Baseball and Bayes

Jo Hardin, Math 152

The Setting
You are a statistician employed by On The Ball Consulting. Veteran major-league baseball scout Rocky
Chew seeks your advice regarding estimating the probability that amateur baseball player John Spurrier will
get a base hit against a major-league pitcher. Rocky has arranged for Spurrier to have ten at bats against a
major-league pitcher.

The Background
The traditional batting average, $\hat{\theta}_f = \frac{X}{n}$ is a frequentist estimator in that it makes use of the observed
data, but ignores any prior information that might exist. (Some of you baseball enthusiasts will be a bit
uncomfortable that we’re going to assume that our denominator is # of times up to bat.) If we assume that
the at bats are independent Bernoulli trials with a constant probability of getting a base hit, then

$$X \sim \text{Bin}(n = \text{number at bat}, \theta = P(\text{getting a base hit}))$$

$\hat{\theta}_f$, is the maximum likelihood estimator, the method of moments estimator, and the minimum variance
unbiased estimator of the unknown probability (of getting a base hit.) That makes it a good estimator, but
it ignores information we might have about baseball. You have the following prior information:

- John Spurrier appears to be a good but not great player. He is one of the better batters on a somewhat
 above-average American Legion (high school) baseball team.
- The few major-league scouts who have watched him play do not believe that Spurrier’s batting ability
 is at the professional level.
- A barely adequate major-league hitter has a batting average of about 0.200.
- A very good major-league batter has a batting average of about 0.300.
- Ty Cobb has the all-time best major-league batting average of 0.366.

We’re going to use a Beta prior to incorporate our previous knowledge. What should that prior look like?
If we measure the goodness of an estimate $\hat{\theta}$ using the squared error loss, then the Bayesian estimator is
the expected value of the posterior distribution (i.e., the mean of the posterior distribution.) The Bayesian
estimator is:

$$\hat{\theta}_b = \frac{X + \alpha}{n + \alpha + \beta}$$

The Experiment
- John Spurrier will have $n=10$ at bats. The random variable, X, will be the number of base hits that he
gets.
• Determining the prior probability: As a class we will find α and β that are consistent with our prior information.

• Comparison of the estimators:
 - $\hat{\theta}_f = \frac{X}{n}$
 - $\hat{\theta}_b = \frac{X + \alpha}{n + \alpha + \beta}$
 - We use Mean Squared Error (MSE) in the frequentist sense (that is, X is the random variable, θ is no longer random) to compare estimators (apples to apples):

 $$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + bias^2(\hat{\theta}) = Var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

 - Under the assumption that X has a binomial distribution with parameters 10 and θ, calculate the mean and variance of X.
 - Using the mean and variance of X, what are the variance and bias of the two estimators?