Math 159 - Spring 2010
Jo Hardin warm-up \# 2

Name: \qquad
Consider the following CI for the 0.75 quantile: $\left[X^{(3)}, X^{(n-1)}\right]$. Assume X is continuous. What is the probability of selecting a simple random sample that will create a confidence interval which contains the true 0.75 quantile $\left(x_{0.75}\right)$?

Solution:

$$
\begin{aligned}
P\left(x_{0.75} \notin\left[X^{(3)}, X^{(n-1)}\right]\right)= & P\left(x_{0.75}<X^{(3)} \text { or } x_{0.75}>X^{(n-1)}\right) \quad \text { disjoint, so add probabilities } \\
P\left(x_{0.75}<X^{(3)}\right)= & (0.25)^{n}+n(0.25)^{n-1}(0.75)+\frac{n(n-1)}{2}(0.25)^{n-2}(0.75)^{2} \\
P\left(x_{0.75}>X^{(n-1)}\right)= & (0.75)^{n}+n(0.75)^{n-1}(0.25) \\
P\left(x_{0.75} \notin\left[X^{(3)}, X^{(n-1)}\right]\right)= & (0.25)^{n}+n(0.25)^{n-1}(0.75)+\frac{n(n-1)}{2}(0.25)^{n-2}(0.75)^{2}+ \\
& (0.75)^{n}+n(0.75)^{n-1}(0.25) \\
= & \sum_{i=0}^{3-1}\binom{n}{i}(0.75)^{i}(0.25)^{n-i}+\sum_{i=n-1}^{n}\binom{n}{i}(0.75)^{i}(0.25)^{n-i} \\
P\left(x_{0.75} \in\left[X^{(3)}, X^{(n-1)}\right]\right)= & 1-\sum_{i=0}^{3-1}\binom{n}{i}(0.75)^{i}(0.25)^{n-i}-\sum_{i=n-1}^{n}\binom{n}{i}(0.75)^{i}(0.25)^{n-i}
\end{aligned}
$$

