The Bureau of Transportation Statistics (BTS) is a statistical agency that is a part of the Research and Innovative Technology Administration (RITA). As its name implies, BTS collects and makes available transportation data, such as the flights data we will be working with in this lab.

data(flights)

To Turn In

5. Mutate the data frame so that it includes a new variable that contains the average speed, \(\text{avg_speed} \) traveled by the plane for each flight (in mph). **Hint:** Average speed can be calculated as distance divided by number of hours of travel, and note that \(\text{air_time} \) is given in minutes.

Solution

```r
flights %>%
  names()
## [1] "year"  "month"  "day"  "dep_time"
## [5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
## [9] "arr_delay" "carrier" "flight" "tailnum"
## [13] "origin"  "dest"  "air_time" "distance"
## [17] "hour"  "minute"  "time_hour"
```

6. Another useful `dplyr` filtering helper function is `between`. What does it do? Use it to find flights that arrived between 0 and 60 minutes late. How many such flights are there?

Solution

```r
flights_ORD <- flights %>%
dplyr::filter(dest == "ORD") %>%
  select(dep_time, dep_delay, arr_time, arr_delay)
summary(flights_ORD, na.rm=TRUE)
```

7. Suppose you really dislike departure delays, and you want to schedule your travel in a month that minimizes your potential departure delay leaving NYC. One option is to choose the month with the lowest mean departure delay. Another option is to choose the month with the lowest median departure delay. What are the pros and cons of these two choices? Which month do you choose?

Solution

```r
```
Some words here describing what I see below.

```r
flights %>%
  group_by(carrier) %>%
  summarize(min_flight = min(air_time, na.rm = TRUE),
            mean_flight = mean(air_time, na.rm = TRUE),
            med_flight = median(air_time, na.rm = TRUE),
            max_flight = max(air_time, na.rm = TRUE))
```

A tibble: 16 x 5
Groups: carrier [16]
carrier min_flight mean_flight med_flight max_flight
<chr> <dbl> <dbl> <dbl> <dbl>
1 9E 21 86.8 83 272
2 AA 29 189. 189 426
3 AS 277 326. 324 392
4 B6 29 151. 142 413
5 DL 26 174. 145 490
6 EV 20 90.1 87 286
7 F9 195 230. 229 278
8 FL 53 101. 109 161
9 HA 580 623. 622 691
10 MQ 33 91.2 83 236
11 OO 50 83.5 88 177
12 UA 23 212. 197 695
13 US 21 88.6 76 359
14 VX 264 337. 337 406
15 WN 31 148. 122 362
16 YV 32 65.7 56.5 122

8. Which month has the highest average arrival delay from an NYC airport? What about the highest median arrival delay? Which of these measures is more reliable for deciding which month(s) to avoid flying if you really dislike delayed flights.

Solution

Some words here describing what I see below.

```r
flights %>%
  group_by(carrier, origin) %>%
  summarize(n())
```

A tibble: 35 x 3
Groups: carrier [16]
carrier origin n()
<chr> <chr> <int>
1 9E EWR 1268
2 9E JFK 14651
3 9E LGA 2541
4 AA EWR 3487
5 AA JFK 13783
6 AA LGA 15459
7 AS EWR 714
8 B6 EWR 6557
9 B6 JFK 42076
10 B6 LGA 6002
... with 25 more rows