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Multiple Regression III – R code
Multicollinearity

Consider the multiple regression model:

E[Y ] = β0 + β1X1 + β2X2

Y = amount of money in pocket
X1 = # of coins in pocket
X2 = # of pennies, nickels, dimes in pocket

Using a completely non-random sample, I got the following data:

amount <- c(1.37, 1.01, 1.5, 0.56, 0.61, 3.06, 5.42, 1.75, 5.4, 0.56, 0.34, 2.33,
3.34, 1.3, 1.2, 1.7, 0.86, 0.61, 2.96, 5.52, 8.95, 5.2, 1.56, 0.74, 1.83, 3.74)

num.coins <- c(9,10,3,5,10,37,28,9,11,4,6,17,15,7,9,1,5,9,36,30,47,13,5,7,18,16)
num.lowcoins <- c(4,8,0,4,9,34,9,3,2,2,5,12,11,4,8,0,4,9,34,9,3,2,2,5,12,11)

pairs(cbind(amount, num.coins, num.lowcoins), lower.panel=panel.cor, pch=18)
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summary( lm(amount ~ num.coins) )$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5455854 0.44310536 1.231277 2.301490e-01
## num.coins 0.1341547 0.02422195 5.538560 1.070416e-05



summary( lm(amount ~ num.lowcoins) )$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.27979939 0.58478523 3.8985242 0.0006806597
## num.lowcoins 0.02012241 0.05082503 0.3959153 0.6956652745

summary( lm(amount ~ num.coins + num.lowcoins))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7981116 0.30066739 2.654467 1.416556e-02
## num.coins 0.2062375 0.02085594 9.888671 9.438697e-10
## num.lowcoins -0.1602916 0.02908845 -5.510489 1.326852e-05

anova(lm(amount ~ num.coins + num.lowcoins))

## Analysis of Variance Table
##
## Response: amount
## Df Sum Sq Mean Sq F value Pr(>F)
## num.coins 1 63.363 63.363 68.209 2.473e-08 ***
## num.lowcoins 1 28.208 28.208 30.366 1.327e-05 ***
## Residuals 23 21.366 0.929
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effects of Multicollinearity

In reality, there is always some degree of correlation between the explanatory variables (pg 283).
for regression models, it is important to understand the entire context of the model, particularly
for correlated variables.

1. Regardless of the degree of multicollinearity, our ability to obtain a good fit and make pre-
dictions (mean or individual) is not inhibited.

2. If the variables are highly correlated, many different linear combinations of them will produce
equally good fits. That is, different samples from the same population may produce wildly
different estimated coefficients. For this reason, the variability associated with the coefficients
can be quite high. Additionally, the explanatory variables can be statistically not significant
even though a definite relationship exists between the response and the set of predictors.

3. We can no longer interpret the coefficient to mean “the change in response when this variable
increases by one unit and the others are held constant” because it may be impossible to hold
the other variables constant. The regression coefficients do not reflect any inherent effect of
the particular predictor variable on the response but rather a marginal or partial effect given
whatever other correlated predictor variables are included in the model.


