Taylor Polynomials and Taylor Series Math 31 - Jo Hardin - Spring 2011

Some friendly series to know (and know how to derive them ...) :

- Geometric series: $\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n$, converges for |x| < 1.
- Binomial Series: $(1+x)^p = 1 + px + \frac{p(p-1)}{2}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \dots$, converges for -1 < x < 1. Note that if p is a positive integer, this sum is finite: all coefficients are zero for powers of x greater than p.
- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, converges for all x.
- $\cos(x) = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$, converges for all x.
- $\sin(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, converges for all x.
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$. Note what happens if you take the derivative

of this one: you get the geometric series, with -x in place of x. This series converges for $-1 < x \le 1$.

Some facts:

• The general formula for the Taylor series about the point x = a for a function f with infinitely many derivatives is:

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots = \sum_{n=1}^{\infty} \frac{f^{(n)}(n)}{n!}(x-a)^n$$

A function may converge to its Taylor series at some values of x, one value of x or all values of x.

• If the Taylor series is derived around the point *a*, then it is a power series, and its radius of convergence can be determined by finding:

$$R = \lim_{n \to \infty} \frac{C_n}{C_{n+1}}, \quad \text{where the } C_n \quad \text{is the coefficient of } x^n$$

- If a Taylor series converges you can differentiate it, multiply it, and integrate it to get a new series.
- The *n*th degree Taylor polynomial for f(x) around the point x = a is the Taylor series for f(x) around x = a truncated after the first term containing x^n :

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

• If the function f and all of its derivatives are continuous, then the difference between f and its nth degree Taylor polynomial around the point a is given by:

$$|E_n(x)| = |f(x) - P_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1}$$

where M is the maximum of $|f^{n+1}|$ on the interval between a and x.

Example: Find the error in the *n*th degree Taylor polynomial for $\cos(x)$ around a = 0 when $x = \pi/2$: From the error estimate in the last fun fact above,

$$|E_n(\pi)| \le \frac{M}{(n+1)!} \pi^{n+1} = \frac{\pi^{n+1}}{(n+1)!}$$

so, for n = 10, the absolute value of the error is $< \frac{n}{11!} \approx 0.007370431$. Show that a Taylor series converges: Show that the Taylor series for cos(x) converges for all x.

Answer: Using the ratio test, and using only the even terms, we get:

$$\lim_{n \to \infty} \frac{C_n}{C_{n+2}} = \lim_{n \to \infty} \frac{1/n!}{1/(n+2)!} = \lim_{n \to \infty} (n+2)(n+1) \to \infty$$

so $R \to \infty$ and the interval of convergence is all of \mathbb{R} . Sneaky trick!! This doesn't actually show that the Taylor series converges to the function $\cos(x)$...it might converge to something else! To make sure, we can show that the error terms go to zero:

$$|E_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$$

To see that this goes to zero for every value of x, we will pick an x (and "fix" it, i.e. we won't change it). For any $\epsilon > 0$, let k > 2x be an integer, and let m be another integer such that $\left(\frac{1}{2}\right)^m < \frac{\epsilon}{x^k}$. Then, if n = m + k we have:

$$\frac{x^n}{n!} = \frac{x^{m+k}}{n(n-1)\dots(k+1)k(k-1)\dots(2)(1)} < \left(\frac{x}{k+1}\right)^m \frac{x^k}{k!} < \left(\frac{1}{2}\right)^m x^k < \epsilon$$

so $\lim_{n\to\infty} |E_n| = 0$, and the series converges to $\cos(x)$ for all x.

Practice:

- 1. Find the second degree Taylor polynomial around the given point:
 - (a) $\ln(x)$ around x = 2.
 - (b) $\sin(x)$ around $x = \pi/4$.
- 2. Find the fourth degree Taylor polynomial around zero of $\frac{1}{1-4z^2}$.
- Find the exact value of the following infinite sum: 47+47(0.1)² + 47(.10)⁴/2 + 47(.01)⁶/3! + ...
 Find the exact value of the following finite or infinite series:

(a)
$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} \dots$$

(b) $47 - \frac{4}{2} + \frac{8}{3} - \frac{16}{4} + \frac{32}{5} - \dots$
(c) $8 + 4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{10}}$

5. A function f has f(3) = 1, f'(3) = 5, f''(3) = -10. Find the best estimate you can for f(3.1).

6. Suppose x is positive but very small. Arrange the following expressions in increasing order:

$$x$$
, $\sin(x)$, $\ln(1+x)$, $1 - \cos(x)$, $e^x - 1$, $\arctan(x)$, $x\sqrt{1-x}$

- 7. (a) Find the Taylor series for $f(t) = te^t$ about t = 0.
 - (b) Using your answer to part (a), find a Taylor series expansion about x = 0 for

$$\int_0^x te^t \, dt.$$

(c) Using your answer to part (b), show that

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{4(2!)} + \frac{1}{5(3!)} + \frac{1}{6(4!)} + \dots = 1$$