You are provided the marginal distribution of X and the conditional distribution of Y given X. Your task is to find their joint distribution and the marginal distribution of Y.

$$f_X(x) = e^{-x} \quad 0 < x < \infty$$
$$f_{Y|X=x}(Y|X = x) = e^{-(y-x)} \quad 0 < x < y < \infty$$

1. Find the joint distribution of X and Y, $f_{X,Y}(x, y)$.

2. Find the marginal distribution of Y, $f_Y(y)$.

3. Why doesn’t $f_{X,Y}(x, y) = f_X(x)f_Y(y)$?

Solution:

1.

$$f_{X,Y}(x, y) = f_{Y|X=x}(y|X = x)f_X(x)$$
$$= e^{-(y-x)}e^{-x} \quad 0 < x < y < \infty$$

2.

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y)dx$$
$$= \int_{0}^{y} e^{-y}dx$$
$$= e^{-y} \cdot \bigg|_0^y$$
$$= e^{-y}(y - 0)$$
$$= ye^{-y} \quad 0 < y < \infty$$

3. Because X and Y are not independent random variables.