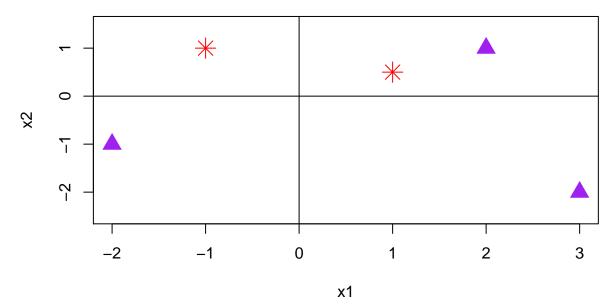
Math 154, Fall 2017, WU #6 (SVM)

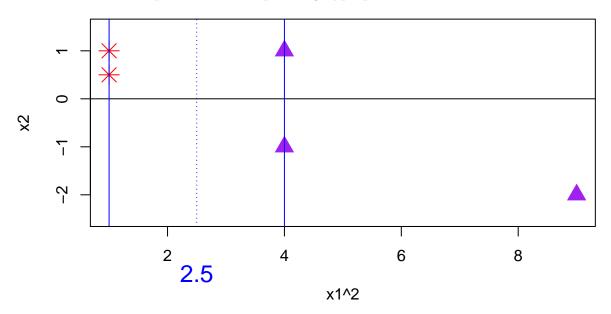
Jo Hardin, Pomona College November 13, 2017

Name: _____

Consider the following 5 data points in \mathbb{R}^2 .

- 1. Draw the points in \mathbb{R}^2 and argue that the values are not linearly separable.
- 2. Transform the points using the function $\phi : \mathbb{R}^2 \to \mathbb{R}^2$. Plot the data again, this time using the first and second coordinate of the transformed data.

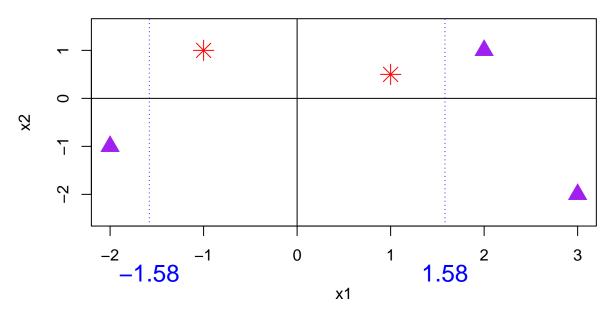

$$\phi(x_1, x_2) = (x_1^2, x_2)$$


3. Sketch the optimal separating hyperplane and the maximal margin on the second figure.

point	x1	x2	class
1	-1	1	red
2	1	0.5	red
3	2	1	purple
4	-2	-1	purple
5	3	-2	purple

Solution:

In the original space:


In the transformed space with the separating hyperplane:

Note that the ${\bf w}$ vector here is the one such that ${\bf w}\cdot {\bf u}+b\geq 0$ assigns to red. Therefore,

$$\begin{aligned} x1^2 &\geq 2.5 \\ \iff x1^2 - 2.5 &\geq 0 \\ \iff x1^2 \times 1 + x2 \times 0 - 2.5 &\geq 0 \\ \iff (x1^2, x2) \cdot (1, 0) - 2.5 &\geq 0 \end{aligned}$$

So $\mathbf{w} = (1, 0)$ and b = -2.5.

Back in the original space with the decision boundary

