Name: \qquad
Suppose you have a variable that has a normal distribution with mean μ and standard deviation σ. You are interested in finding $P(a \leq X \leq b)$.

Using the substitution $z=(x-\mu) / \sigma$, show that the probability of interest is exactly the same as the probability $P((a-\mu) / \sigma \leq Z \leq(b-\mu) / \sigma)$ where Z has a standard normal distribution.

Recall:

$$
\begin{aligned}
p(x) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
p(z) & =\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
P(a \leq X \leq b) & =\int_{a}^{b} p(x) d x \\
& =\int_{a}^{b} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
\end{aligned}
$$

letting $z=(x-\mu) / \sigma, d z=d x / \sigma$.

$$
\begin{aligned}
P(a \leq X \leq b) & =\int_{a}^{b} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
& =\int_{x=a}^{x=b} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
& =\int_{z=(a-\mu) / \sigma}^{z=(b-\mu) / \sigma} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
& =P((a-\mu) / \sigma \leq Z \leq(b-\mu) / \sigma)
\end{aligned}
$$

