Name: _____

Suppose a researcher does a randomized experiment to compare the mean weight loss for three different programs for losing weight, and the observed weight loss (in lbs.) after three months are as follows:

Program 1	Program 2	Program 3	
7	9	15	
9	11	12	
5	7	18	
7			

The following statistics (in lbs.) are given for the data:

	sample size	mean	st. dev
Program 1	4	7	1.63
Program 2	3	9	2.00
Program 3	3	15	3.00
Total	10	10	4.06

1. Find SSTR $(=\sum_{i=1}^r n_i (\overline{Y}_{i\cdot} - \overline{Y}_{\cdot\cdot})^2)$ and SSE $(=\sum_{i=1}^r (n_i - 1)s_i^2)$.

$$SSTR = 4(7-10)^{2} + 3(9-10)^{2} + 3(15-10)^{2} = 114$$

$$SSE = 3(1.63^{2}) + 2(2^{2}) + 2(3^{2}) = 34$$

$$SSTO = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{..})^{2} = (n_{T} - 1) \frac{\sum_{i=1}^{r} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{..})^{2}}{n_{T} - 1} = (n_{T} - 1)s^{2} = 9(4.06^{2}) = 148$$

$$= SSTR + SSE$$

2. Complete the following table:

Source	SS	df	MS	F	p-val
Between	114	2	57	11.7	< 0.01
Error (Within)	34	7	4.85	Х	Х
Total	148	9	Х	Х	Х