ON THE NORM CLOSURE PROBLEM FOR COMPLEX
SYMMETRIC OPERATORS

STEPHAN RAMON GARCIA AND DANIEL E. POORE

ABSTRACT. We prove that the set of all complex symmetric operators on a
separable, infinite-dimensional Hilbert space is not norm closed.

In [2, Sect. 3], it is asked whether the set of all complex symmetric operators
on a separable, infinite-dimensional Hilbert space is norm closed. We answer this
question in the negative. Let

\[S(a_0, a_1, a_2, \ldots) = (0, a_0, a_1, \ldots) \]

denote the unilateral shift on \(\ell^2(\mathbb{N}) \) and let \(\cong \) denote unitary equivalence. Note that

\[T_n = \frac{n}{n+1} S \oplus \bigoplus_{j=1}^{\infty} \frac{j}{j+1} S \oplus \bigoplus_{j=1}^{\infty} \frac{j}{j+1} S^* \cong \bigoplus_{j=1}^{\infty} \frac{j}{j+1} (S \oplus S^*) \]

is complex symmetric by [1, Ex. 5]. On the other hand, \(T_n \) converges in norm to

\[T = S \oplus \bigoplus_{j=1}^{\infty} \frac{j}{j+1} S \oplus \bigoplus_{j=1}^{\infty} \frac{j}{j+1} S^* \cong S \oplus \bigoplus_{j=1}^{\infty} \frac{j}{j+1} (S \oplus S^*) . \]

Since \(\|S^k(1,0,0,\ldots)\| = 1 \), there is an \(x \) so that \(\|T^k x\| = 1 \) for \(k \geq 0 \). However,

\[T^* = S^* \oplus \bigoplus_{j=1}^{\infty} \frac{j}{j+1} (S^* \oplus S) = S^* \oplus (\text{a strict contraction}) \]

possesses no such vector since \((S^*)^k \) tends strongly to zero. This precludes the
existence of a conjugation \(C \) (i.e., an isometric, conjugate-linear involution) such
that \(T = CT^* C \). Thus \(T \) is not complex symmetric.

\[\square \]

Remarks: We thank D. Sherman for his helpful suggestions. We also note that
S. Zhu, C.G. Li, and Y.Q. Ji discovered a different approach shortly before us.

References

[3] Sen Zhu, Chun Guang Li, and You Qing Ji. The class of complex symmetric operators is not

Department of Mathematics, Pomona College, Claremont, California, 91711, USA
E-mail address: Stephan.Garcia@pomona.edu
URL: http://pages.pomona.edu/~sg064747

2000 Mathematics Subject Classification. 47A05, 47B35, 47B99.
Key words and phrases. Complex symmetric operator, norm closure, Hilbert space.
Partially supported by National Science Foundation Grant DMS-1001614.