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How can a random sample of integers between 1 and N (with N unknown to the researcher) be used to
estimate N? This problem is known as the German tank problem and is derived directly from a situation
where the Allies used maximum likelihood to determine how many tanks the Axes had produced. See
https://en.wikipedia.org/wiki/German_tank_problem.

1. The tanks are numbered from 1 to N . Working with your group, randomly select five tanks, without
replacement, from the bowl. The tanks are numbered:

2. Think about how you would use your data to estimate N . (Come up with at least 3 estimators.) Come
to a consensus within the group as to how this should be done. One person from your group will
report out after the warm-up is over. Ideally, the person to report out will be someone who has not
yet spoken in class this semester. Step-up if you haven’t yet spoken. Step back if you speak regularly.

Our estimates of N are:

Our rules or formulas for the estimators of N based on a sample of n (in your case 5) integers are:
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Assuming the random variables are distributed according to a discrete uniform. (Tbh, this model is
with replacement, but the answers you get aren’t much different than without replacement if n << N .)

Xi ∼ P (X = x|N) =
1

N
x = 1, 2, . . . , N i = 1, 2, . . . , n

3. What is the method of moments estimator of N?

4. What is the maximum likelihood estimator of N?
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Theoretical Mean Squared Error

Most of our estimators are made up of four basic functions of the data: the mean, the median, the min, and
the max. Fortunately, we know something about the moments of these functions:
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Using this information, we can calculate the MSE for 4 of the estimators that we have derived. (Remember
that MSE = Variance + Bias2.)
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Empirical Mean Squared Error

Compare the following six estimators:

N̂1 = 2 ·X − 1

N̂2 = 2 ·median(X)− 1

N̂3 = max(X)

N̂4 =
n + 1

n
max(X)

N̂5 = max(X) + min(X)

N̂6 =
n + 1

n− 1
[max(X)−min(X)]

When n = 5, which means the sample size is 5 (whereas the population number is 447), the measurements
are shown below. We want empirical MSE to be lowest and bias close to 0. The modified maximum has
the lowest MSE and thus this estimator is the best when n = 5. The histograms estimating the sampling
distributions are illustrated below.

## # A tibble: 6 x 6

## method mean median bias var mse

## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 2 medians 448. 451 1.16 28343. 28344.

## 2 2 xbars 447. 449. 0.0882 13176. 13176.

## 3 diff max min 448. 462 1.01 13805. 13806.

## 4 modified max 448. 467. 0.748 5604. 5605.

## 5 sample max 373. 389 -73.9 3892. 9349.

## 6 sum min max 448. 448 0.574 9504. 9504.
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