Lab 9 - Math 58 / 58b: wrangling & graphing
quantitative data
done during lab April 1 or 3, 2020

not due

Lab Goals

e revisit tidyverse commands for wrangling quantitative data
 revisit ggplot2 for graphing quantitative data

Getting Started
Load packages & data

For the lab, we’ll use functions from the tidyverse (which includes all the ggplot2 functions). The data
come from the datasets provided by Openlntro. These observations are Google stock data from 2006 to early
2014. Data from the first day of each month was collected (unless the first day of the month was a weekend
or holiday, in which case the data is from the first day of the month when the stock price was available).
https://www.openintro.org/data/index.php?data=goog

Note that the stock prices are in dollars per share. volume is the number of shares traded on that day. The
Google stock split right after the last date in the dataset, so the prices in the rest of 2014 (and beyond) aren’t
comparable to the data contained here.

library(tidyverse)
library(lubridate)

goog <- read_csv("https://www.openintro.org/data/csv/goog.csv")
goog <- goog %>%
select(-adj_close) %>/
mutate(year = lubridate::year(date), month = lubridate::month(date))

Structure of the lab

For the first half of the lab, we’ll try a variety of data summarizing techniques. Note that we can also wrangle
the data (e.g., filter, sort, etc.). Make sure you understand how each of the summary values is calculated —
mean, median, standard deviation, 25 quartile, 75 quartile, interquartile range, range.

Recall, there is a data wrangling cheat sheet at: https://github.com/rstudio/cheatsheets/raw/
master/data-transformation.pdf

For the second half of the lab, we’ll try different visualizations to see how the data can be represented
graphically. Feel free to play around with all the many different types of graphs that can be created!

Recall, there is a ggplot2 cheat sheet at: https://github.com/rstudio/cheatsheets/raw/master/
data-visualization-2.1.pdf

Let’s Go!
Wrangling

1. First explore the dataset (called goog). How many observations? How many variables? What types of
variables (quantitative or categorical)?


https://www.openintro.org/data/index.php?data=goog
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf

2.

Find the min, max, mean, and standard deviation for the high and low stock price variables. Convince
yourself that you understand each of the numbers. Why is the sd lower than the mean?

Note that we can use the function summarize_at or summarise_all !! https://dplyr.tidyverse.org/reference/
summarise all.html

3. Repeat the above analysis, but first group_by year. Tell yourself some things you notice about the
trends that you see below. For example, there seems to be different trends with respect to the mean
versus the sd. Why?

4. Find the same summaries, but this time, filter for only the fall months (Oct, Nov, Dec) before grouping
and the summarizing. Can you tell whether or not your code worked? How would you know? (Hint:
see the next part on plotting.)

Plotting

Always really fun to plot data!!

5.

8.

Create a boxplot of the stock price open broken down by year. What can you see about the trend in
the average price of the stock? What about the variability in the price of the stock?

Create a line plot with month on the x-axis and open on the y-axis. Color and group the lines by year.
Use as.factor(year) so that the years are plotted as distinct and not continuous. After looking at
the line graph, go back and compare your numerical summaries from 3 and 4 above. Does it make sense
that the numbers in 4 are higher? Why?

Create a scatterplot with open on the x-axis and close on the y-axis. Make the size of the points
related to the volume of stocks traded that day. Color the points by as.factor(year).

(a) Add the line y=x. Use geom_abline.

(b) Add another line which is the “best fit” line. Use geom_smooth with method = "1m" and se = FALSE.


https://dplyr.tidyverse.org/reference/summarise_all.html
https://dplyr.tidyverse.org/reference/summarise_all.html

	Lab Goals
	Getting Started
	Load packages & data
	Structure of the lab

	Let's Go!
	Wrangling
	Plotting


