
substantial bias, which may be highly dependent on the data generating
distribution. Deriving a general bias correction is very challening since the
estimators for the bounds do not have a simple analytical form (and instead
is represented as solutions to linear programs).
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Chapter 3

Ordinal Forest Method

In the previous chapter, bounds on the parameter ψ were provided. It was
stated that ψ is generally non-identifiable, as outcomes in treatment and
control group are not observable at the same time, i.e. YT and YC cannot
both be observable for a single subject at the same time. However, we may
be interested in arriving at a point estimate for ψ, defined as ψ̂ for several
reasons. It may be the case the bounds provided using the Linear Program-
ming method are either too wide or that certain clinical settings might value
a point estimate over bounds in their analysis of the experiment. This chap-
ter lays out a machine learning method for providing a point estimate of ψ.
The first section follows James et al. (2011) in providing a background on
the Random Forest method. The second section lays out a novel algorithm
that uses Random Forests to obtain ψ̂. This method is evaluated in Chap-
ter 4, and ψ̂ obtained is compared to the bounds provided by the Linear
Programming method.

3.1 Elements of a Random Forest

3.1.1 Decision Trees

Decision trees can be used in classification and regression problems. A clas-
sification problem involves predicting the category, or class, that a subject
belongs to, given a list of covariates, or baseline variables. A regression prob-
lem involves predicting the numerical outcome of a subject, given a list of
covariates, or baseline variables. Decision trees consist of a series of split-
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ting rules, starting at the top of the tree, which contains all the subjects.
Each split assigns subjects which optimize a specific criteria to one of two
branches, and the remaining subjects are assigned to the other branch. In a
regression problem, the predicted outcome for these subjects is given by the
mean outcome for all the subjects in that node. In a classification problem,
the majority class of a node is chosen as the class assignment for all members
of the node. The predictor space is defined as the space of all the covariates,
or baseline variables available for the subjects in the experiment. The deci-
sion tree can also be thought of as a method used to segment the predictor
space into a number of regions. Each region corresponds to a terminal node
of the tree, and the subjects in each region satisfy the criteria defined by all
the splitting rules that led to the terminal node. The points along the tree
where the predictor space is split is also called an internal node.

The process of splitting the tree involves a top-down approach known as
recursive binary splitting. It begins at the top of the tree, at which point all
subjects belong to the same node. Analogously, it begins with all subjects
belonging to the same region. Splits are made successively with each split
creating two new branches in the tree, or splitting the region into two regions.
Creating such a split involves selecting a baseline variable, Xj, and a ‘cut-
point’ s, splitting subjects into two nodes or regions defined by {X|Xj < s}
and {X|Xj ≥ s}. For clarity, {X|Xj ≥ s} defines the node or region of
the predictor space in which Xj takes on a value greater than or equal to s.
The goal is then to pick the best possible baseline variable Xj and the best
cut-point for this variable, s, at each node. In both classification trees and
regression trees, we wish to define:

R1(j, s) = {X|Xj < s} andR2(j, s) = {X|Xj ≥ s} (3.1)

The criteria for optimal choice of j and s vary between classification and
regression tasks. In regression trees, we seek to pick j and s such that we
minimize ∑

i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 (3.2)

where ŷR1 is the mean outcome for the subjects in R1(j, s) and ŷR2 is the
mean outcome for the subjects in R2(j, s).

In classification trees, we seek to pick j and s such that we minimize the
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Gini Index defined by

G =
K∑
k=1

p̂1k(1− p̂1k) +
K∑
k=1

p̂2k(1− p̂2k) (3.3)

where p̂1k represents the proportion of subjects in region, R1, belonging to
class k, and K represents the total number of classes. p̂2k is defined similarly.

The splitting rule, similar to Equation 3.1, is chosen at each node using
the criteria defined by Equation 3.2 and Equation 3.3. The process continues
until a stopping criterion is arrived at. A stopping criterion may be defined
by a maximum number of subjects allowed in a region or the purity of a
node.

The decision tree algorithm can be summarized as follows.

Algorithm 1: Decision Tree

1. Start with all subjects in one node.

2. Find the variable and split that best separates the observations. The
variable and split rule is decided by minimizing Equation 3.2 in a
regression tree, and by minimizing Euqation 3.3 in a classification
tree.

3. After splitting the node, two new nodes are created. Repeat Step 2 on
the new nodes.

4. Continue until there are “too few” subjects left in each node, or if the
nodes are sufficiently pure.

3.1.2 Bagging

While decision trees have several advantages over standard parametric re-
gression and classification techniques, trees are very susceptible to changes
in data and suffer from high variance. If the data were to be split at random
and a decision tree was grown on both datasets, the two trees could yield
very different predictions. Bagging is a commonly used procedure for reduc-
ing the variance of decision trees. Bagging involves bootstrapping, or taking
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repeated samples with replacement, from the dataset. Bootstrapping is used
to obtain B different datasets. We then construct B different decision trees.
Each individual tree has high variance. The next step in bagging involves
aggregation. Aggregation reduces the variance of the resulting decision tree.
The process of aggregation varies in regression and classification trees. In
a regression tree, the average of the resulting predictions over each separate
tree is taken. In a classification tree, the overall prediction is the most com-
monly occurring class among the B predictions given by each separate tree.
It can be shown that each bagged tree is grown only on about two-third of
the subjects. This provides a readily available test set of about one-third of
the subjects. Note that it is a different test set for each tree. This test set can
be used to evaluate the overall bagged forest, and offers a valid estimate for
the test error of the resultant bagged model. This is known as the out-of-bag
(OOB) error rate.

3.1.3 Random Forest

If there is are several very strong predictors in the data, most of the bagged
trees will use the same splitting rule at the first few nodes, and hence, most
of the bagged trees end up looking quite similar to each other. This reduces
the effectiveness of bagging in reducing the variance of the resultant model.
Random Forests differ only slightly from the bagged model to improve the
reduction in variance. When building decision trees in a Random Forest,
each time a split is being made in the tree, all baseline variables are not
considered. Given that there are P baseline variables, m ≈

√
P variables

are chosen at random from which the optimal regions are decided for each
binary split. Restricting the possible predictors decorrelates the trees from
each other, and improves the reliability of the model. The Random Forest
can be evaluated using OOB error rate. In this way, Random Forests can be
used to make reliable estimates in a regression and classification setting.

The Random Forest algorithm can be summarized as follows.
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Algorithm 2: Random Forest (James et al., 2011)

1. Bootstrap sample from the dataset.

2. Grow a tree on this bootstrap sample. At each split, randomly select
a different set of m baseline variables and determine the best split
using only these predictors.

3. For each tree grown on a bootstrap sample, predict the OOB samples.
OOB samples can be used to estimate the error rate of the tree.

4. All trees together represent the model that is used for new
predictions. Majority vote is used in a Classifciation Random Forest
and the average of predictions is used in Regression Random Forest.

3.1.4 Ordinal Forest

Random Forests make reliable predictions when the outcome is continous
by relying on regression trees. They also make reliable predictions of the
class membership of an out-of-sample subject when the outcome is a factor.
However, when the outcome is ordinal, neither regression nor classification
trees provide the ideal mechanisms for predictions. Regression trees make
continuous predictions and assume a linear increase of the expected response
for a one unit increase in the explanatory variable. Classification trees don’t
make continuous predictions but predict the outcome as a factor, which does
not capture the ordering inherent in the outcome. Each level in the outcome
is treated as an independent class.

The Ordinal Forest method is a Random Forest-based prediction method
for ordinal outcome variables. This section provides a brief sketch of the
Ordinal Forest method developed by Hornung (2019). The Ordinal Forest
method is based on the notion of a latent continuous outcome variable under-
lying the observed ordinal outcome variable. In Ordinal Forests, the ordinal
outcome variable is treated as a continuous variable, where the non-linearity
of moving from one level to the other is implicitly taken into account. The
process of accounting for this non-linearity involves uncovering the latent
continuous variable underlying the ordinal outcome variable. The process of
uncovering the latent continuous variable is described briefly in this section.

The underlying refined continuous variable Y * determines the values of
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the ordinal variable Y . Let Y be an ordinal variable with L levels. The
latent continuous variable Y * is divided into L adjacent interval. The Ordinal
Forest predicts a value for Y *. If the predicted value of Y * falls in the lth
interval of the L adjacent intervals, the ordinal variable Y takes the value
l. The boundaries of the L adjacent intervals are optimized with the aim of
maximizing the Out-of-Bag prediction performance of the resulting regression
Random Forests.

The process is as follows. The interval [0,1] is divided randomly into
L intervals. This is done by choosing L − 1 random cutoff points. Each
ordinal outcome corresponds to the midpoint of the interval number equal
to the ordinal outcome. For example, if the ordinal outcome is 4, let the
midpoint of the 3rd and 4th cutoff point be c3,4. Then, the value of the
latent continuous variable, Y *, corresponding to Y = 4 is φ−1(c3,4), where
φ−1 denotes the quantile function of the standard normal distribution, which
maps the [0, 1] interval to the real line.

After obtaining Y * using this process, a regression Random Forest is
used to obtain the Out-of-Bag error rate. The OOB prediction performance
is obtained according to a specific measure, called the performance function.
The choice of the performance function depends on the kind of performance
the Ordinal Forest should feature. For example, in many situations, it is
of interest to correctly classify observations from each level with the same
accuracy, independent of the number of subjects who observe that level. In
other situations, the main goal may be to classify as many observations as
possible, and weigh the more common levels more. Further details about
the performance function are beyond the scope of this paper. The process of
determining the OOB prediction performance is repeated for a heterogenous
set of cutoff points of the interval [0,1]. The final set of cutoff points is the
mean of the cutoff points that featured the highest OOB prediction perfor-
mance. A regression Random Forest is constructed using this final latent
continuous variable as the outcome, and the predictions from the regression
Random Forest are assigned to the level of the ordinal outcome depending
on the adjacent interval to which the outcome belongs.

Since Ordinal Forests treat the ordinal outcome as a continuous variable
using the process described above, Ordinal Forests are closely related to the
conventional Regression Random Forest described in Algorithm 2.

The Ordinal Forest algorithm is summarized below.

17



Algorithm 3: Ordinal Forest

1. B heterogenous sets of cutoff points of the interval [0,1] are obtained.

2. The cutoff points are used to divide the interval [0,1] into L adjacent
intervals, given that the ordinal outcome has L levels.

3. The midpoints of each adjacent interval are used to obtain Y *, the
latent continuous variable underlying the ordinal outcome, for each of
the B sets of cutoff points.

4. B regression Random Forests are constructed to obtain their OOB
prediction performance.

5. From the B OOB prediction performances, the mean of the sets of
cutoff points with the best OOB prediction performance are chosen.

6. The final set of cutoff points are used to create the final latent
continuous variable underlying the ordinal outcome variable.

7. A regression Random Forest is constructed using the final latent
continuous variable as the outcome variable.

8. The predicted values are assigned to levels of the ordinal outcome
depending on which adjacent interval the outcome belongs to.
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3.2 Obtaining ψ̂

Recall that ψ = P (YT > YC). Since only one of YT and YC can be observable
for the same subject, it is not possible to obtain an estimate for ψ using an-
alytical methods. This section proposes an Ordinal Forest method to obtain
ψ̂.

The setting for the Ordinal Forest method is the same as the setting for
the Linear Programming method. Let YC denote the potential outcomes
under control and let YT denote the potential outcomes under treatment.
Suppose that the outcome is ordinal with L levels, ordered from least fa-
vorable outcome to most favorable outcome. Let A equal 1 if the subject is
assigned to the treatment, 0 otherwise. The only way the setting varies is
that for the success of Ordinal Forest methods, it is necessary to have many
covariates. Let X1, X2, ..., XP be the covariates observed for each subject.
Foster et al. (2011) suggests that the dimension of X is moderate, for exam-
ple 8 to 100, and these covariates are measured pretreatment, and could be
demographic, laboratory, or questionnaire variables. These covariates may
not necessarily be ordinal. Let X = {X1, X2, ..., XP}.

Given the data described above, the following algorithm describes an
approach to obtaining a point estimate forψ, ψ̂. The algorithm is executed
in Chapter 4 and the results are compared with the bounds obtained using
a linear programming approach.
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Algorithm 4: Ordinal Forest to obtain ψ̂

1. Split the dataset into two, one when A = 0 and the other when A = 1.

2. Train Ordinal Forest, OC on the dataset with A = 0 and OT on the
dataset with A = 1. The input variables in the Random Forest are
(X,A) and the outcome variable is YT if A = 1 and YC if A = 0.

3. OC is used to make predictions on subjects with A = 1, and OR is
used to make predictions on subjects with A = 0.

4. P̂ (YT = l) ∀ l = 1, 2, ..., L is predicted for A = 0 and
P̂ (YC = l) ∀ l = 1, 2, ..., L is predicted for A = 1.

5. P̂ (YT > YC) is obtained for each subject using the above probabilites.
For example, for a given subject, if A = 1 and YT = 3, then
P̂ (3 > YC) = P̂ (YC = 1) + P̂ (YC = 2).

6. ψ̂ is the average of P̂ (YT > YC) for all subjects.
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Chapter 4

Simulation Study

In the following chapter, the methods described in Chapter 2 and Chapter
3 are implemented. First, a method to simulate experimental data with
multiple baseline variables, such that the population parameter, ψ is known,
is described. Second, the Linear Program method is evaluated against the
Ordinal Forest method. Third, several characteristics of the Ordinal Forest
method are explored.

The data is generated as follows. The number of subjects is set to be 1000.
For each subject, fifteen baseline variables, X1, X2, ..., X15, with standard
normal distributions are generated. The subjects are randomly assigned to
either the treatment group or the control group with equal probability. This
is given by the variable A, where A = 0 when the subject is in the control
group and A = 1 when the subject is in the treatment group. The outcome
variable, Y , is generated using the following equation:

Y = −1 + 3 ∗X1 + 2 ∗X2 − 3 ∗X7 + 2 ∗X9 + c ∗ A (4.1)

Here, c is a parameter that defines the intensity of the treatment. The value
of c differs for observations in the control group versus the treatment group.
The behavior of the Ordinal Forest method will be studied for different values
of c.

In the methods described in the preceding chapters, the outcome is an
ordinal variable. Y is converted into an ordinal outcome variable with L = 6,
i.e., Y can take values 1,2,...6, with 1 being the worst and 6 being the best.
Since only one baseline variable can be used in the Linear Program method
and it must be ordinal, X1 is used, and it takes the value 1 if X1 < 0, and 2
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Figure 4.1: Sample Distributions of Y: Control & Treatment Group (c = 5)

otherwise. The sample distribution of the control group and the treatment
group when c = 5 are presented in Figure 4.1.

Folowing the data generating process described above, the population
parameter, ψ = P (YT > YC) is known. Before ordinalizing Y , it can be
observed that Y ∼ N (−1 + c,

√
52). Therefore, if c = 5, YC ∼ N (−1,

√
52)

and YT ∼ N (4,
√

52). YC and YT can be ordinalized in the same way Y was
ordinalized. This will yield the population distribution of YC and YT . We can
randomly draw from both distributions and compare the values. Repeating
this process of drawing from the population distributions and comparing YT
to YC , we can obtain ψ = P (YT > YC). When c is 5, ψ = 0.55.

We proceed to compare the Linear Program method with the Ordinal
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Forest method. c is set as 5, and the data is described as above. The
parameter ψ is 0.55. The Linear Program calculates ψ̂min and ψ̂max. The
baseline variable is included in the Linear Program method as described
above. The Ordinal Forest calculates ψ̂. The estimates from both methods
are calculated for 50 different samples. The results are presented in Figure
4.2. The vertical line represents the parameter, ψ = 0.55. The horizontal
lines represent the range between ψ̂min and ψ̂max predictions of the Linear
Program method for each of the 50 samples. The point estimate predicted by
the Ordinal Forest, ψ̂, is represented by the black crosses. It can be observed
that the point estimates consistently fall in the middle of the maximum and
minimum value predicted by the Linear Program. It can also be noted the
range between ψ̂min and ψ̂max is quite large, and (even with some bias) the
point estimate predicted by the Ordinal Forest, ψ̂, adds significant value to
understanding how many subjects benefitted from the treatment.

It is important to understand the error in the point estimate predicted
by the Ordinal Forest, ψ̂. Figure 4.3 plots the predicted value, ψ̂, and the
paramter, ψ, for different values of c. From Figure 4.3, it is clear that when
the treatment has a strong positive effect, the Ordinal Forest overestimates
the proportion who benefit, and when the treatment has a strong negative
effect, the Ordinal Forest underestimates the proportion who benefit. The
Mean Squared Error is reduced when the treatment intensity is mild or low.
As Huang et al. (2017) note in the case of the Linear Program method, the
estimator can have bias which may be dependent on the data generating
distribution. Deriving a general bias correction is very challening since the
estimator does not have a simple analytical form (and instead is the result
of a Ordinal Forest).

It is also apparent from Figure 4.2 and Figure 4.3 that the sample size
has no adverse effect on the results.
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(a) n = 500

(b) n = 1000

Figure 4.2: Linear Program Method vs. Ordinal Forest Method
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(a) n = 500

(b) n = 1000

Figure 4.3: Comparing ψ and ψ̂ for different c’s (n = 1, 000)

25



Figure 4.4: Tuning Parameters

Error in the predictions may be reduced by tuning the parameters of an
Ordinal Forest. Figure 4.4 shows the Mean Squared Error for different tuning
parameters of the Ordinal Forest. The number of trees used to build the forest
are varied. Two performance functions are evaluated. “Equal” attempts to
correctly predict observations belonging to each level with the same accuracy,
independent of the number of subjects who observe that level. “Proportional”
attempts to predict as many observations as possible, and weigh the more
common levels more. It can be observed that the “Proportional” performance
function generally has a greater error. It is also observed that increasing
the number of trees may eradicate some of the error when the performance
function is “Equal”.
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Figure 4.5: Choosing baseline variables

Figure 4.5 illustrates that some error can be eradicated by including base-
line variables that are more informative. It shows that Mean Squared Error
reduces when the number of baseline variables used in Equation 4.1 increases.
The Mean Squared Error is shown in the case where 4, 7, or 10 baseline vari-
ables are included. When the outcome is more closely related with the chosen
baseline variables, the error in the estimate reduces.
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Chapter 5

Conclusion

This paper describes two methods for determining the proportion who benefit
from a treatment in a Randomized Controlled Trial. The first, described in
Chapter 2, is a Linear Programming method proposed by Huang et al. (2017)
and provides bounds on the proportion who benefit from a treatment. The
second, described in Chpater 3, is a novel method that provides a point esti-
mate on the proportion who benefit from a treatment using Ordinal Forests.
(Hornung, 2019) Both methods are evaluated in Chapter 4. While both esti-
mates have some bias, they go beyond the traditional analysis of an RCT and
add signifcant information to our understanding about the effectiveness of
the treatment. Both methods can be used in any setting where the outcome
is ordinal and some baseline information about the subjects is present. It
is important to noth that both methods provide complimentary information
and may be used jointly. One may favor the Linear Programming method
when bounds on the parameter are required, and one needs to be certain that
the parameter is captured in the bounds; and, the Ordinal Forest method
may be preferred when a more precise measure of the parameter is required
but some tradeoff of accuracy is acceptable.
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