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PREDATOR-PREY INTERACTIONS WITH DELAYS DUE TO
JUVENILE MATURATION∗

KENNETH L. COOKE† , RICHARD H. ELDERKIN† , AND WENZHANG HUANG‡

Abstract. This paper focuses on predator-prey models with juvenile/mature class structure for
each of the predator and prey populations in turn, further classified by whether juvenile or mature
individuals are active with respect to the predation process. These models include quite general prey
recruitment at every stage of analysis, with mass action predation, linear predator mortality as well
as delays in the dynamics due to maturation. As a base for comparison we briefly establish that
the similar model without delays cannot support sustained oscillation, but it does have predator
extinction or global approach to predator-prey coexistence depending on whether the ratio α of per
predator predation at prey carrying capacity to the predator death rate is less than or greater than
one.

Our first model shows the effect of introducing an invulnerable juvenile prey class, appropriate,
e.g., for some host-parasite interactions. In contrast our second model shows the effect of limiting
predation to a prey juvenile class. Finally, in a third model we consider an inactive juvenile predator
class, which would be appropriate for many traditional situations in which the generation time for
the predator is significantly larger than that of the prey. In all cases the introduction of a juvenile
class results in a system of three delay-differential equations from which the two equations for the
mature class and the nonstructured class can be decoupled. We obtain some global stability results
and identify a parameter α, similar to the α of the unlagged model, which determines whether or not
the predator is driven to extinction. With α > 1, and considering the maturation age of the juvenile
class as a bifurcation parameter, we obtain Hopf bifurcations in our second and third models, while
in the case of juvenile prey (in the first model) the unique coexistence equilibrium remains stable
for all positive delays. Although the delay is “physically present” in all three models, we obtain
scaled, nondimensional replacement models with that physical presence scaled out. After analyzing
the scaled equations we show that all our results hold for the original models.

We pursue the bifurcation in the inactive juvenile predator model with numerical simulations.
Strikingly similar results over a variety of birth functions are observed. Increases of the maturation
delay first produce Hopf bifurcation from steady state to periodic behavior. Even further increase in
the delay produces instabilities of the bifurcating periodic solutions with corresponding interesting
geometry in a two-dimensional plot of period vs. delay.

Key words. predator-prey, host-parasite, age structure, maturation delay, delay differential
equations, bifurcation

AMS subject classifications. 92D25, 34K60, 34K18

DOI. 10.1137/05063135

1. Introduction. It is well known that some predators may preferentially attack
prey of certain ages or developmental stages. Likewise, the predators themselves
may be distinguished in some cases between inactive juveniles and active adults.
These situations may be modeled mathematically by dividing the populations into
age classes. Our models of this are closely related to those of Hastings ([16], 1983),
Murdoch et al. ([22], 1987), the very general ones of Nunney ([25],[26],[27]), and
recent work of Gourley and Kuang ([13], 2004). In a model comparable to one of ours
(5), Hastings uses a linear mature prey birth rate and a general predation functional
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response to show the possibility of switches between stability and instability of the
positive equilibrium as the time delay changes. In contrast we show that this is not
possible for our model (5) with its nondecreasing birth rate NB(N). It is known [8]
that if B(N) does not satisfy this hypothesis, more complicated dynamic behavior
may occur even in a single species population model. In order to analyze models with
nonlinear delayed recruitment, we limit our attention to a mass action (i.e., Holling
Type I) predation response.

Nunney studied prey-predator systems which are similar to ours, but without the
“physical presence” of the delay (that is, occurring outside the arguments of the time-
varying states). Assuming the existence of a unique positive equilibrium, he derives
a condition for its absolute stability (i.e., linear stability for all delays R). For our
“host-parasite” model (section 3) this condition is satisfied; however, in addition we
identify a parameter, α, which governs stability of the equilibrium with extinction
of the predator. Nunney also considers a similar general system, but in which the
delay is due to predator maturation, including our scaled system (50) as special case.
Again he assumes existence of a positive equilibrium, and derives a condition for
its absolute stability. However, in contrast, with our more specific functional forms
we derive conditions on parameters which guarantee Hopf bifurcation to periodic
solutions, building on the analysis of Cooke and van den Driessche [7].

Gourley and Kuang consider a model with inactive juvenile predators which is
similar to ours in section 5, but with logistic prey recruitment, which we generalize. As
in our case, they are faced with the physical presence of the delay in the equations,
which causes them (and others) significant difficulty. We exhibit a scaling of the
states and parameters which avoids those difficulties (e.g., (8)), yet causes no loss
of detail or generality (section 7). Although their predation functional response is
initially more general than ours, they specialize, as do we, to the mass-action response
before deriving any results. Using our scaling, we are able to analytically produce
results, while they relied on computational assistance for theirs. We also implement
three examples of birth functions (affine, concave up, and concave down) and conduct
numerical experimentation. Over parameter ranges of biological interest the numerical
results are very similar across the three function types. However, by extending the
maturation delay even further we first find interesting geometries of the bifurcated
periodic solutions and at even greater delays find an apparent relation between onset
of instabilities and a curious lack of monotonicity in a bifurcation diagram.

We intend our results to be a coherent study across a selection of models that
deserve to be considered in the context of each other. We present theoretical results
that can be compared across the variation of juvenile/adult roles, both active and
inactive, and for both predator and prey. In studying these models, we seek to obtain
as much information as we can about how the dynamics of the systems depend on
the multiple parameters in the equations, such as attack and mortality rates and
the maturation delay. In general, we are looking for conditions that ensure stable
equilibrium or bifurcation phenomena. Basic questions are the following: (1) to what
extent does the inclusion of the natural mortality parameters alter the qualitative
or quantitative behavior of the systems as the maturation delay is varied? (2) is
maturation delay more destabilizing in the prey or in the predator? (3) what kinds of
destabilizations other than Hopf bifurcations occur as the maturation delay increases?
We give partial answers to each of these questions and point the way to further
investigation in each case. In general, we find that there is a considerable difference
in dynamics depending on whether the prey or predator has a differently behaving
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juvenile class, and on whether the adults or the juveniles are active with respect to
the predation process. A moral is that any theoretical or practical study of these
situations should carefully take account of the potential for such differences.

We begin the analysis of each of our models by scaling the equations to obtain a
dimensionless system in which the delay is no longer physically present. This has the
usual advantages of reducing the number of parameters and making the mathematical
analysis somewhat simpler and more transparent. Implicit in this strategy is the
expectation that the dynamics of the original and scaled systems will be “equivalent”
or that the dynamics of one system will be “mirrored” by the dynamics of the other
system. Since some of the coefficient parameters of the original system, and some of
the transformations in the scaling, depend on the delay, and since we are probing how
stability or destabilization depends on the delay, we have included a careful discussion
of these and other aspects in section 7.

The structure of the paper is as follows. In section 2, as a point of departure for
what is to come in subsequent sections, we consider a simple predator-prey model that
does not include any age structure or resulting delay in recruitment. It consists of two
ordinary differential equations in which there is a general prey recruitment function,
mass-action predation, and linear mortality in both prey and predator. A simple
and natural condition suffices to determine global asymptotic stability of equilibrium;
there are no positive periodic solutions.

In section 3 we propose and analyze a model in which the prey has a juvenile class
(in addition to an interactive adult class) that is invulnerable to predation while the
predator is considered as a single class. For example, this might apply to the sheltered
existence of human infants while breast-feeding in a world where parasitism is wide-
spread. The results for our equivalent nondimensionalized system may be stated in
terms of a single scaled parameter, α, which has a natural interpretation similar to
that of R0 in many population (especially epidemiological) models. In this case, the
system is always dissipative, and when α > 1 there is a unique equilibrium with both
populations present, which must be locally asymptotically stable, independent of the
delay. There is no bifurcation to periodic behavior as the delay increases. Later, in
section 7, we discuss what this tells us about the original, nonscaled system.

In section 4 we present a model similar to the one in the preceding section in that
there are juvenile and adult prey along with a single class of predators. However,
we now assume that survival of juvenile prey is reduced in proportion to the mean
population size of predators. Under this hypothesis, our system is now one with
“distributed delay.” In contrast with the previous case, it turns out that the positive
equilibrium is stable for small maturation delays, but unstable with bifurcation to
periodic behavior for large ones.

In section 5 we present a model in which there is a single prey population, but a
predator with adult and juvenile classes in which the latter do not attack the prey.
We show in this case that bifurcation is possible with periodic solutions emerging
for large values of the delay under an additional condition on parameters. Here we
calculate bifurcation diagrams for examples of the original and the scaled systems,
and later in section 7, we discuss more general relationships.

In section 6 we present results of numerical studies of the bifurcations established
in section 5. Before chosing parameter values, we briefly provide interpretations for
the more important ones. Then we numerically compare a variety of birth functions
in which one is concave down, another concave up, and yet another is affine (over the
population range of interest). We arrange that all three resulting models have the same
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interior equilibrium populations and the same populations that are analogous to a
carrying capacity (in ODE models), and have the same birth rates at those population
levels. We compare the three over a common range of parameters, finding strong
similarities. In the case of the affine birth function we extend the Hopf bifurcation
branch with increasing delay until a Floquet multiplier leaves the unit disk in the
complex plane, signifying onset of instability of the bifurcating periodic solutions.
Observing this in a two-dimensional plot of the period of the bifurcating solutions
vs. the delay, we see this onset of instability simultaneously as the delay changes
from increase to decrease along a backwards S shape just after the period has begun
to decrease. At the other end of the backwards S where the delay begins increasing
again, another multiplier leaves the unit disk and the period moves toward increase.

Section 7 addresses the correspondence between the nature of the original models
and our analysis of their nondimensional replacements. This analysis is especially
motivated by the appearance of the maturation delay physically in the predation
coefficients as well as in the populations in the original models, but only within the
arguments of the scaled populations in the scaled equations. We show in a precise
sense that no bifurcation structure is lost as a result of these scalings.

2. A prototypical model. In order to provide a basis for comparison of our
primary results on models with delays due to maturation, we first establish the basic
properties exhibited by our model without age structure or corresponding delay. The
basic ODE model for a prey population N and a predator population P is

dN

dT
= NB(N) − aNP − dN,(1a)

dP

dT
= cNP − dPP(1b)

in which we assume that the per capita prey birth rate B satisfies

B (N) ≥ 0 and B′ (N) < 0 for N ≥ 0,(2a)

B (0) > d > B (∞) .(2b)

The assumptions (2a) and (2b) are satisfied, for example, in each of the forms
B(N) = p/(q + N) and B(N) = exp(−pN) where p and q are positive constants (for
appropriate d). However see section 3 where the latter form will not work. Further-
more, although (2a) is not satisfied by B(N) = p− qN , we adapt this form later to
provide a viable example.

It is obvious that (1) always has a trivial equilibrium (N,P ) = (0, 0) which is an
unstable saddle point. Another equilibrium is (N0, 0), where N0 > 0 is the unique
solution of B (N) = d, existing by (2). Some simplification of notation can be achieved
by scaling N,P, T and various coefficients. In fact, if we set

x = N/N0, t = dPT, α = cN0/dP ,
y = aP/cN0, b (x) = B (xN0) /dP , γ = d/dP ,

then the system (1) takes the (nondimensional) form

dx

dt
= xb (x) − αxy − γx,(3a)

dy

dt
= αxy − y.(3b)
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Notice that in this scaling the transfer from x to y by the scaled predation is
perfectly efficient! The properties assumed in (2) take the simpler form

b (x) ≥ 0 and b′ (x) < 0 for x ≥ 0,(4a)

b (0) > γ > b (∞) and b (1) = γ(4b)

and the equilibria are now at (0, 0) and (1, 0).
Lemma 1. The system (3) is dissipative, that is, there is a compact set Ω (in this

case of the form {(x, y) : x, y ≥ 0, x + y ≤ m} for some m) such that each solution in
the first quadrant of the (x, y) plane has a T0 such that when t ≥ T0, (x (t) , y (t)) ∈ Ω.

Proof. With V (x, y) = x + y we have

V̇
def
=

d

dt
V (x (t) , y (t)) = xb (x) − γx− y.

When x > 1 this is negative, and when x ≤ 1 it is negative for sufficiently large y.
Standard Lyapunov function considerations complete the argument.

Theorem 2. If α ≤ 1, then all positive solutions of (3) converge to the equilibrium
(1, 0) as time t → ∞.

Proof. The first quadrant of the (x, y) plane is invariant and it follows from the
first lemma that every positive solution is bounded. So Poincaré-Bendixson consid-
erations obtain. There is no positive equilibrium; (0, 0) is a saddle point and its
stable manifold lies on the y-axis; and (1, 0) is linearly stable. It follows then that
(x(t), y(t)) → (1, 0) as t → ∞.

It is easily seen that our hypotheses on the birth function B (x) imply the following
lemma.

Lemma 3. The system (3) has a positive equilibrium (x∗, y∗) if and only if α > 1,
in which case it is unique.

For the remainder of this section we study the case when α > 1. Since b′(x∗) <
0, it is easy to see that all eigenvalues of the Jacobian matrix J at (x∗, y∗) have
negative real part, and hence (x∗, y∗) is locally asymptotically stable. However, we
can establish the stronger result.

Theorem 4. If α > 1, then (x∗, y∗) is globally asymptotically stable.
Proof. We first establish that any positive nonconstant periodic solution of the

system (3) must be asymptotically stable. Suppose that (x̃(t), ỹ(t)) is a positive
periodic solution and let X ′ = A(t)X be the linearization of (3) around it. Then a
straightforward calculation gives that

A(t) =

[
b(x̃(t)) + x̃(t)b′ (x̃(t))−αỹ(t) − γ −αx̃(t)

αỹ(t) αx̃(t) − 1

]
.

Let T be a period of this periodic solution. To establish its asymptotic stability it
suffices to show that ∫ T

0

trA(t)dt < 0,

but in fact ∫ T

0

trA(t)dt =

∫ x̃(T )

x̃(0)

dx

x
+

∫ T

0

x̃(t)b′ (x̃(t)) dt +

∫ ỹ(T )

ỹ(0)

dy

y

= 0 +

∫ T

0

x̃(t)b′ (x̃(t)) dt + 0 < 0

since x̃(t)b′(x̃(t)) < 0 by (4a).
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Because of this we can now show that the system (3) has no positive periodic
solution. Indeed, suppose there were a positive periodic orbit Γ. The α-limits of each
point enclosed by Γ must be nonempty and also enclosed by Γ. Since both the positive
equilibrium (x∗, y∗) and Γ are locally asymptotically stable, neither can be contained
in an α-limit of a point enclosed by Γ. But there are no other equilibria, and any
positive periodic solution must be locally asymptotically stable, so there can be no
α-limits of points other than (x∗, y∗) (the α-limit of itself) enclosed by Γ. This is a
contradiction.

Finally, it follows from Lemma 1 that every positive solution is bounded for
t ≥ 0, and therefore must have a nonempty ω-limit. By the preceding argument
and Poincaré-Bendixson theory every such limit must contain at least one of the
equilibria. However, the two boundary equilibria (0, 0) and (1, 0) cannot be contained
in the necessarily bounded ω-limits of any other points. Hence (x∗, y∗) must be in
the ω-limit of every interior solution, and since it is locally asymptotically stable it
must be the entire limit set.

3. Invulnerable juvenile prey: A host-parasite situation. We now con-
sider the effect of taking into account a juvenile class of prey, which we assume to be
invulnerable to predation from birth until an age large enough to warrant inclusion
of the class in our model. Taking the model (1) as our starting point, we assume that
the juvenile class, consisting of those prey from ages 0 to R, is subject to a constant
mortality rate d1 and so is given by

J (T ) =

∫ T

T−R

N (s)B(N (s))e−d1(T−s) ds,

where N(t) is the population of adults of the prey species, and with elementary
calculations we find its derivative is

J ′ (T ) = N (T )B(N (T )) −N (T −R)B(N (T −R))e−d1R − d1J (T ) .(5a)

Interpreting the three terms of the last expression, we find that the first is the cur-
rent rate of juvenile births, while the second is the current rate of maturation of
surviving juveniles to adulthood, and the third is current juvenile mortality. These
considerations motivate the alteration of our original model to the form

N ′(T ) = N(T −R)B(N(T −R))e−d1R − aN(T )P (T ) − dN(T ),(5b)

P ′ (T ) = cN(T )P (T ) − dPP (T ).(5c)

We suppose that (2a) continues to hold, as well as the obvious generalization of
(2b),

B(0)e−d1R > d > B(∞)e−d1R.(6)

In this situation we define N0 by the condition

B (N0) e
−d1R = d.

In addition, for N ≥ 0 we assume that

NB′(N) + B(N) ≥ 0(7)
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or equivalently that the “per capita” recruitment rate, B(N), is kept from decreasing
too fast in the sense that B′(N) ≥ −B(N)/N. In contrast with the ODE case, by
this assumption we no longer admit the case of B (N) = exp(−pN). See Cooke et al.
[8], where it is shown in a model of a single population that dynamic behavior can
be much more complicated when B(N) has the exponential form. Since we want to
concentrate on the effects of maturation delays in prey or predator, we have chosen
to work with the simpler form. We also wish to point out that many studies in the
literature deal with models in which the term aNP is replaced by Pf(N), where f is
called the functional response. We have retained the simpler form aNP in order to
isolate the effects of delayed recruitment.

Since (5b, 5c) can be decoupled and solved independently from (5a), we can again
restrict our attention to the differential equations (now with delays) for (N,P ). We
will again find that our analysis is facilitated by a scaling of the variables. If

x = N/N0, t = dPT, α = cN0/dP ,
y = aP/cN0, r = dPR, γ = d/dP ,

b (x) = B (xN0) e
−d1R/dP ,

(8)

then the system (5) takes the (nondimensional) form

dx

dt
= x (t− r) b (x (t− r)) − αx (t) y (t) − γx (t) ,(9a)

dy

dt
= αx (t) y (t) − y (t) .(9b)

Notice that in this scaling the transfer from x to y by the scaled predation is again
perfectly efficient, and the mortality factor, with its physical presence of the delay in
e−d1R, is scaled out. We will show in section 7 that there is no loss in generality for,
e.g., bifurcation as R increases, resulting from this scaling. The properties assumed
in (2a), (6), and (7) take the simpler form

b (x) ≥ 0 and b′ (x) < 0 for x ≥ 0,(10a)

b (0) > γ > b (∞) and b (1) = γ,(10b)

b (x) + xb′ (x) ≥ 0,(10c)

and the boundary equilibria are now at (0, 0) and (1, 0).
Lemma 5. The system (9) is dissipative, that is, there is a compact set Ω (in

this case of the form {(x, y) : x, y ≥ 0, x + y ≤ m}) such that each solution in the
first quadrant of the (x, y) plane has a T0 such that when t ≥ T0, (x (t) , y (t)) ∈ Ω.
Moreover, lim supt→∞ x (t) ≤ 1.

Proof. Since b(0) > 0 it is easy to check that the first quadrant is forwardly
invariant under solutions of (9). With V (x, y) = x + y we have

V̇
def
=

d

dt
V (x (t) , y (t)) = x (t− r) b (x (t− r)) − γx (t) − y (t) .

To set up the analysis of V̇ , we first establish the boundedness of x (t) for every
positive solution.

Let x̄ = lim supt→∞ x (t) . Suppose, contrary to our claim, that x̄ > 1. Since the
case in which x̄ is infinite is similar to the finite case, but slightly less complicated,
we will consider only the finite case . Then we can find a sequence {tn} with tn → ∞
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as n → ∞ such that x (tn) → x̄, x′ (tn) → 0, and lim supn→∞ x (tn − r) ≤ x̄. Then
we have

lim
n→∞

x′ (tn) ≤ lim
n→∞

sup (x (tn − r) b (x (tn − r)) − γx (tn))

= lim sup
n→∞

(x (tn − r) b (x (tn − r))) − γx̄

≤ (b (x̄) − γ) x̄ < 0,

contradicting our choice of {tn} so that x′ (tn) → 0. Because of this every x (t) has
lim supt→∞ x (t) ≤ 1.

Finally we want to show that V (x (t) , y (t)) is decreasing whenever it has suffi-
ciently large values. To this end, let x̃ > 1 and then choose ỹ such that xb (x)− y < 0
when x ≤ x̃ and y ≥ ỹ. Now when V (x (t) , y (t)) > x̃ + ỹ for large t, we must
have x (t) , x (t− r) ≤ x̃ (by the previous paragraph) and hence y (t) > ỹ so that
V̇ < x (t− r) b (x (t− r)) − y (t) < x̃b (x̃) − ỹ < 0. Thus for any solution after suffi-
ciently long time, we have V̇ < 0 whenever V (x (t) , y (t)) > x̃+ỹ. Standard Lyapunov
function considerations complete the argument.

Corollary 6. Suppose α < 1. Then all positive solutions of (9) converge to
(1, 0) as t → ∞.

Proof. First we establish that y (t) → 0 as t → ∞. Let β > 0 such that α < β < 1,
and let (x(t), y(t)) be a positive solution of (9). By Lemma 5 there is a sufficiently
large t∗ such that αx (t) ≤ β for all t ≥ t∗. This implies that

y′(t) ≤ −(1 − β)y(t), t ≥ t∗.

Therefore for t ≥ t∗ we have

0 ≤ y(t) ≤ y(t∗)e−(1−β)(t−t∗) → 0 as t → ∞.

It follows that y(t) → 0 as t → ∞.
Next we claim that

M = lim
t→∞

inf x(t) > 0.

Suppose to the contrary that M = 0. Then since x(t) > 0 for all t ≥ 0, one is able to
choose a sequence {tn} having the properties that

x(tn − r) ≥ x(tn),(11)

x′(tn) ≤ 0

for all n ≥ 1 and

lim
n→∞

x(tn) = lim
n→∞

x′(tn) = 0.

Since limn→∞ x(tn) = 0, for which there is a J such that

x (tn) <
1

2
, n ≥ J,(12)

and since b(x) is strictly decreasing, there is an ε > 0 such that

b(x (tn)) ≥ b(1) + ε = γ + ε, n ≥ J.(13)
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Moreover since y(t) → 0 as t → ∞, there exists J1 ≥ J such that

αy(tn) < ε, n ≥ J1.(14)

Then for n ≥ J1 we have from (11), the increasing of xb (x) and (11), and (12–14)
that

0 ≥ x′(tn)

= x(tn − r)b(x(tn − r))− [αy(tn) + γ]x(tn)

≥ x (tn) b (x (tn))− [αy(tn) + γ]x(tn)

> x(tn)(γ + ε)− [αy(tn) + γ]x(tn)

> 0.

This contradiction establishes that M = limt→∞ inf x(t) > 0.
Finally we can show that M = 1. Let tn → ∞ in such a way that x(tn) → M as

n → ∞ and

lim
n→∞

x′(tn) = 0.(15)

Since {x(tn − r)} is a bounded sequence, without loss of generality (or by choosing a
subsequence) we can suppose that x (tn − r) converges,

lim
n→∞

x(tn − r) = M1.(16)

By Lemma 5 and the definition of M it is obvious that

M ≤ M1 ≤ 1.

Therefore (15, 16) yield

0 = lim
n→∞

x′(tn)

= lim
n→∞

x(tn − r)b(x(tn − r)) − γ lim
n→∞

x(tn)

= M1b(M1) − γM.

We now show that this equality forces M = M1 = 1. For if M < 1, then either
M < M1 or M = M1 < 1. If M < M1, then we have

M1b(M1) ≥ M1b(1) = M1γ > γM,

a contradiction of the established equality. On the other hand, if M = M1 < 1, then

M1b(M1) > M1b(1) = M1γ = γM,

again contradicting the equality.
Hence M = lim inft→∞ x (t) = 1, which, in conjunction with Lemma 5 gives

x (t) → 1.
Now let us suppose α > 1 (i.e., cN0 > dP ). Then the system (9) has a unique

positive equilibrium (x∗, y∗). We proceed to study the local stability of this positive
equilibrium.
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First, following a straightforward calculation one is able to verify that the lin-
earization of (9) at the positive equilibrium takes the form

u′ (t) = [x∗b′(x∗) + b(x∗)]u(t− r) − (αy∗ + γ)u(t) − αx∗v(t),(17a)

v′ (t) = αy∗u(t).(17b)

Theorem 7. The interior equilibrium (x∗, y∗) (which exists if and only if α > 1)
is locally asymptotically stable for all r ≥ 0.

Proof. Let K = [x∗b′(x∗) + b(x∗)]. The characteristic equation of (17) is given by

Δ(λ, r) = det

[
Ke−λr−λ− (αy∗ + γ) −αx∗

αy∗ −λ

]
= λ2 − λKe−λr + λ(αy∗ + γ) + α2x∗y∗.

Note that b′(x∗) < 0 and b(x∗) = αy∗ + γ. Hence from the assumption (10c) we
have

αy∗ + γ > |K|.(18)

We observe that

Δ(λ, 0) = λ2 + (αy∗ + γ −K)λ + α2x∗y∗.

It follows from (18) that all coefficients of Δ(λ, 0) are positive, and hence all zeros of
Δ(λ, 0) have the negative real parts. We claim that for each fixed r > 0, all zeros of
Δ(λ, r) are located in the left half complex plane. If this is not true, then there must
be a r > 0 and v ∈ � such that Δ(iv, r) = 0, or equivalently,

Δ(iv, r) = −v2 − ivKe−iνr + iv(αy∗ + γ) + α2x∗y∗ = 0.

That is,

−v2 + α2x∗y∗ + iv(αy∗ + γ) = ivKe−ivr.

This yields that ∣∣−v2 + α2x∗y∗ + iv(αy∗ + γ)
∣∣2 = |ivKe−ivr|2.

Hence we obtain that

(α2x∗y∗ − v2)2 + (αy∗ + γ)2v2 = K2v2.

However, since (αy∗ + γ)2 > K2, the above equality can never hold for v ∈ �. This
contradiction establishes our result.

4. Invulnerable mature prey. Next we consider a case similar to that in the
previous section in distinguishing between juvenile and adult prey, but opposite from
it in assuming that predation affects juvenile prey but not mature prey. As before,
we begin with the idea that the class of juveniles at time T consists of all those prey
surviving from birth in the time interval [T −R, T ] and write

J (T ) =

∫ T

T−R

N (s)B(N (s))e−M ds,
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where N and B respectively represent the mature prey class and its per capita birth
rate and M represents mortality effects. In addition to the “natural” mortality
given by a constant per capita rate d1 and represented in the previous section by
−d1 (T − s), we now include mortality by predation that is jointly proportional to the
length of time (T − s) such predation can occur and the average size of the predator
class (denoted by P as before) over the interval [s, T ], so that

M = d1 (T − s) + d2 (T − s)

(
1

T − s

∫ T

s

P (u) du

)
=

∫ T

s

[d1 + d2P (u)] du

and hence

J (T ) =

∫ T

T−R

N (s)B(N (s))e
−
∫ T

s
[d1+d2P (u)]du

ds.

Then from elementary calculations we find that

dJ

dT
(T ) = N (T )B (N (T )) −N (T −R)B (N (T −R)) e

−
∫ T

T−R
[d1+d2P (u)]du

(19)

− [d1 + d2P (T )]J (T ) .

The three terms comprising dJ/dT have nice interpretations: the first as current
births, the second as loss to maturation of those who survived from birth (at time
T−R) to the present, and the third as current loss due to the combination of constant
per capita mortality and “mass-action” predation.

Assuming no predation directly on mature prey we arrive at the system of equa-
tions for (J,N, P ) (with notation similar to that in the previous section)

dN

dT
(T ) = N (T −R)B (N (T −R))F

(∫ T

T−R

P (u) du

)
− dN (T ) ,

dP

dT
(T ) = kP (T )J (T ) − dPP (T ) ,

wherein we assume about F only the conditions

1 ≥ F (0) > 0, F (∞) = 0, F ′ (Z) < 0, Z > 0

as motivated by our considerations in (19) where F (Z) = e−d1R−d2Z . Notice that if
the juvenile prey J (T ) were a constant proportional part of the mature prey popu-
lation then the last two equations would decouple from the first and could be solved
independently. Thus, with the goal of facilitating comparison with our two other
models, we make the a priori assumption that J (T ) = CN (T ). Thus, we consider
the system

dN

dT
(T ) = N (T −R)B (N (T −R))F

(∫ T

T−R

P (u) du

)
− dN (T ) ,(20)

dP

dT
(T ) = cP (T )N (T ) − dPP (T ) .

In order to achieve a satisfactory scaling of the model we desire an N0 that func-
tions like a prey carrying capacity in the absence of predators. As before we suppose
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that the conditions (2a) and (7) on B continue to hold, as well as the modification of
(2b) given by

B (0)F (0) > d > B (∞)F (0) .(21)

In this situation, N0 is uniquely determined by the condition

B (N0)F (0) = d,

providing an equilibrium at (N0, 0). Under the scaling

x = N/N0, t = dPT, α = cN0/dP ,
y = P/N0, r = dPR, γ = d/dP ,

b (x) = B (xN0) /dP , f (z) = F

(
N0

dP
z

)

we find that (20) becomes the dimensionless system

dx

dt
(t) = x(t− r)b(x(t− r))f

(∫ 0

−r

y(t + s)ds

)
−γx(t),(22)

dy

dt
(t) = αx(t)y(t) − y(t).

Notice that time has again been scaled by the reciprocal of the predator death rate
and that b (·) and f (·) satisfy conditions similar to (10) in section 3:

b (x) ≥ 0 and b′ (x) < 0 for x ≥ 0,(23)

b (0) f (0) > γ > b (∞) f (0) and b (1) f (0) = γ,(24)

b (x) + xb′ (x) ≥ 0,(25)

1 ≥ f(0) > 0, f(∞) = 0,
df

dz
< 0, z > 0.(26)

Just as in the systems (3) and (9), this system has no strictly positive equilibrium
if α < 1 and has a unique positive equilibrium if α > 1.

Theorem 8. If α < 1, then all positive solutions of (22) converge to the equilib-
rium (1, 0).

Proof. Following essentially the same argument as in the second paragraph of
the proof of Lemma 5, one establishes that lim supt→∞ x (t) ≤ 1. Given a positive
solution (x (t) , y (t)) we can find a T such that for t ≥ T, αx (t) − 1 is negative and
bounded away from zero. Since

y′ (t) ≤ (αx (t) − 1) y (t) ,

we find that y (t) → 0 as claimed. The rest of the argument is similar to that given
for proof of Corollary 6.

For the rest of this section we consider the remaining case in which α > 1. In this
case an equilibrium (x∗, y∗) must satisfy x∗ = 1/α < 1 so that

b(x∗)f(z∗) − γ = 0

has a unique solution z∗ = ry∗ > 0. Thus for each fixed r > 0, (22) has the unique
positive equilibrium (x∗, y∗) = (1/α, z∗/r). We will show that an increase of the time
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delay r will destabilize the stability of this positive equilibrium and cause a Hopf
bifurcation.

First a direct computation yields that the linearization of (22) around the positive
equilibrium is given by

u′(t) = au(t− r) − γu(t)−b

∫ 0

−r

v(t + s)ds,

v′(t) = αy∗u(t),

where

a = [b(x∗) + x∗b′(x∗)] f(z∗),(27a)

b = −x∗b(x∗)
df

dz
(z∗) > 0.(27b)

Therefore the characteristic equation is given by

Δ(λ, r) = det

[
ae−λr − γ − λ −b

∫ 0

−r
eλsds

αy∗ −λ

]

= λ2 + γλ− aλe−λr +
β(1 − e−λr)

rλ
(28)

= 0,

where β = αbz∗.
To study the location of eigenvalues of the characteristic equation (28), an impor-

tant first step is to investigate the existence of eigenvalues that lie on the imaginary
axis of the complex plane and the direction in which these eigenvalues cross that axis
as the delay increases. We note that if Δ(iv, r) = 0, then Δ(−iv, r) = 0 so that we
shall only search for eigenvalues iv with v > 0. Letting

h(λ, r) = rλ3 + γrλ2 − arλ2e−λr + β(1 − e−λr),(29)

it is clear that Δ(λ, r) = 0 if and only if h(λ, r) = 0 for λ �= 0 and r > 0.
Lemma 9. There are infinitely many positive pairs of (iv, r) with r > 0 and

v = v (r) > 0 such that Δ(iv, r) = 0. However, there is an interval 0 < r < r1 such
that Δ(λ, r) has no purely imaginary zeros.

Proof. Note that with r > 0, γ = b(x∗)f(z∗), the assumptions on b and f imply
that

γ > |a| , β > 0.

Notice that in Δ (λ, r) , neither a nor β depends on r. Thus

Δ (λ, 0) = λ2+ (γ − a)λ + β(30)

and the interval (0, r1) on which there are no purely imaginary characteristic zeros
follows immediately from continuity.

Considering λ = iv, if

h(iv, r) = 0(31)
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for some v > 0 and r > 0, then we have

−irv3 + β − γrv2

(β − arv2)
= e−ivr(32)

so that

| − irv3 + β − γrv2|2 = |β − arv2|2,(33)

or

r2v6 + (β − γrv2)2 = (β − arv2)2,(34)

and finally

rv4 + r(γ2 − a2)v2 = 2β(γ − a).(35)

We can solve (35) uniquely for v2 = v2(r),

v2 =
1

2

(
−(γ2 − a2) +

√
(γ2 − a2)2 +

8β(γ − a)

r

)
.(36)

Thus we have shown that if h(iv, r) = 0, then v = v (r) with v > 0 must satisfy
(36). However, it is really the converse question that we must answer: if v (r) is
the positive branch of (36), do we have h (iv (r) , r) = 0? However, for v > 0, (36)
is equivalent to (33), so that if we let W (r) denote the left-hand side of (32) with
v = v(r), then |W (r)| = 1 for all r > 0.

Multiplying (36) by r2 we have

(rv)2 =
1

2

(
−r2(γ2 − a2) +

√
r4(γ2 − a2)2 + 8r3β(γ − a)

)
.(37)

From this, one immediately sees that

lim
r→0

[rv(r)]2 = 0.(38)

Moreover, rationalizing the numerator in (37) we have

(rv)2 =
8r3β(γ − a)

2
(
r2(γ2 − a2) +

√
r4(γ2 − a2)2 + 8r3β(γ − a)

)
which yields

lim
r→∞

[rv(r)]2 = ∞.(39)

It follows from (38) and (39) that

lim
r→0

rv(r) = 0 and lim
r→∞

rv(r) = ∞.(40)

Next from (34) we have that β − rav2(r) > 0 for all r > 0. For if this inequality
does not hold for some r > 0, then we have |β − arv2(r)| = arv2(r) − β. Since γ > a
we have γrv2(r) − β > arv2(r) − β. It would therefore follow that

r2v6(r) + (β − γrv2(r))2 > (β − arv2(r))2,

contradicting (34).
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Finally, substitute v = v(r) into (32). Letting r increase from 0 to ∞ and us-
ing (40), we find that e−irv on the right side traces out the unit circle infinitely
often, while on the left side W (r) remains in the lower half of the unit circle.
Now one easily sees that there are infinitely many positive r’s such that h(iv(r), r)
= 0.

Lemma 10. Let λ(r) be a branch of zeros of h(λ, r) defined on an interval I such
that for some 0 < r0 ∈ I, λ(r0) = iv0 with v0 > 0. Then v0 is a simple zero and

Re

(
dλ(r0)

dr

)
> 0.

Proof. Since h(λ(r), r) ≡ 0, we have

∂h(λ, r)

∂λ

dλ

dr
= −∂h(λ, r)

∂r
.

Hence [
∂h(λ, r)

∂λ

]
∂h(λ, r)

∂λ

dλ

dr
= −

[
∂h(λ, r)

∂λ

]
∂h(λ, r)

∂r
,

where z denotes the conjugate of a complex number z. It follows from this equality
that

sign

(
Re

dλ(r0)

dr

)
= sign

(
Re

{
−
[
∂h(iv0, r0)

∂λ

]
∂h(iv0, r0)

∂r

})
.

For notational simplicity from now on we use v and r instead of v0 and r0. First from
(29) we deduce that

iv3 + γv2 − av2e−ivr =
β

r
(1 − e−ivr),(41)

or equivalently, after complex conjugation

v2 + iγv − iaveivr =
iβ

rv
(1 − eivr).(42)

Following a straightforward computation and with the use of (41) and (42) we have

[
∂h(iv, r)

∂λ

]
= r

[
−3v2 − i2γv + i2aveivr + (β − arv2)eivr

]
= r

[
−3(v2 + iγv − iaveivr) + i(γ − a)v + iav(1 − eivr)

]
(43)

+r(β − arv2)eivr

= r

[
i(γ − a)v + i(av − 3β

rv
)(1 − eivr) + (β − arv2)eivr

]
,

−∂h(iv, r)

∂r
= iv3 + γv2 − av2e−ivr − iv(β − arv2)e−ivr(44)

=
β

r
(1 − e−ivr) − iv(β − arv2)e−ivr.
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Let

Φ = −
[
∂h(iv, r)

∂λ

]
∂h(iv, r)

∂r
.

It is clear that if ReΦ > 0, then ∂h(iv,r)
∂λ �= 0 which will imply that iv = iv0 is a simple

eigenvalue and Redλ(r0)
dr > 0. Hence to complete the proof of Lemma 10, it is sufficient

to show that ReΦ > 0. First by (43) and (44) we have

ReΦ = Re
{
β(1 − e−ivr)

[
i(γ − a)v + (β − arv2)eivr

]}
+Re

{
−ivr(β − arv2)e−ivr

[
−3v2 − i2γv + i2aveivr

]}
= ReΦ1 + ReΦ2

with

Φ1 = β(1 − e−ivr)
[
i(γ − a)v + (β − arv2)eivr

]
,

Φ2 = −ivr(β − arv2)e−ivr
[
−3v2 − i2γv + i2aveivr

]
.

Following a further calculation we have

ReΦ1 = −β(γ − a)v sin(vr) − β(β − arv2)[1 − cos(vr)],(45)

ReΦ2 = (β − arv2)
[
3rv3 sin(vr) − 2γrv2 cos(vr) + 2arv2

]
.

Next, by separating the real and imaginary parts of (32) we obtain

(β − arv2) cos(vr) = β − γrv2,(46)

(β − arv2) sin(vr) = rv3.

With the use of (35), (45), and (46) we finally arrive at

ReΦ = −β(γ − a)v sin(vr) − β(β − arv2) + β(β − γrv2)

+3r2v6 − 2γrv2(β − γrv2) + 2arv2(β − arv2)

= −β(γ − a)v sin(vr) − 3rβv2(γ − a) + 3r2v6 + 2r2v4(γ2 − a2)

= −β(γ − a)v sin(vr) + r2v6 + rβv2(γ − a)

+2r2v6 + 2r2v4(γ2 − a2) − 4rv2β(γ − a)

= −β(γ − a)v sin(vr) + r2v6 + rβv2(γ − a)

> β(γ − a)v [rv − sin (vr)]

≥ 0.

Now we are ready to prove the following result.
Theorem 11. Suppose that α > 1. Then there is a sequence {rn}∞n=1 with

0 < r1 < r2 < · · · < rn < · · ·

such that the following hold:
1. If 0 < r < r1, then the positive equilibrium (x∗, y∗) = (1/α, z∗/r) of (22) is

linearly stable. If r > r1 then that positive equilibrium is linearly unstable.
2. For each n ∈ N there is a vn > 0 such that λ = ±ivn are eigenvalues

associated with the equilibrium (x∗, y∗) of (22) at r = rn and there is a Hopf
bifurcation there.
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Proof. Using Lemmas 9 and 10 with the application of classical results on stability
switches (for example, see [7]) and on Hopf bifurcation (e.g., [10], p. 291), we need
only to show that all solutions of the characteristic equation

Δ(λ, r) = λ2 + γλ− aλe−λr +
β(1 − e−λr)

rλ
= 0

have negative real parts for all r ∈ [0, r1), where r1 is taken to be the smallest positive
delay at which the characteristic function has a purely imaginary zero. The existence
of r1 is guaranteed by Lemma 9.

Now for a characteristic root λ = λ (r) = u + iv with r ≥ 0 and u ≥ 0 we have∣∣1 − e−λr
∣∣ ≤ ∣∣1 − e−ur + e−ur (1 − cos (vr) + i sin (vr))

∣∣
≤

∣∣1 − e−ur| + |1 − cos (vr)| + | sin (vr)
∣∣

≤ |ur| + 2 |vr| ≤ 3 |λr| .

From this we can conclude that ∣∣∣∣∣β
(
1 − e−λr

)
rλ

∣∣∣∣∣ ≤ 3β.

It now follows from this that there is a sufficiently large constant C such that for all
λ ∈ C with Re (λ) ≥ 0 and |λ| ≥ C,

λ2 + γλ− aλe−λr +
β(1 − e−λr)

rλ
�= 0.

Since Δ(λ, r), with Δ(λ, 0) as in (30), is analytic in λ �= 0 and continuous in r ≥ 0, it
follows that its number of zeros on Reλ ≥ 0 is constant for r ∈ [0, r1). Since Δ (λ, 0)
has only zeroes with negative real part, our result holds.

5. Inactive juvenile predators. We now consider the effect of taking into
account an inactive juvenile class of predator. Thus all predation is done by the adult
predators which we still denote by P , but we change J to denote the juvenile predators
and keep N to denote the prey. Taking the model (1) again as our starting point, we
assume that the juvenile class (consisting of those predators from ages 0 to R) is the
direct beneficiary of predation and is subject to a constant mortality rate d1 and so
is given by

J (T ) =

∫ T

T−R

cN (s)P (s) e−d1(T−s) ds

with derivative

J ′ (T ) = cN (T )P (T ) − cN (T −R)P (T −R) e−d1R − d1J (T ) .(47)

Interpreting the three terms of the last expression, we find that the first is the current
rate of juvenile births, while the second is the current rate of maturation of surviving
juveniles to adulthood, and the third is current juvenile mortality. Thus

N ′(T ) = N(T )B(N(T )) − aN(T )P (T ) − dN(T )(48a)

P ′ (T ) = cN (T −R)P (T −R) e−d1R − dPP (T ).(48b)
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We suppose that the conditions (2a), (2b), and (7) on B continue to hold. As in
section 2 we define N0 by the condition

B (N0) = d.

Since (48a) and (48b) can be decoupled and solved independently from (47), we can
again restrict our attention to the differential equations (with delays) for (N,P ).

We will again find that our analysis is facilitated by a scaling of the variables. If

x = N/N0, t = dPT , α = ce−d1RN0/dP ,
y = aed1RP/cN0, r = dPR, γ = d/dP ,

b (x) = B (xN0) /dP ,
(49)

then the system (48) takes the (nondimensional) form (for scaled prey and adult
predators, respectively x and y)

dx

dt
= x (t) b (x (t)) − αx (t) y (t) − γx (t)(50a)

dy

dt
= αx (t− r) y (t− r) − y (t) .(50b)

Notice that in this scaling the transfer from x to y by the scaled predation is again
perfectly efficient, and the mortality factor, e−d1R, is scaled out. The properties of b
take the same form as in (10). The boundary equilibria are again at (0, 0) and (1, 0).
A somewhat simplified version of the proof in the second paragraph of the proof for
Lemma 7 gives us

Lemma 12. For every positive solution (x (t) , y (t)), lim supt→∞ x (t) ≤ 1.
Corollary 13. Suppose α < 1. Then all positive solutions of (50) converge to

(1, 0) as t → ∞.
Proof. Let (x (t) , y (t)) be a positive solution. First we show that y (t) → 0. If β

is chosen such that α < β < 1 then by the above lemma there is some t∗ such that
αx (t− r) ≤ β for all t ≥ t∗ and so

y′ (t) = αx (t− r) y (t− r) − y (t) ≤ βy (t− r) − y(t).(51)

Since 0 < β < 1, all solutions of

w′ (t) = βw (t− r) − w (t)(52)

tend to zero as t → ∞ ([5], section 2). Furthermore all solutions of (52) with positive
initial data remain positive for all positive t. From these considerations we can con-
clude ([20]) that if a solution w (t) of (52) shares positive initial data with y (t) then
0 < y (t) ≤ w (t) for all t ≥ 0. So

y (t) → 0(53)

as claimed.
Setting M = lim inft→∞ x (t) > 0, one shows that M > 0 in exactly the same

way as in Corollary 6. Now we show M = 1. (Recall b (1) = γ.) Suppose not.
Then by the previous lemma, M ≤ 1, so 0 < M < 1. Let M1 be such that M <
M1 < 1. Then b (M1) − γ > b (1) − γ = 0. By (53), for all t larger than some T1,
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we have 0 < αy (t) < (b (M1) − γ) /2 and x (t) ≥ M/2. Hence whenever t > T1 and
1
2M ≤ x (t) ≤ M1, we have

x′ (t) = x (t) (b (x (t)) − αy (t) − γ)

≥ M

2

(
b (M1) −

(b (M1) − γ)

2
− γ

)

=
M

2
(b (M1) − γ) /2

providing a uniform positive lower bound on x′ (t) whenever t is large and 1
2M ≤

x (t) ≤ M1 if M < 1, another contradiction. Hence M = 1 and

lim inf
t→∞

x (t) = lim sup
t→∞

x (t) = lim
t→∞

x (t) = 1,

as desired.
Finally we consider the case α > 1. (For an interpretation of α, see section 6.) In

this case b (1/α) > b (1) = γ and there is a positive equilibrium (x∗, y∗) ,

x∗ = 1/α,

y∗ = (b (1/α) − γ) /α.

To simplify notation somewhat, we let b∗ = b (x∗) and b′∗ = b′ (x∗) . Note that b∗ > γ
and b′∗ < 0 and that both b∗ and b′∗ depend on α.

Theorem 14. Consider (50) in the case α > 1, that is, in the case that there is
an interior equilibrium (x∗, y∗).

1. If α (b∗ − γ) + 2b′∗ < 0 the equilibrium (x∗, y∗) is linearly stable for all delays
r ≥ 0;

2. If α (b∗ − γ) + 2b′∗ > 0 then there is a critical delay r1 > 0 such that the
equilibrium (x∗, y∗) is linearly stable for all delays 0 ≤ r < r1 and is linearly
unstable for all delays r > r1. A Hopf bifurcation occurs as r increases through
r1.

Proof. The linearization of (50) about (x∗, y∗) is

u′ (t) = x∗b′∗u (t) − αx∗v (t)

= b′∗u (t) /α− v (t)

v′ (t) = αy∗u (t− r) + αx∗v (t− r) − v (t)

= (b∗ − γ)u (t− r) + v (t− r) − v (t) ,

yielding the linear equation for solutions of the form (u (t) , v (t)) = ezt (u0, v0) ,

zezt
[

u0

v0

]
= ezt

[
b′∗/α −1

(b∗ − γ) e−zr (e−zr − 1)

] [
u0

v0

]

and the characteristic equation

0 = det

[
b′∗/α− z −1

(b∗ − γ) e−zr e−zr − 1 − z

]

=
1

α

(
−b′∗ − (b′∗ − α) z + αz2 + e−zr (b′∗ + αb∗ − αγ − αz)

)
or

0 = αz2 − (b′∗ − α) z − b′∗ + e−zr (−αz + αb∗ + b′∗ − αγ) .(54)
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We apply the results of Cooke and van den Driessche [7] to analyze the roots of
the characteristic equation. In their notation, we set

P (z) = αz2 − (b′∗ − α) z − b′∗,(55)

Q (z) = −αz + α (b∗ − γ) + b′∗.

According to [7], z = iy is a purely imaginary characteristic root only if F (y) = 0

where F (y) = |P (iy)|2 − |Q (iy)|2, and furthermore:
1. If F (y) = 0 has no positive roots and the equilibrium is stable when r = 0,

then it is stable for all r > 0.
2. If F (y) = 0 has a positive root and each positive root is simple, then there is

an r1 such that the equilibrium is unstable for r > r1 and the direction of a
characteristic root crossing the imaginary axis is given by the sign of F ′ (y).

To apply these results, we find

F (y) =
∣∣−αy2 − (b′∗ − α) iy − b′∗

∣∣2 − |−αiy + α (b∗ − γ) + b′∗|
2

= α2y4 + b′2∗ y
2 − α2b2∗ + 2α2b∗γ − 2αb∗b

′
∗ − α2γ2 + 2αb′∗γ.

Let’s examine the constant term of F (y),

α
(
−αb2∗ + 2αb∗γ − 2b∗b

′
∗ + 2b′∗γ − αγ2

)
= −α (b∗ − γ) (2b′∗ + α (b∗ − γ)) .

As mentioned just before this theorem, the assumption of α > 1 gives us b∗ > γ. Since
b′∗ < 0 the sign of the factor 2b′∗+α (b∗ − γ) can vary depending on the implementation
of b (x) .

Clearly if 2b′∗ + α (b∗ − γ) < 0, then F has no real zeros and so the characteristic
equation has no purely imaginary roots. According to [7], since the equilibrium is
stable under zero delay (Theorem 4), it is stable under all nonnegative delays.

However, if 2b′∗ + α (b∗ − γ) > 0, then F will have exactly one positive zero,
corresponding to a characteristic root with positive imaginary part. In this case the
direction of a characteristic root crossing the imaginary axis is given by the sign of
F ′ (y) [7] which is positive when y is positive. So any crossing is transverse, from
left to right. The second conclusion of the theorem now follows exactly from [7] and
standard bifurcation theory (e.g. [14], p. 332).

Since Theorem 14 concerns the dimensionless system (50) obtained by scaling
out the physical presence of the delay from (48), we should explain how this theorem
can be applied to the dimensional system (48). First note that α > 1 is equiva-
lent to dP e

d1R/c < N0, so that the latter is equivalent to the existence of a posi-
tive equilibrium. Upon a substitution of the original parameters into the inequality
of part 1 in Theorem 14, we conclude that the positive equilibrium of system (48)
exists and is linearly stable if dP e

d1R/c < N0 and ce−d1RN0

(
B(dP e

d1R/c) − d
)

+
2B′(dP e

d1R/c)N0dP < 0.
However, for the bifurcation at F = 0 one must proceed cautiously when translat-

ing the results from the nondimensional case of Theorem 14 to the dimensional case
which motivates it. We naturally inquire if a bifurcation, such as given by Theorem 14
in the nondimensional case with r increasing, is mirrored by one in the corresponding
original system (48) with R as the bifurcation parameter and all other parameters (ex-
cept r) held fixed. However, such variation of parameters is inherently contradictory!
Since

α = ce−d1RN0/dP ,(56)
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we see that if we seek bifurcation in the original system (48) with only R varying, then
we must examine Theorem 14 as α varies, instead of relying on it to be constant, with
α > 1, as assumed in the hypotheses of the theorem. In particular, if we increase
R while holding fixed all the other parameters in (48), then α = ce−d1RN0/dP must
decrease, eventually violating the theorem’s hypothesis of α > 1.

Fortunately, a bifurcation diagram for system (48) can be calculated in the (R , c)
parameter plane (while all parameters other than R, c are fixed). To proceed with
this for each given α > 0, let the curve Γα be the level curve of (56) in the (R, c)
plane, i.e., the graph of the function

c = αdP e
d1R/N0, (R ≥ 0)

with (d1, dP , N0) fixed. There is a positive equilibrium corresponding to some (R, c) on
Γα if and only if α > 1. For such α, let r1 = r1(α) be the unique positive value defined
in part 2 of Theorem 14 and let R1 = R1(α) = r1(α)/dp. Then from Theorem 14 it
immediately follows that such an equilibrium is linearly stable (respectively, unstable)
if R < R1 (respectively, R > R1). Moreover, a Hopf bifurcation occurs as the point
(R, c) passes through (R1, c1) along Γα, where c1 = c1(α) = αdP e

d1R1(α)/N0.
Let K (α) denote the critical quantity distinguishing the cases of Theorem 14:

K(α) = α(b(1/α) − γ) + 2b′(1/α) (α > 1).

It is clear that

K(α) → +∞ as α → ∞.

Let us first consider the simple case in which there is a unique α∗ > 1 such that
K(α∗) = 0 and K(α) > 0 for α > α∗. (In section 6 α∗ exists and is given for
birth function bi by α∗ = αi, i = 1, 2, 3.) Then for each α > α∗, there is a unique
bifurcation point (R1(α), c1(α)) in the curve Γα. It is obvious that the bifurcation
point (R1(α), c1(α)) is continous with respect to α (but formulas are supplied below).
Thus by varying α from α∗ to ∞ we obtain a simple bifurcation curve in the (R, c)
parameter plane that does not intersect itself. In what follows we shall show that the
function R1(α) has a nice property that

lim
α→α∗

R1(α) = +∞, lim
α→∞

R1(α) = 0.

One readily finds closed form expression for the bifurcation delay r1 in the nondi-
mensional equations (50) as it depends on α. When K (α) > 0 the function F in
the proof of Theorem 14 has a unique positive zero y0 and r1 is the least positive
solution of P + e−iy0rQ = 0. Thus, remembering that P,Q, F, y0 depend on α, r1 is
a composition of two functions:

y0 (α) =

√
1

2A

(
−B +

√
B2 − 4AC

)
,(57)

where

A = α2, B = b′ (1/α)
2
, C = −α (b (1/α) − γ) (2b′ (1/α) + α (b (1/α) − γ)) ,

(58)

followed by

r1 (α) = ρ (α) =
1

y0 (α)
arg

(
−Q (iy0 (α) , α)

P (iy0 (α) , α)

)
,(59)
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where arg denotes the argument of a complex number. Using the expressions of P,Q
one is able to verify that for all sufficiently large α,

0 < arg

(
−Q(iy0(α), α)

P (iy0(α), α)

)
< π.(60)

Furthermore, (57) and (58) yield that

lim
α→∞

y0(α) =
√

b(0) − γ, lim
α→∞

−Q(iy0(α), α)

P (iy0(α), α)
= 1(61)

and it follows from (59) and (61) that

lim
α→∞

R1(α) =
1

dP
lim r1(α) =

1

dP
√
b(0) − γ

arg(1) = 0.(62)

Finally we easily see that

lim
α→α∗

y0(α) = 0, lim
α→α∗

−Q(iy0(α), α)

P (iy0(α).α)
= −1(63)

which implies that

R1(α) → +∞ as α ↘ α∗.(64)

With the use of (62) and (64) we can describe the bifurcation diagram of the
dimensional system (48) in the (R, c) plane (see Figure 1). The positive quadrant
of the (R, c) plane is divided into three parts by the curves Γ1 : c = dP e

d1R/N0

and Γ = {(R1(α), c1(α)) : α ∈ (α∗,∞)}. The curve Γ is asymptotic to the graph
Γα∗ : c = α∗dP e

d1R/N0 as α ↘ α∗ and is asymptotic to the vertical line R = 0
as α → ∞. Region I corresponds to system (48) having no positive equilibrium;
region II corresponds to system (48) having a stable positive equilibrium; and region
III corresponds to system (48) with an unstable positive equilibrium. Γ is a hopf
bifurcation curve.

We finally remark that if there is any pair of two numbers 1 < α1 < α2 such that
K (α1) = K (α2) = 0, with K (α) > 0, α ∈ (α1, α2) then the curve {(R1 (α) , c1 (α)) :
α ∈ (α1, α2)} gives rise to a Hopf bifurcation curve that is asymptotic to the graph
Γαi as α → αi for i = 1, 2.

The parameterization of Γ, (R1 (α) , c1 (α)) can be found with R1 (α) explicitly
and c1 (α) explicitly, using (59) and c = αdP e

d1R/N0. Since

R1 = r1/dP = ρ (α) /dP = ρ
(
ce−d1R1N0/dP

)
/dP ,

we have

R1 (α) = r1 (α) /dP = ρ (α) /dP ,(65)

c1 (α) = dpe
d1R1(α)σ (dPR1 (α)) /N0(66)

if σ inverts ρ. When one has ρ numerically, σ just reverses the coordinates, so this is
easy to plot.

We consider two examples. Since the physical presence of the delay is a key feature
in (48), we simplify everything else as much as possible (but with some minimal care
to respect biological interpretation of the parameters: see below), taking

a = d1 = dP = N0 = 1,
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(a) (b)

(c) (d)

Fig. 1. (a) Scaled system, b(x) = 8(1 − x/4); (b) Dimensional system, B(X) = 8(1 − X/4);
(c) Scaled system, b(x) = 9/(1 + 0.5x); (d) Dimensional system, B(X) = 9/(1 + 0.5X).

so that in the corresponding dimensionless system

α = ce−R, t = T, x (t) = N (t) , y (t) = eRP (t) /c, b (x) = B (x) .

In the case of B (X) = 8 (1 −X/4) giving γ = b (1) = 6, we find bifurcation
diagrams as in (a) and (b) of Figure 1, and then, when B (X) = 9/ (1 + 0.5X) , again
with γ = b (1) = 6, we find bifurcation diagrams as in (c) and (d) of Figure 1.

Notice in both examples that for appropriately large, fixed c with R increasing
from 0 the dimensional system (48) goes first through a supercritical Hopf bifurcation,
and then back through a subcritical one.

6. Numerical examples.

6.1. Interpretation of parameters. In choosing parameter values for numer-
ical examples, it is helpful to think about the ideas they represent. Thus we consider:

1. t which is time scaled by 1/dP , which we may take as a measure of the
expected lifespan for predators.

2. α, which has been a focus of attention, beginning with the condition α > 1
as our condition for the existence of an interior equilibrium at (x∗, y∗) =
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(1/α, (b (1/α) − γ) /α), and the key to an additional condition for a Hopf
bifurcation at this equilibrium. We find that α is similar to R0 in some
ODE models, by first observing that in a complete absence of predators, N
is steady at N0 which functions as its carrying capacity. Then, if a very
small number of predators is introduced and holds roughly constant (near
the equilibrium), we find ce−d1R − dP to be the net per unit rate of change
of P and hence α = ce−d1RN0/dP is the number of newly matured predators
per adult predator, produced during a predator lifetime at prey carrying
capacity. Thus we may interpret it as a replacement ratio and indeed similar
to R0. Likewise, 1/α can be thought of as the fraction of an average adult
predator’s lifetime needed for self-replacement, at prey carrying capacity. All
such considerations are with respect to a common unit of measure for predator
and prey, for example, biomass.

3. γ = d/dP , which is b (1) in consequence of our scaling of x. Similarly to
interpreting 1/dP above, we find that γ is the ratio of the lifetime of a predator
to that of a prey. In scenarios such as the present in which maturation time
of predators is deemed important to include in the model, while that of prey
is not, we expect γ > 1.

4. b (x∗) /b (1) = B (x∗N0) /d is the prey lifetime recruitment (per unit) at equi-
librium.

6.2. Comparison of birth functions: Affine, concave up, and concave
down. In this section we numerically investigate three implementations of the birth
function,

b1 (x) = a
(
1 − x

b

)
,(67a)

b2 (x) =
c

1 + dx
,(67b)

b3 (x) = p

(
1 +

1

x− q

)
,(67c)

in order to better understand the behavior generally of the nondimensional models
from section 5, especially with regard to the bifurcations guaranteed by Theorem 14.
We determine the pairs of coefficients ((a, b), (c, d), (p, q)) so that the implementations
of the bi have the same interior equilibrium (x∗, y∗), the same value of bi (x

∗) and
the same model coefficients α, γ, and with values so that the conditions for Hopf
bifurcation are satisfied. Notice that over the domain of interest, b1 is affine; b2
is concave up; and b3 is concave down. Although b1 does not satisfy the condition
(xb(x))

′ ≥ 0 if x > b/2, we use it only on 0 < x < b/2 where that condition is satisfied.
The function can be redefined elsewhere to satisfy the condition if desired, with no
effect on our computations. All the numerical computations use the Matlab-based
package DDE-BIFTOOL [18].

Implementation. The interpretations above guide us in choosing values for β =
b (x∗) and γ = b (1). The parameter α determines the equilibrium (x∗, y∗) through

x∗ = 1/α

y∗ = (b (x∗) − b (1))x∗ = (b (1/α) − γ) /α.

We then solve for the two parameters in each of the birth functions bi. There are
elementary but tedious details to be checked that all the requirements on the birth
function and α are satisfied, which we omit. The resulting restrictions are listed here.
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Proposition 15. For i = 1, 2, 3, there is an αi > 1 such that the condition (2) of
Theorem 14 for bifurcation in the model based on bi is satisfied if and only if α > αi.
(Thus the αi satisfy the criteria of α∗ above.) Furthermore, whenever β > γ > 0 and
the restrictions immediately below hold, positive parameters for the birth function bi
are uniquely determined such that with x∗ = 1/α < 1/αi we have bi (x

∗) = β and
bi (1) = γ.

Table 1 summarizes the relevant relations and conditions.

Table 1

b1 (x) = a
(
1 − x

b

) a = αβ−γ
α−1

, b = αβ−γ
α(β−γ)

(xb(x))′ > 0 if γ < β < 2γ
α1 = 3

b2 (x) = c
1+dx

c = β α−1
α−β/γ

, d = α
β/γ−1
α−β/γ

Both c, d are positive iff α > β/γ > 1.

α2 =
(
3 + d +

√
9 + 10d + d2

)/
2

b3 (x) = p
(
1 + 1

x−q

) p = larger zero of (α− 1)Z2 − (β(2α− 1) − γ)Z + (α− 1)βγ
q = (β − p− pα) / (α (β − p))

(xb (x))′ > 0 if q > 3
2

+ 1
2

√
5 ≈ 2. 62

α3 = 1
2q

(
3q − 1 +

√
9q2 − 10q + 1

)

Discussion. We saw above that we must respect 0 < γ < β, while numerically
we observed that this together with β ≤ 3γ/2 was necessary and sufficient for each
bi to be implemented over an interval for α including [αi, 7] in its interior. For each
bi in combination with each of the pairs (β, γ) = (4.5, 3) , (8, 6) we computed a locus
of Hopf bifurcation points in the (α, r) plane which included 5 ≤ α ≤ 7 in all cases.
Then in each of the cases α = 5, 7, we computed bifurcation diagrams with the delay
r as bifurcation parameter, and plotted: (1) bifurcation diagrams, (2) profiles of the
bifurcating periodic solutions (traces of the solutions (x (t) , y (t))), and (3) the largest
size of a nontrivial Floquet multiplier. (See [6] for more extensive graphics.) These
computations were done for values of the delay r beginning at the bifurcation value and
ending at about r = 2. Considering that we scaled time by the measure of a predator
lifetime, 1/dP , a delay of r = 2 corresponds to a juvenile predator maturation that is
twice this magnitude, and hence is more than adequate for biological considerations.

There were remarkable similarities across these computations.
1. All the bifurcation loci in the (α, r) plane were decreasing, concave up.
2. All the bifurcation diagrams of the x-amplitude of bifurcating period solutions

vs. r were increasing, concave down, with the amplitude approaching 1 as r
increased. (Recall that the “carrying capacity” for x is normalized to 1.)

3. All the bifurcation diagrams of the period of bifurcation periodic solutions
vs. r were increasing and almost linear for a long range of r. However, this
broke down as discussed below.

4. All the profile plots of the periodic solutions (that is, projections of periodic
solutions (x (t) , y(t) into an (x, y) plane) showed initial nesting of each sur-
rounding those of lesser r, expanding with increasing r but contained within
a triangle adjacent to the origin and coordinate axes in the (x, y) plane, and
then developing an “overhang.” See Figure 2 for a typical scenario.

5. Floquet multipliers (These are eigenvalues of the linearized Poincaré map
associated with each bifurcating periodic solution and always “trivially” in-
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Fig. 2. Overhang in bifurcating family of periodic solution profiles.

clude 1 corresponding to the initial condition of the periodic solution. Only
a finite number can lie outside any disk centered at the origin in the complex
plane.): In plotting the largest magnitude of these (excepting the trivial 1) vs.
r, we found rapid decrease to small values across all our examples, followed
in some circumstances by eventual increase (but not in ranges of r that are
biologically compelling).

Prompted by the eventual increase of Floquet multipliers for r > 2 we singled out
the example case of birth function b1 with α = 5, β = 8, γ = 6 for further investigation
and extended the delay r from the bifurcation value of about 0.43 to over 8. Some
interesting aspects emerged, which although not of direct biological interest in the
current context, might easily emerge in others. They include:

1. Self-crossover of periodic orbit profiles: At r ≈ 3.8 we observe the beginnings
of self-intersection within profiles of the bifurcating periodic orbits. See the
sequence in Figure 3. Since the periods of these solutions increased approxi-
mately affinely with the delay over this regime, perhaps this extra looping of
the profile can be understood as a mechanism by which the longer period is
accommodated in a limited spatial region. There were no remarkable aspects
of the Floquet multipliers (measures of stability) apparently associated with
these behaviors.

2. The profiles of the self-intersecting orbits also approach the equilibrium at
(1, 0) (thereby slowing down) and develop folds and spikes in their upper left
corner, again with the effect of enabling longer periods. See the sequence in
Figure 3.

3. It is quite remarkable that over 0.43 < r < 8 the bifurcation diagram of period
vs. r is approximately affine with the notable exception of 7.12 < r < 7.29
where it doubles over in a backwards S. Moreover, the vertical tangencies (in
the period vs. delay bifurcation diagrams) at r = 7.12, 7.29 are accompanied
by a Floquet multiplier leaving the unit disk in the complex plane. Notice that
the self-crossovers remarked on above appear to be completely independent
of the branch of multipliers that leaves the unit disk over 4.8 < r < 6.3. See
Figure 4.
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(a) (b)

(c)

Fig. 3. Progression of self-intersecting profiles of bifurcating period orbits. (a) As r increases
to 3.8, a cusp develops (lower right) and early stages of a fold are seen (upper left). (b) Intermediate
stages of both self-intersection and fold. (c) Late stages at large r.

7. Equivalence of dimensional and nondimensional results. There are
some concerns that might arise concerning the scaling of the original models (5) in
the host-parasite case (and (48) in the predator-prey case) and how analysis of the
resulting dimension-free resulting models (respectively, (9) and (50)) applies back to
those original models. In particular, there might be some concern about the use of
the scaled delay, r, as a bifurcation parameter in (50) after a coefficient in (48) which
“physically” contained the original delay, R, has been scaled out. Furthermore, there
might arise concern about the validity of the bifurcation analysis since the dimension
of the parameter space is reduced from eight (including the delay and N0) in the
original models to three (including the scaled delay) in the corresponding dimension-
free ones. Since the relation between (48) and (50) scales out the “physical” presence
of the delay and is therefore more complicated, we will focus on that situation, leaving
the other host-parasite situation of section 3 as an easy corollary. We should note
that Beretta and Kuang [1] address these issues without passing to a scaled version
of the model. Our situation, however, can be addressed directly.

Let us refer to (48a–48c), together with the assumptions (2a), (2b), and (7), as
the dimensional model. Recall that we defined N0 by the condition B (N0) = d. Then
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Fig. 4. With the maturation delay, r, on the horizontal axis: Upper left shows periods, including
the backwards S. All other frames show absolute values of Floquet multipliers larger than 0.01: Upper
right shows values < 7.5. Lower frames have dots plotted as both r and the period increase, first
over 7.05 < r < 7.29 (corresponding to the top of the backwards S in the bifurcation diagram), and
later over 7.12 < r < 7.35 (corresponding to the bottom of the backwards S). To contrast circles are
plotted as r decreases from 7.29 to 7.12 through the middle of the backwards S. The lower right is
the same as lower left with values of 1 removed to fascilitate observation of a branch of complex
conjugate multipliers (shown only in absolute value) becoming real at r = 7.29, with one leaving the
unit disk there, and the other leaving after r decreases to 7.12.

we scaled variables and parameters according to (49), resulting in the nondimensional
model

dx

dt
= x (t) b (x (t)) − αx (t) y (t) − γx (t) ,(68a)

dy

dt
= αx (t− r) y (t− r) − y (t) ,(68b)

satisfying

b (1) = γ.(68c)

The purpose of this section is to show that bifurcation in the latter system (68) with
respect to r implies bifurcation in the former, (48), with respect to R, and conversely.

Suppose now that (α, γ, r, b (·)) are given and consider the corresponding system
(68). Also consider a system (48) in which (a, c, d, d1, dP , N0, R,B (·)) are given such
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that the parametric relations of (49) hold, namely,

ce−d1RN0/dP = α,

d/dP = γ,(69)

dPR = r,

B (xN0) /dP = b (x) .

Then, given a solution (x (t) , y (t)) of (68), if

T = t/dP ,

N (T ) = N0x (dPT ) ,(70)

P (T ) = dPαy (dPT ) /a,

it is easy to see that (N (T ) , P (T )) solves (48). In this way (while parameters are fixed
and appropriately related), solutions of the two systems are related by a bicontinuous
linear isomorphism. In this context, stability of equilibria and periodic solutions
carries over from (68) to (48), and conversely.

In examining implications for bifurcation, we have already seen that it is not
possible with our choice of scaling to vary only the delays, r and R. However, suppose
again that (α, γ, r, b (·)) are given with (α, γ, b (·)) fixed, but with r varying, and let
(c, d, d1, dP , N0, B (·)) be smooth functions of R = r/dP such that (69) and B (N0) = d
continue to hold. Again, given a solution (x (t) , y (t)) of (68), if (69) holds it is easy
to see that (N (T ) , P (T )) solves (48) for each value of r with R = r/dP . Moreover
the triples (x (·) , y (·) , r) and (N (·) , P (·) , R) are related by a bicontinuous bijection,
based on the bicontinuous linear isomorphism between (x (·) , y (·)) and (N (T ) , P (T ))
above, but with nonlinear inclusion of r. This correspondence maintains equilibrium,
periodicity, and stability properties of solutions, so that if a bifurcation occurs in (68)
with respect to r, then a corresponding one in (48) must also occur with respect to
R.

To address the converse question regarding implications of bifurcations in (48)
for bifurcations in (68), let us consider the case of R as bifurcation parameter in (48)
with (a, c, d, d1, dP , N0) held fixed. Then assuming our usual relations between that
system and (68), we again have the triples (N (·) , P (·) , R) and (x (·) , y (·) , r) related
by a bicontinuous bijection that preserves equilibrium, periodicity, and stability prop-
erties. Thus any bifurcation in (48) with respect to R is mirrored by one in (68)
with respect to r, but with α also varying (as a function of r, through (56)), perhaps
with consequences, e.g., for the existence of a coexistence equilibrium as α decreases
through unity.
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