Consider the multiple regression model:

\[E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \]

- \(Y \) = amount of money in pocket
- \(X_1 \) = # of coins in pocket
- \(X_2 \) = # of pennies, nickels, dimes in pocket

1. Describe the directionality of the two correlation values: between \(Y \) & \(X_1 \) and between \(Y \) and \(X_2 \). Explain.

2. Describe the directionality of the two \(\beta \) coefficients (\(\beta_1 \) and \(\beta_2 \)) in the regression model. Explain.

Solution:

1. Because the amount of money necessarily goes up with more coins, \(Y \) and \(X_1 \) will be positively correlated. Similarly, \(Y \) and \(X_2 \) will be positively correlated.

2. The total number of coins is going to be a better predictor of total amount than the number of low coins. The coefficient on \(X_1 \) (\(\beta_1 \)) will be positive. Given a certain number of coins total in the model, the number of low coins will actually have a negative effect on the model. So the coefficient on \(X_2 \) (\(\beta_2 \)) will be negative.

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|---------|
| (Intercept) | 0.30724 | 0.46569 | 0.660 | 0.524321 |
| num.coins | 0.29648 | 0.05778 | 5.132 | 0.000443 *** |
| num.lowcoins | -0.24629 | 0.06561 | -3.754 | 0.003762 ** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1