Taylor Polynomials and Taylor Series
Math 31 - Jo Hardin - Spring 2011
Some friendly series to know (and know how to derive them ...) :

- Geometric series: $\frac{1}{1-x}=\sum_{n=1}^{\infty} x^{n}$, converges for $|x|<1$.
- Binomial Series: $(1+x)^{p}=1+p x+\frac{p(p-1)}{2} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\ldots$, converges for $-1<x<1$. Note that if p is a positive integer, this sum is finite: all coefficients are zero for powers of x greater than p.
- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, converges for all x.
- $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$, converges for all x.
- $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$, converges for all x.
- $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$. Note what happens if you take the derivative of this one: you get the geometric series, with $-x$ in place of x. This series converges for $-1<x \leq 1$.

Some facts:

- The general formula for the Taylor series about the point $x=a$ for a function f with infinitely many derivatives is:

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots=\sum_{n=1}^{\infty} \frac{f^{(n)}}{n!}(x-a)^{n}
$$

A function may converge to its Taylor series at some values of x, one value of x or all values of x.

- If the Taylor series is derived around the point a, then it is a power series, and its radius of convergence can be determined by finding:

$$
R=\lim _{n \rightarrow \infty} \frac{C_{n}}{C_{n+1}}, \quad \text { where the } C_{n} \quad \text { is the coefficient of } x^{n}
$$

- If a Taylor series converges you can differentiate it, multiply it, and integrate it to get a new series.
- The nth degree Taylor polynomial for $f(x)$ around the point $x=a$ is the Taylor series for $f(x)$ around $x=a$ truncated after the first term containing x^{n} :

$$
P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

- If the function f and all of its derivatives are continuous, then the difference between f and its nth degree Taylor polynomial around the point a is given by:

$$
\left|E_{n}(x)\right|=\left|f(x)-P_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

where M is the maximum of $\left|f^{n+1}\right|$ on the interval between a and x.

Example: Find the error in the nth degree Taylor polynomial for $\cos (x)$ around $a=0$ when $x=\pi / 2$: From the error estimate in the last fun fact above,

$$
\left|E_{n}(\pi)\right| \leq \frac{M}{(n+1)!} \pi^{n+1}=\frac{\pi^{n+1}}{(n+1)!}
$$

so, for $n=10$, the absolute value of the error is $<\frac{\pi^{11}}{11!} \approx 0.007370431$.
Show that a Taylor series converges: Show that the Taylor series for $\cos (x)$ converges for all x. Answer: Using the ratio test, and using only the even terms, we get:

$$
\lim _{n \rightarrow \infty} \frac{C_{n}}{C_{n+2}}=\lim _{n \rightarrow \infty} \frac{1 / n!}{1 /(n+2)!}=\lim _{n \rightarrow \infty}(n+2)(n+1) \rightarrow \infty
$$

so $R \rightarrow \infty$ and the interval of convergence is all of \mathbb{R}. Sneaky trick!! This doesn't actually show that the Taylor series converges to the function $\cos (x) \ldots$ it might converge to something else! To make sure, we can show that the error terms go to zero:

$$
\left|E_{n}(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!}
$$

To see that this goes to zero for every value of x, we will pick an x (and "fix" it, i.e. we won't change it). For any $\epsilon>0$, let $k>2 x$ be an integer, and let m be another integer such that $\left(\frac{1}{2}\right)^{m}<\frac{\epsilon}{x^{k}}$. Then, if $n=m+k$ we have:

$$
\frac{x^{n}}{n!}=\frac{x^{m+k}}{n(n-1) \ldots(k+1) k(k-1) \ldots(2)(1)}<\left(\frac{x}{k+1}\right)^{m} \frac{x^{k}}{k!}<\left(\frac{1}{2}\right)^{m} x^{k}<\epsilon
$$

so $\lim _{n \rightarrow \infty}\left|E_{n}\right|=0$, and the series converges to $\cos (x)$ for all x.

Practice:

1. Find the second degree Taylor polynomial around the given point:
(a) $\ln (x)$ around $x=2$.
(b) $\sin (x)$ around $x=\pi / 4$.
2. Find the fourth degree Taylor polynomial around zero of $\frac{1}{1-4 z^{2}}$.
3. Find the exact value of the following infinite sum:
$47+47(0.1)^{2}+\frac{47(.10)^{4}}{2}+\frac{47(.01)^{6}}{3!}+\ldots$
4. Find the exact value of the following finite or infinite series:
(a) $1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27} \ldots$
(b) $47-\frac{4}{2}+\frac{8}{3}-\frac{16}{4}+\frac{32}{5}-\ldots$
(c) $8+4+2+1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{10}}$
5. A function f has $f(3)=1, f^{\prime}(3)=5, f^{\prime \prime}(3)=-10$. Find the best estimate you can for $f(3.1)$.
6. Suppose x is positive but very small. Arrange the following expressions in increasing order:

$$
x, \quad \sin (x), \quad \ln (1+x), \quad 1-\cos (x), \quad e^{x}-1, \quad \arctan (x), \quad x \sqrt{1-x}
$$

7. (a) Find the Taylor series for $f(t)=t e^{t}$ about $t=0$.
(b) Using your answer to part (a), find a Taylor series expansion about $x=0$ for

$$
\int_{0}^{x} t e^{t} d t
$$

(c) Using your answer to part (b), show that

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{4(2!)}+\frac{1}{5(3!)}+\frac{1}{6(4!)}+\cdots=1
$$

