Name: \qquad
Violence in television. See handout. [Hollander \& Wolfe, "Nonparametric Statistical Anaylsis," page 124.] Is there evidence to indicate that children who watched violent TV (The Karate Kid) take longer to seek help? Use a Wilcoxon Rank Sum test. (Additionally, find a 95% CI for the difference in mean amount of time for the violent TV watchers compared to the sports TV watchers.)

Solution:

$\mathrm{X}=$ number of seconds to get an adult for Karate Kid watchers
$\mathrm{Y}=$ number of seconds to get an adult for Olympics watchers
$\mathrm{n}=\mathrm{m}=21, \mathrm{~N}=42, \mathrm{~N}(\mathrm{~N}+1) / 2=903$

$$
\begin{aligned}
H_{0}: & E(X) \geq E(Y) \\
H_{1}: & E(X)<E(Y) \\
T= & \sum_{i=1}^{n} R\left(X_{i}\right)=395.5 \\
& \sum_{j=1}^{m} R\left(Y_{j}\right)=507.5 \\
Z= & \frac{T-\frac{n(N+1)}{2}}{\sqrt{\frac{n m(N+1)}{12}}} \\
= & \frac{395.5-\frac{21 * 43}{2}}{\sqrt{\frac{21 * 21 * 43}{12}}} \\
= & -1.4087 \\
p-\text { value }= & P(Z \leq-1.4087)=0.08
\end{aligned}
$$

What if we want to consider the effect of ties?

$$
\begin{aligned}
T_{1} & =\frac{T-\frac{n(N+1)}{2}}{\sqrt{\frac{n m}{N(N-1)} \sum_{i=1}^{N} R_{i}^{2}-\frac{n m(N+1)^{2}}{4(N-1)}}} \\
& =-1.443 \\
p-\text { value } & =P(Z \leq-1.443)=0.074
\end{aligned}
$$

Not very convincing evidence to say that Karate Kid produces less reactive child-care watchers.

- Witnessing violence data (Olympics versus Karate Kid on TV): $\mathrm{n}=21, \mathrm{~N}=42$,

$$
\begin{aligned}
\omega_{\alpha / 2} & =\frac{n(N+1)}{2}+z_{\alpha / 2} \sqrt{\frac{n m(N+1)}{12}} \\
& =\frac{21 \cdot 43}{2}-1.96 \sqrt{\frac{21 \cdot 21 \cdot 43}{12}}=373.6 \\
\omega_{1-\alpha / 2} & =\frac{21 \cdot 43}{2}+1.96 \sqrt{\frac{21 \cdot 21 \cdot 43}{12}}=529.4
\end{aligned}
$$

reject H_{0} if

$$
k<373.6-\frac{n(n+1)}{2}=142.6
$$

$$
\text { reject } H_{0} \text { if } \quad k>529.4-\frac{n(n+1)}{2}=298.4
$$

- Notice that $141^{\text {st }}$ difference is $-30 \mathrm{~min}, 144^{\text {th }}$ difference is -29 min .

If we add -30 to all $Y_{j} \Rightarrow k=140$, don't reject
If we add -29 to all $Y_{j} \Rightarrow k=143$, don't reject
If we add anything less than -30 (say, -30.5), we reject.

- Notice that $296^{\text {th }}$ difference is $4 \mathrm{~min}, 299^{\text {th }}$ difference is 5 min .

If we add 4 to all $Y_{j} \Rightarrow k=298$, don't reject
If we add 5 to all $Y_{j} \Rightarrow k=300$, reject
If we add anything bigger than 5 (say 4.5), we don't reject.
A 95% CI for $E(X)-E(Y)$ is: [-30min, 5 min$]$

