Below you will find a series of examples. For each example, you should provide the following information:

- What units are being measured (or observed)?
- What variables are being measured? Are they categorical? binary? quantitative?
- Which is the response and which is the explanatory variable (if appropriate)?
- Which type of procedure would you follow to address the issue in the example?
 - (1) Binomial test (or z-test) of a proportion
 - (2) One sample z-interval for a proportion
 - (3) One sample t-test of a mean
 - (4) One sample t-interval for a mean
 - (5) z-interval for OR
 - (6) Two sample z-interval for proportions
 - (7) Two sample t-test of means
 - (8) Two sample t-interval for means
 - (9) Two sample randomization test mean (or median)
 - (10) Two sample z-test of proportions
 - (11) t-test for linear regression slope
 - (12) t-interval for linear regression slope
 - (13) Randomization test for two categorical variables
 - (14) Chi-square test
 - (15) Analysis of Variance (ANOVA)
 - (16) none of the above are appropriate
- If the choice of procedures is unclear from the information given, state what additional information you would need.
- If you choose a hypothesis test, state the null and alternative hypotheses, and define the relevant population parameter(s).
- If you choose a confidence interval, define the relevant population parameter(s).
- Check any needed conditions applicable to the test.

This handout and the following examples were derived from *Workshop Statistics Student Toolkit* by Rossman and Chance.
Examples

1. A campus administrator wants to know if some campus groups are more likely to consume alcohol than others. He takes a random sample of 1500 students and classifies them as high risk or low risk drinkers, and whether they belong to a sorority, fraternity, or neither.

2. A researcher wants to determine whether people with “positive attitudes” tend to live longer than those without positive attitudes. He collects data on those who were classified with a positive attitude and those who were not, and he records how long each person lived.

3. A financial investor is interested in whether the number of houses purchased in a particular city is related to the current interest rate. Every day for 3 months, she records the number of houses purchased in the city and also the current interest rate published by the Federal Reserve.
4. A student project group wants to know if the color of a person’s car is related to how fast they drive. They time how long it takes cars to travel between two points on the local highway and classify the cars as “racy colored” (red or black), “light” (white, tan, or silver), or “other” colors.

5. A university is trying to determine whether parking is a problem on its campus. The student newspaper contacts a random sample of 200 students and asks whether or not they are frustrated with the parking situation. They want to estimate the proportion of students at the college who are frustrated with the parking situation.

6. A student reporter wants to know whether Democrats were more likely to vote for Candidate NW than Republicans. She takes random samples belonging to the Democratic and Republican parties and asks whether or not they voted for Candidate NW.
7. A new species of lizards is found, and a researcher wants to know their average flight speed. She captures 30 lizards and races them individually on a track in her laboratory.

8. A psychologist wants to know if the amount of time a couple co-habits before marriage is related to how long the marriage lasts. He selects a random sample of 500 couples and records how many months they lived together before they were married and then the number of years they have been married or were married before divorce.

9. The Best Buy electronics store wants to estimate how much more men tend to spend at the store than women. They collect receipts for a random sample of 100 customers and examine the total amount of the bill.
Solutions

1. Chi-square test (14)
 observational units = students
 variable 1 (explanatory variable) - whether or not the student belongs to a sorority, fraternity, or neither (categorical)
 variable 2 (response variable) - whether the student is a high risk or low risk drinker (categorical, binary)
 \(H_0 \): no association between Greek membership and alcohol risk level
 \(H_a \): an association between Greek membership and alcohol risk level
 Note: since variable 1 has 3 categories, we can’t use a two-sample procedure
 check: make sure that each expected cell has at least one observation, and that 80% of the expected cells are greater than 5.

2. Two independent samples t-test of means (7) (as long as the people were randomly selected)
 observational units = people
 variable 1 (explanatory) - whether or not the individual has a positive attitude (categorical, binary)
 variable 2 (response) - number of years lived (quantitative)
 \(\mu_1 \) = mean lifetime of those with a positive attitude in the population
 \(\mu_2 \) = mean lifetime of those without a positive attitude in the population
 \(H_0 \): \(\mu_1 = \mu_2 \) (no difference in mean lifetime between the two populations)
 \(H_a \): \(\mu_1 > \mu_2 \) (those with positive attitudes tend to live longer on average)
 check: independent random samples with at least 20 or 30 people each. If sample sizes are small or particularly not normal, the researchers may prefer a randomization test (9).

3. No applicable method (16)
 We can’t use regression here because we don’t have independent observations (the interest rates from day to day depend on each other.) We would use time series techniques to address this problem.

4. ANOVA (15) (as long as we can justify the selection of cars as random)
 observational units = cars
 variable 1 (explanatory) - color of car
 variable 2 (response) - time to travel between two points on the highway
 \(\mu_r \) = mean time for “racy colored” cars in the population
 \(\mu_l \) = mean time for “light” colored cars in the population
 \(\mu_o \) = mean time for “other” colored cars in the population
 \(H_0 \): \(\mu_r = \mu_l = \mu_o \) (no difference in mean time across colors in the populations)
 \(H_a \): not \(H_0 \) (at least one of the colors shows a different mean time than the others)
 check: independent random samples, normally distributed travel time, equal variance for different colors (or, large independent random samples that are balanced)

5. One-sample z-interval for a proportion (2)
 observational units = students
 variable (response) - whether the student considers parking a problem (categorical, binary)
 \(\pi \) = proportion of all students at this college who find parking a problem
 (we want a CI for \(\pi \))
 check: first check the binomial conditions. Then make sure that \(n\pi \geq 10 \) and \(n(1 - \pi) \geq 10 \). With a sample size of 200, we would need \(\pi < 0.05 \) or \(\pi > .95 \) to violate the conditions. Because this is unlikely, it seems that our conditions will be met.
6. Two sample z-test of proportions (10)
 observational units = students
 variable 1 (explanatory) - whether the student classifies themselves as Democrat or Republican (categorical, binary)
 variable 2 (response) - whether or not the student voted for candidate NW (categorical, binary)
 \(\pi_D = \) proportion of Democrats at this school who voted for candidate NW
 \(\pi_R = \) proportion of Republicans at this school who voted for candidate NW
 \(H_0: \pi_D = \pi_R \) (Rep and Dem were equally likely to vote for candidate NW)
 \(H_a: \pi_D > \pi_R \) (Dem were more likely to vote for candidate NW than Rep)

 Note: because we are interested in a one-sided test, the two-sample proportions test is more appropriate than the chi-square test.

 check: first check the binomial conditions. Then make sure the sample size is large enough, we need at least 5-10 successes and at least 5-10 failures in each sample.

7. One sample t-interval for a mean (4)
 observational units = lizards
 variable (response) - flight speed of the lizard
 \(\mu = \) true average flight speed for this species of lizard
 (we want a CI for \(\mu \))

 check: randomly selected lizards, at least 20-30 or from a normally distributed population

8. t-test for linear regression slope (11)
 observational units = couples
 variable 1 (explanatory) - length of time the couple co-habitated before marriage (quantitative)
 variable 2 (response) - number of years the couple’s marriage lasted (quantitative)
 \(H_0 : \beta_1 = 0 \) (no linear assoc btwn length of co-habitation and length of marriage in the pop)
 \(H_a : \beta_1 \neq 0 \) (a linear assoc btwn length of co-habitation and length of marriage in the pop)

 check: randomly selected observations, a sample size of at least 30 or from a population that is normally distributed

9. Two-sample t-interval for means (8)
 observational units = customers
 variable 1 (explanatory) - gender (categorical, binary)
 variable 2 (response) - total amount of bill (quantitative)
 \(\mu_m = \) average amount spent by men
 \(\mu_w = \) average amount spent by women
 (we want a CI for \(\mu_m - \mu_w \))

 check: randomly selected observations, sample size of at least 30 each