Assignment 6 - Model Building

your name goes here

Due: Wednesday, March 7, 2018, noon, to Sakai

Summary

Primarily from the topics in Chapter 9 of your text, this homework assignment gives you practice making
decisions about which variables to include in a model.

Assignment

1. Two authors wrote as follows: “Our research utilized a multiple regression model. Two of the predictor
variables important in our theory turned out the be highly correlated in our data set. This made
it difficult to assess the individual effects of each of these variables separately. We retained both
variables in our model, however, because the high coefficient of multiple determination makes this
difficulty unimportant.” Comment.

2. In forward stepwise regression. what advantage is there in using a relatively small a-to-enter value for
adding variables? What advantage is there in using a large a-to-enter value?

3. Prepare a flowchart of each of the following selection methods: (a) stepwise (forward-backward) re-
gression. (b) forward (forward only) selection. (c) backward (backward only) elimination. (Feel free
to do this with pencil.)

4. First we split the dataset into test and training sets. On the training data - using BIC, AIC, C,, R?
or adjusted R? - we perform best subset (looking at all possible subsets of the explanatory variables),
forward selection, and backward selection on a single data set. For each approach, we obtain m + 1
models, containing 0,1,2,...,m coefficients (that is, we get m + 1 different forward models, etc.).
Explain your answers:

(a) Which of the three models with k predictors has the smallest training SSE? (The training SSE is
the sum of squares error of the training observations predicted using the model created using the
training observations.)

(b) Which of the three models with k predictors has the smallest test SSE? (The test SSE is the
sum of squares error of the test observations predicted using the model created using the training
observations.)

(¢) True (always True) or False (not always True):
i. The predictors in the k-variable model identified by forward selection are a subset of the
predictors in the (k + 1)-variable model identified by forward selection.
ii. The predictors in the k-variable model identified by backward selection are a subset of the
predictors in the (k + 1)-variable model identified by backward selection.
iii. The predictors in the k-variable model identified by backward selection are a subset of the
predictors in the (k + 1)-variable model identified by forward selection.



iv. The predictors in the k-variable model identified by forward selection are a subset of the
predictors in the (k + 1)-variable model identified by backward selection.

v. The predictors in the k-variable model identified by best subset are a subset of the predictors
in the (k + 1)-variable model identified by best subset selection.

5. (Following up on HW5...) Data were collected on the volume of users on the Northampton Rail Trail
in Florence, Massachusetts. Variables in the data set include the number of crossings on a particular
day (measured by a sensor near the intersection with Chestnut Street, volume), the average of the min
and max temperature in degrees Fahrenheit for that day (avgtemp), and a dichotomous indicator of
whether the day was a weekday or a weekend/holiday (weekday).

require(mosaic); require(dplyr)

require (mosaicData)

data(RailTrail)

RailTrail = mutate(RailTrail, daytype = ifelse(weekday==1, "Weekday", "Wkend/Holiday"))

Consider the following full (additive) linear model predicting the volume on the Northampton Rail
Trail.

summary (Im(volume ~ hightemp + lowtemp + cloudcover + precip,
data=RailTrail))$coef

#i# Estimate Std. Error t value Pr(>ltl)
## (Intercept) 35.308293 59.795831 0.5904809 5.564350e-01
## hightemp 6.571283 1.153119 5.6987019 1.700272e-07
## lowtemp -1.289582 1.386987 -0.9297725 3.551219e-01
## cloudcover -7.500899 3.850869 -1.9478456 5.473396e-02
## precip -100.616367 42.064479 -2.3919556 1.896411e-02

(a) Calculate the coefficient of partial determination for each value below. Explain what each coeffi-
cient measures / interpret your results. Here is the sentence from class:
The coefficient of partial determination measures the marginal contribution of one X variable
when all others are already included in the model.

SSE(Xs) — SSE(X1,X)  SSR(X|X>)
SSE(X,) T SSE(X,)

R%l 5 measures the proportionate reduction in “the variation in Y remaining after X» is included
in the model” that is gained by also including X; in the model.

i R%’precip

ii. R%doudwver’precip (not conditional)
iii. R%’cloudcover\precip
iv. R%’lowtemp\precip,hightemp

v. R?

Y hightemp,lowtemp|precip

2 _
Ry =

6. In this exercise, we will predict the number of applications received using the other variables in the
College data set.

require(ISLR); require(rms)
require(dplyr); require(leaps)
data(College)



Split the data set into a training set (= 2/3 of the observations) and a test set (=~ 1/3 of the observa-
tions). The split is done for you in the following code:

set.seed(47) # feel free to change this number if you want to

col.subset <- sample(c(TRUE, FALSE), nrow(College), replace=TRUE, prob=c(1/3,2/3))
col.tst <- College[col.subset,]

col.trn <-College[!col.subset,]

dim(col.tst)

## [1] 282 18
dim(col.trn)

## [1] 495 18

An analysis using best subsets and SSE

Below, nvmax=3. You will need to change that argument so as to use all the variables in the dataset.
Go through the output below to make sure you understand it.

An asterisk indicates that a given variable is included in the corresponding model. For instance, this
output indicates that the best two-variable model contains only Accept and ToplOperc. By default,
regsubsets () only reports results up to the best eight-variable model. But the nvmax option can be
used in order to return as many variables as are desired.

The output ($outmat) gives the best model for each of 1, 2, 3 variables. We also see that the three
variable model is best for all the criteria: Cp, BIC, adjusted R?.

col.best <- regsubsets(Apps ~., data=col.trn, nvmax=3)
col.best.sum <- summary(col.best)
names (col.best.sum)

## [1] "which" "I'Sq" "rgg" |Iadjr2ll ”Cp" "bic" "outmat" llobjll

col.best.sum$outmat

## PrivateYes Accept Enroll ToplOperc Top25perc F.Undergrad
## 1 ( 1 ) n n n * n n n n n n n n n

## 2 ( 1 ) n.n Il*ll n.n ll*ll " n nn

## 3 ( 1 ) nn Il*ll n.n ll*ll ll*ll non

## P.Undergrad Outstate Room.Board Books Personal PhD Terminal
## 1 ( 1 ) nn " n n.n nn n n non non
## 2 ( 1 ) n.n " n nn nn n n non non
## 3 ( 1 ) n n n n n n n n n n n n n n
#i# S.F.Ratio perc.alumni Expend Grad.Rate

## 1 ( 1 ) non non non non

## 2 ( 1 ) non non "non non

## 3 ( 1 ) n.n non " n n.n

which.min(col.best.sum$cp)

## [1] 3



which.max(col.best.sum$adjr2)
## [1]1 3
which.min(col.best.sum$bic)
## [1] 3

best.num <- which.max(col.best.sum$adjr2)

coef (col.best, best.num)

## (Intercept) Accept  ToplOperc  Top25perc
## -199.989190 1.421544 72.132516 -29.156976

plot(col.best, scale="adjr2")
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plot(col.best.sum$adjr2, xlab = "Subset Size", ylab = "Adjusted R2", type = "1")
points(best.num, col.best.sum$adjr2[best.num], pch = 18, col = "red")
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(a) Using the entire dataset, look at some of the relationships between the variables. You might
consider using a pairs plot (but pairs on the entire dataset probably isn’t readable/interpretable).
(?pairs) Comment on the exploratory relationships.

(b)

Using only the training data, find the best model (out of all possible subsets) - allowing for as
many variables as needed (no interactions) using Cp, BIC, and adjusted R?. (Note: you may
come up with 1 model, you may come up with 3 different models.)

i.

i.

iii.

iv.

Print the coefficient estimates.

Provide 3 plots: the Adjusted R? as a function of subset size, Cp as a function of subset size,
and BIC as a function of subset size. Indicate on the plot where the best model is obtained.

For each of the three (or fewer) models, run lm. Comment on the significance of the variables
chosen by the criteria.

Give a few sentences on which model you would present to the client (and why).

Using nested F-tests with stepwise models, re-assess the college data (only the training data).

i.

ii.

iii.

Using forward selection, which model is selected? (Variables must be added into the model
one at a time using add1.)

Using backward selection, which model is selected? (Variables must be removed from the
model one at a time using drop1l.)

Which model would you present to the client? Why?

With the two models from above(one best subsets using SSE, the other stepwise using F-tests),
apply the model to get the SSE for the test data. Which model gives smaller SSE for test data?
Is that what you expected? Why?

[R hint: use the predict function where newdata=col.tst. Then take those predictions and find
the sum of squares: sum((newpreds - col.tst$Apps)~2) ]



