
Math 150 - Methods in Biostatistics - Homework 1

Your Name Here

Due: Friday, February 5, 2021

Assignment Summary (Goals)

• Practice using R to run t-tests and linear models
• Providing details about what the models mean

Note on R: At the bottom of this assignment, I’ve given an R Tutorial of sorts with some of the main
ideas that we’ll be using this semester. You might want to read over them and try out some of the commands
yourself.

There is also a CD in your book (the contents of which are on Sakai) which has some R code. I find that the
book’s R code is very out-dated, so I will always provide a scaffold for the code you need to do each problem.

Please ask quesions as you go along! Asking questions about the R code (and about the course in general) is
your key to success.

Look carefully at the line of code in the R chunk immediately below. Notice that a dataset from the textbook
is being loaded in so that it can be analyzed. The datasets for the textbook are all provided to you on Sakai.
You’ll need to get the data from Sakai (the file for this HW is called CS Games1.csv), and copy it either to
your own computer or to the file system on the Pomona R Server (if you are using the server). Then you
need to point to the location of that dataset.

If it is difficult to find the location, look at the upper right side of the R Studio window for the icon that
says Import Dataset. By clicking through, import the dataset into R. But wait, you aren’t done! After you
import the data, you’ll see the correct path in the Console. That path must be written into the R chunk
which imports the data.

You will know that you have successfully imported the data if you can knit this file to a pdf without any
errors. After you’ve imported the data (and before you move on to the rest of the assignment), try to knit
to pdf. Does it work? Great! Does it not work? Read the paragraph above again (then ask questions on
Discord).
games1 <- readr::read_csv("~/Dropbox/teaching/MA150/PracStatCD/Data Sets/Chapter 02/CSV Files/C2 Games1.csv")

Q0. PodQ Describe one thing you learned from someone in your pod this week (it could be: content,
logistical help, background material, R information, etc.) 1-3 sentences.

Q1. Chapter 2, A10. Use R to calculate a two-sample test statistic (assuming equal variances) and
find the p-value corresponding to this statistic. In addition, calculate a 95% confidence interval for the
difference between the two means (µ1 − µ2). The end of chapter exercises will provide details on conducting
this calculation by hand. If H0 : µ1 = µ2 is true, the p-value states how likely that just random sampling
variability would create a difference between two sample means (y1 − y2) at least as large as we observed.
Based on the p-value, what can you conclude about these two types of games?
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games1 %>%
t.test(Time ~ Type, data=., var.equal = TRUE)

games1 %>%
t.test(Time ~ Type, data=., var.equal = TRUE)
tidy()

Q2. Chapter 2, A11 To fit a linear model, the Type variable will need to be binary. Fit a linear model
in R using lm() and notice which level of Type gets set to 0 and which gets set to 1. How can you tell?

Develop a regression model using Time as the response and the indicator on Type as the explanatory variable.

Create a linear model (lm()) and then tidy() the model. The following example code might help.

games1 %>%
lm(Time ~ Type, data = .) %>%
summary()

games1 %>%
lm(Time ~ Type, data = .) %>%
tidy()

Q3. Chapter 2, A12 Use R to calculate the t-statistic and p-value for the hypothesis test H0 : β1 = 0
vs Ha : β1 6= 0. In addition, construct at 95% confidence interval for β1. Based on these statistics, can you
conclude that the coefficient β1 is significantly different from zero? How is the test of β1 equivalent to the
t.test() in the earlier question?

The argument conf.int = TRUE inside tidy() on the linear model will find confidence intervals for the
coefficients.

Q4. Chapter 2, E1 Assume you are conducting a t-test to determine if there is a difference between two
means. You have the following summary statistics: x1 = 10, x2 = 20 and s1 = s2 = 10. Without completing
the hypothesis test, explain why n1 = n2 = 100 would result in a smaller p-value than n1 = n2 = 16.

Q5. Chapter 2, E2 If the hypothesis test H0 : β1 = 0 vs Ha : β1 6= 0 results in a small p-value, can we be
confident that the regression model provides a good estimate of the response value for a given value of xi?
Provide an explanation for your answer.

Q6. Chapter 2, E3 What model technical conditions (if any) need to be satisfied in order to calculate b0
and b1 in a simple linear regression model?

Q7. Chapter 2, E4 Explain why the model yi = β0 + β1xi is not appropriate, but ŷi = b0 + b1xi is
appropriate.
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HW assignments will be graded out of 5 points, which are based on a combination of accuracy and effort.
Below are rough guidelines for grading.

Score & Description

5 points: All problems completed with detailed solutions provided and 75% or more of the problems are fully
correct.

4 points: All problems completed with detailed solutions and 50-75% correct; OR close to all problems
completed and 75%-100% correct. An assignment will earn a 4 if there is superfluous information printed out
on the assignment.

3 points: Close to all problems completed with less than 75% correct

2 points: More than half but fewer than all problems completed and > 75% correct

1 point: More than half but fewer than all problems completed and < 75% correct; OR less than half of
problems completed

0 points: No work submitted, OR half or less than half of the problems submitted and without any detail/work
shown to explain the solutions.

General notes on homework assignments (also see syllabus for policies and suggestions):

• please be neat and organized, this will help me, the grader, and you (in the future) to follow your work.

• be sure to include your name on the assignment

• please include at least the number of the problem, or a summary of this question (this will also be
helpful to you in the future to prepare for exams).

• for R problems, it is required to use R Markdown. You can write out other problems with pencil and
combine pdf as appropriate.

• please do not print errors, messages, warnings, or anything else that makes your homework unwieldy.
You will be graded down for superfluous printouts.

• in case of questions, or if you get stuck please don’t hesitate to email me or DM on Discord! The sooner
(and more often) questions get asked, the better for everyone.
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In the examples below, we focus on a few R ideas which should become familiar to you as we go forward this
semester.

• the pipe command %>%
• data wrangling verbs: filter(), summarize(), group_by(), mutate(), arrange()
• ifelse()

Getting started
Load packages

Here we will explore the data using functions that can be found in the tidyverse package. The data can be
found in the package nycflights13.

Let’s load the packages.
library(tidyverse)
library(nycflights13)

The data

The Bureau of Transportation Statistics (BTS) is a statistical agency that is a part of the Research and
Innovative Technology Administration (RITA). As its name implies, BTS collects and makes available
transportation data, such as the flights data we will be working with here.

We begin by loading the flights data frame. Run the following command by clicking on the green triangle:
data(flights)

The data set flights that shows up in your workspace is a data matrix, with each row representing an
observation and each column representing a variable. R calls this data format a data frame, which is a term
that will be used throughout the course. For this data set, each observation is a single flight.

To view the names of the variables, run the command
names(flights)

## [1] "year" "month" "day" "dep_time"
## [5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
## [9] "arr_delay" "carrier" "flight" "tailnum"
## [13] "origin" "dest" "air_time" "distance"
## [17] "hour" "minute" "time_hour"

This returns the names of the variables in this data frame. The codebook (description of the variables) can
be accessed by pulling up the help file (run this line with the green triangle and then look at the box on the
bottom right of the RStudio screen):
?flights

One of the variables refers to the carrier (i.e. airline) of the flight, which is coded according to the following
system.

• carrier: Two letter carrier abbreviation.
– 9E: Endeavor Air Inc.
– AA: American Airlines Inc.
– AS: Alaska Airlines Inc.
– B6: JetBlue Airways
– DL: Delta Air Lines Inc.
– EV: ExpressJet Airlines Inc.
– F9: Frontier Airlines Inc.

4

http://www.rita.dot.gov/bts/about/


– FL: AirTran Airways Corporation
– HA: Hawaiian Airlines Inc.
– MQ: Envoy Air
– OO: SkyWest Airlines Inc.
– UA: United Air Lines Inc.
– US: US Airways Inc.
– VX: Virgin America
– WN: Southwest Airlines Co.
– YV: Mesa Airlines Inc.

A very useful function for taking a quick peek at your data frame and viewing its dimensions and data types
is glimpse().
glimpse(flights)

## Rows: 336,776
## Columns: 19
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013...
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 55...
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 60...
## $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2,...
## $ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 8...
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 8...
## $ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7,...
## $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6"...
## $ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301...
## $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N...
## $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LG...
## $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IA...
## $ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149...
## $ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 73...
## $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6...
## $ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59...
## $ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-0...

The flights data frame is a massive trove of information (336,776 observations!!!). Notice also that the
glimpse() function let’s you know how the variables are stored: integer, double (a fancy way to say decimal
number), character string, date/time, etc. Let’s think about some questions we might want to answer with
these data:

• How delayed were flights that were headed to Los Angeles?
• How do departure delays vary over months?
• Which of the three major NYC airports has a better on time percentage for departing flights?

Tidy Structure of Data

For plotting, analyses, model building, etc., the data should be structured according to certain principles.

• Tidy Data: rows (cases/observational units) and columns (variables).
The key is that every row is a case and every column is a variable.
No exceptions.

• Creating tidy data is often not trivial.

Within R (really within any type of computing language, Python, SQL, Java, etc.), it is important to
understand how to build data using the patterns of the language.
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Some things to consider:

• object_name <- anything is a way of assigning anything to the new object_name.
• object_name <- function_name(data_frame, arguments) is a way of using a function to create a

new object.
• object_name <- data_frame %>% function_name(arguments) uses chaining syntax as an extension

of the ideas of functions.
In chaining, the value on the left side of %>% becomes the first argument to the function on the right
side.

object_name <- data_frame %>%
function_name(arguments) %>%
another_function_name(other_arguments)

is extended chaining. %>% is never at the front of the line, it is always connecting one idea with the continuation
of that idea on the next line. * In R, all functions take arguments in round parentheses (as opposed to
subsetting observations or variables from data objects which happen with square parentheses). Additionally,
the spot to the left of %>% is always a data table. * The pipe syntax should be read as then, %>%.

Using the pipe to chain

The pipe syntax (%>%) takes a data frame (or data table) and sends it to the argument of a function. The
mapping goes to the first available argument in the function.
For example:

x %>% f(y) is the same as f(x, y)

y %>% f(x, ., z) is the same as f(x,y,z)

Pipes are used commonly with functions in the dplyr package and they allow us to sequentially build data
wrangling operations. We’ll start with short pipes and throughout the course build up to longer pipes that
perform multiple operations.

Analysis
Departure delays

Let’s start by examining the distribution of departure delays of all flights using the summary function. The
first item (on the left) is the data set. Subsequently, two functions are applied, (1) select() to get only the
dep_delay variables, and (2) summary() to produce the numerical summary.
flights %>%

dplyr::select(dep_delay) %>%
summary()

## dep_delay
## Min. : -43.00
## 1st Qu.: -5.00
## Median : -2.00
## Mean : 12.64
## 3rd Qu.: 11.00
## Max. :1301.00
## NA's :8255

filter (create a smaller dataset) If we want to focus only on departure delays of flights headed to
Los Angeles, we need to first filter() the data for flights with that destination (dest == "LAX"). The
departure delay for the LAX flights can then be summarized.
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lax_flights <- flights %>%
dplyr::filter(dest == "LAX")

lax_flights %>%
dplyr::select(dep_delay) %>%
summary()

## dep_delay
## Min. :-16.000
## 1st Qu.: -4.000
## Median : -1.000
## Mean : 9.401
## 3rd Qu.: 7.000
## Max. :800.000
## NA's :98

Let’s decipher these two commands (It’s common to add a break to a new line after %>% to help readability).

• Command 1: Take the flights data frame, filter() for flights headed to LAX, and save the result
as a new data frame called lax_flights.
– == means “if it is equal to”. (notice that there are TWO equals signs)
– LAX is in quotation marks since it is a character string.

• Command 2: Basically the same call for summarizing the departure delay.

Notice that if we only want the summary of dep_delay for the LAX flights (and we don’t need to keep a
copy of the dataset), we can perform the above tasks by combining them into fewer steps:
flights %>%

filter(dest == "LAX") %>%
dplyr::select(dep_delay) %>%
summary()

## dep_delay
## Min. :-16.000
## 1st Qu.: -4.000
## Median : -1.000
## Mean : 9.401
## 3rd Qu.: 7.000
## Max. :800.000
## NA's :98

Logical operators: Filtering for certain observations (e.g. flights from a particular airport) is often of
interest in data frames where we might want to examine observations with certain characteristics separately
from the rest of the data. To do so we use the filter() function and a series of logical operators. The
most commonly used logical operators for data analysis are as follows:

• == means “equal to”
• != means “not equal to”
• > or < means “greater than” or “less than”
• >= or <= means “greater than or equal to” or “less than or equal to”

summarize (calculate statistics) We can also obtain numerical summaries for these flights:
lax_flights %>%

summarize(mean_dd = mean(dep_delay, na.rm=TRUE),
median_dd = median(dep_delay, na.rm=TRUE), n_dd = n())
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## # A tibble: 1 x 3
## mean_dd median_dd n_dd
## <dbl> <dbl> <int>
## 1 9.40 -1 16174

Note that in the summarize() function we created a list of three different numerical summaries that we were
interested in. The names of these elements are user defined, like mean_dd, median_dd, n_dd, and you could
customize these names as you like (just don’t use spaces in your names). Calculating these summary statistics
also require that you know the function calls. Note that n() reports the sample size.

Summary statistics: Some useful function calls for summary statistics for a single numerical variable are
as follows:

• mean
• median
• sd
• IQR
• min
• max

Note that each of these functions take a single vector as an argument, and returns a single value.

Functions you may not be familiar with (and that we will see in more detail in coming weeks) include:

sd =

√√√√ 1
n− 1

n∑
i=1

(Xi −X)2

IQR = 75%− 25%

We can also filter based on multiple criteria. Suppose we are interested in flights headed to San Francisco
(SFO) in February:
sfo_feb_flights <- flights %>%

filter(dest == "SFO", month == 2)

Note that we can separate the conditions using commas if we want flights that are both headed to SFO and
in February. If we are interested in either flights headed to SFO or in February we can use the | instead of
the comma.

Practice Create a new data frame that includes flights headed to SFO in February, and save this data
frame as sfo_feb_flights. How many flights meet these criteria?
sfo_feb_flights %>%

summarize(n())

## # A tibble: 1 x 1
## `n()`
## <int>
## 1 791

Describe the distribution of the arrival delays of these flights using summary and/or appropriate summary
statistics.
sfo_feb_flights %>%

summarize(arrdelmean = mean(arr_delay, na.rm=TRUE),
arrdelsd = sd(arr_delay, na.rm=TRUE),
arrdelmed = median(arr_delay, na.rm=TRUE),
arrdeliqr = IQR(arr_delay, na.rm=TRUE))
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## # A tibble: 1 x 4
## arrdelmean arrdelsd arrdelmed arrdeliqr
## <dbl> <dbl> <dbl> <dbl>
## 1 -9.14 31.4 -13 29

group_by (group before summarizing) Another useful technique is quickly calculating summary statis-
tics for various groups in your data frame. For example, we can modify the above command using the
group_by() function to get the same summary stats for each origin airport:
sfo_feb_flights %>%

group_by(origin) %>%
summarize(median_dd = median(dep_delay, na.rm=TRUE),

iqr_dd = IQR(dep_delay, na.rm=TRUE), n_flights = n())

## # A tibble: 2 x 4
## origin median_dd iqr_dd n_flights
## <chr> <dbl> <dbl> <int>
## 1 EWR 0 9 194
## 2 JFK -2 8 597

Here, we first grouped the data by origin, and then calculated the summary statistics.

Practice Calculate the median and interquartile range for arr_delay of flights in in the sfo_feb_flights
data frame, grouped by carrier. Which carrier has the most variable arrival delays (as measured by IQR)?
sfo_feb_flights %>%

group_by(carrier) %>%
summarize(arrdelmed = median(arr_delay, na.rm=TRUE),

arrdeliqr = IQR(arr_delay, na.rm=TRUE)) %>%
arrange(desc(arrdeliqr))

## # A tibble: 5 x 3
## carrier arrdelmed arrdeliqr
## <chr> <dbl> <dbl>
## 1 AA -7 35
## 2 DL -24 27.5
## 3 UA -9 27
## 4 B6 -11 25.5
## 5 VX -20 23

arrange() departure delays over months

Practice Which month would you expect to have the highest average delay departing from an NYC airport?

Let’s think about how we would answer this question:

• First, calculate monthly averages for departure delays. With the new language we are learning, we need
to
– group_by() months, then
– summarize() mean departure delays.

• Then, we need to arrange() these average delays in desc()ending order
flights %>%

group_by(month) %>%
summarize(mean_dd = mean(dep_delay, na.rm=TRUE)) %>%
arrange(desc(mean_dd))
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## # A tibble: 12 x 2
## month mean_dd
## <int> <dbl>
## 1 7 21.7
## 2 6 20.8
## 3 12 16.6
## 4 4 13.9
## 5 3 13.2
## 6 5 13.0
## 7 8 12.6
## 8 2 10.8
## 9 1 10.0
## 10 9 6.72
## 11 10 6.24
## 12 11 5.44

On time departure rate for NYC airports Suppose you will be flying out of NYC and want to know
which of the three major NYC airports has the best on time departure rate of departing flights. Suppose also
that for you a flight that is delayed for less than 5 minutes is basically “on time”. You consider any flight
delayed for 5 minutes of more to be “delayed”.

In order to determine which airport has the best on time departure rate, we need to

• first classify each flight as “on time” or “delayed”,
• then group flights by origin airport,
• then calculate on time departure rates for each origin airport,
• and finally arrange the airports in descending order for on time departure percentage.

mutate() (create a new variable)

Practice Let’s start with classifying each flight as “on time” or “delayed” by creating a new variable with
the mutate() function.
flights <- flights %>%

mutate(dep_type = ifelse(dep_delay < 5, "on time", "delayed"))

The first argument in the mutate() function is the name of the new variable we want to create, in this case
dep_type. Then if dep_delay < 5 we classify the flight as "on time" and "delayed" if not, i.e. if the flight
is delayed for 5 or more minutes.

Note that we are also overwriting the flights data frame with the new version of this data frame that
includes the new dep_type variable.

We can handle all the remaining steps in one code chunk:
flights %>%

group_by(origin) %>%
summarize(ot_dep_rate = mean(dep_type == "on time", na.rm=TRUE)) %>%
arrange(desc(ot_dep_rate))

## # A tibble: 3 x 2
## origin ot_dep_rate
## <chr> <dbl>
## 1 LGA 0.728
## 2 JFK 0.691
## 3 EWR 0.639
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Practice If you were selecting an airport (of the three NYC airports in the dataset) simply based on on
time departure percentage, which NYC airport would you choose to fly out of? (How did you define “on
time”? 0 min? 5 min? Something else?)

LGA seems to have the highest on time departure percentage, so that’s the airport I would choose.
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