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ABSTRACT
Numerical evidence suggests that for only about 2% of pairs p, p+ 2 of twin primes,p+ 2 has more
primitive roots than does p.If this occurs,we say that p is exceptional(there are only two exceptional
pairs with 5 ! p ! 10,000).Assuming the Bateman–Horn conjecture,we prove that at least 0.459%of
twin prime pairs are exceptional and at least 65.13% are not exceptional.We also conjecture a precise
formula for the proportion of exceptional twin primes.

1. Introduction

Let n be a positive integer. An integer coprime to n is a
primitive root modulo n if it generates the multiplicative
group (Z/nZ)× of units modulo n. A famous result of
Gauss states that n possesses primitive roots if and only
if n is 2, 4, an odd prime power, or twice an odd prime
power. If a primitive root modulo n exists, then n has
precisely ϕ(ϕ(n)) of them, in which ϕ denotes the Euler
totient function. If p is prime, then ϕ(p) = p− 1 and
hence p has exactly ϕ(p− 1) primitive roots.

If p and p+ 2 are prime, then p and p+ 2 are twin
primes. The Twin Prime Conjecture asserts that there are
infinitely many twin primes. While it remains unproved,
recent years have seen an explosion of closely-related
work [Castryck et al. 14, Zhang 14, Maynard 15]. Let
π2(x) denote the number of primes p at most x for which
p+ 2 is prime. The first Hardy–Littlewood conjecture
asserts that

π2(x) ∼ 2C2

∫ x

2

dt
(log t )2

(1–1)

in which

C2 =
∏

p!3

p(p− 2)
(p− 1)2

= 0.660161815 . . . . (1–2)

is the twin primes constant [Hardy and Littlewood 04].
A simpler expression that is asymptotically equivalent to
(1–1) is 2C2x/(log x)2.

A casual inspection (see Table 1) suggests that if p and
p+ 2 are primes and p " 5, then p has at least as many
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primitive roots as p+ 2; that is, ϕ(p− 1) " ϕ(p+ 1).
If this occurs, then p is unexceptional. The preceding
inequality holds for all twin primes p, p+ 2 with 5 ! p !
10,000, except for the pairs 2381, 2383 and 3851, 3853.

If p, p+ 2 are primes with p " 5 and ϕ(p− 1) <

ϕ(p+ 1), then p is exceptional. We do not regard p = 3
as exceptional for technical reasons. Let πe(x) denote the
number of exceptional primes p ! x; that is,

πe(x) = #
{
p ! x :

p and p+ 2 are prime and ϕ(p− 1) < ϕ(p+ 1)
}
.

Computational evidence suggests that approximately 2%
of twin primes are exceptional; see Table 2. We make the
following conjecture.

Conjecture 1. A positive proportion of the twin primes
are exceptional. That is, limx→∞ πe(x)/π2(x) exists and
is positive.

We are able to prove Conjecture 1, if we assume the
Bateman–Horn conjecture (stated below). Our main the-
orem is the following.

Theorem 1. Assume that the Bateman–Horn conjecture
holds.

(a) The set of twin prime pairs p, p+ 2 for which
ϕ(p− 1) < ϕ(p+ 1) has lower density (as a subset
of twin primes) at least 0.459%.

(b) The set of twin prime pairs p, p+ 2 for which
ϕ(p− 1) " ϕ(p+ 1) has lower density (as a subset
of twin primes) at least 65.13%.
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Table . For twin primes p, p+ 2 with 5 ! p ! 2000, the differ-
ence δ(p) = ϕ(p− 1) − ϕ(p+ 1) is nonnegative. That is, p has
at least as many primitive roots as does p+ 2.

p ϕ(p− 1) ϕ(p+ 1) δ(p) p ϕ(p− 1) ϕ(p+ 1) δ(p)

       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

Computations suggest that the value of the limit in
Conjecture 1 is approximately 2%; see Figures 1 and 2. A
value for the limiting ratio is proposed in Section 5.

It is also worth pointing out that this bias is specific
to the twin primes since the set of primes p for which
ϕ(p− 1) − ϕ(p+ 1) is positive (respectively, negative)
has density 50% as a subset of the primes [Garcia and
Luca]. That is, if we remove the assumption that p+ 2 is
also prime, then the bias completely disappears. Although
only tangentially related to the present discussion, it is
worth mentioning the exciting preprint [Lemke Oliver
and Soundararajan] which concerns a peculiar and unex-
pected bias in the primes.

2. The Bateman–Horn conjecture

The proof of Theorem 1 is deferred until Section 4. We
first require a few words about the Bateman–Horn con-
jecture. Let f1, f2, . . . , fm be a collection of distinct irre-
ducible polynomials with positive leading coefficients.
An integer n is prime generating for this collection if
each f1(n), f2(n), . . . , fm(n) is prime. Let P(x) denote
the number of prime-generating integers at most x and
suppose that f = f1 f2 · · · fm does not vanish identically
modulo any prime. The Bateman–Horn conjecture is

P(x) ∼ C
D

∫ x

2

dt
(log t )m

,

in which

D =
m∏

i=1

deg fi and C =
∏

p

1 − Nf (p)/p
(1 − 1/p)m

,

where Nf (p) is the number of solutions to f (n) ≡
0 (mod p) [Bateman and Horn 62].

If f1(t ) = t and f2(t ) = t + 2, then f (t ) = t(t + 2),
Nf (2) = 1, and Nf (p) = 2 for p " 3. In this case,
Bateman–Horn predicts (1–1), the first Hardy–
Littlewood conjecture, which in turn implies the Twin
Prime Conjecture.

Although weaker than the Bateman–Horn conjecture,
the Brun sieve [Tenenbaum 15, Thm. 3, Section I.4.2]
has the undeniable advantage of being proven. It says that
there exists a constant B that depends only on m and D
such that

P(x) ! BC
D

∫ x

2

dt
(log t )m

= (1 + o(1))
BC
D

x
(log x)m

for sufficiently large x. In particular,

π2(x) !
Kx

(log x)2

for some constant K and sufficiently large x. The best
known K in the estimate above is K = 4.5 [Wu 04].

3. An heuristic argument

We give an heuristic argument which suggests that
ϕ(p− 1) " ϕ(p+ 1) for an overwhelming proportion
of twin primes p, p+ 2. It also identifies specific con-
ditions under which ϕ(p− 1) < ϕ(p+ 1) might occur.
This informal reasoning can be made rigorous under the
assumption of the Bateman–Horn conjecture (see Section
4).

Observe that each pair of twin primes, aside from 3,5,
is of the form 6n − 1, 6n + 1. Thus, if p, p+ 2 are twin
primes with p " 3, then 2|(p− 1) and 6|(p+ 1). We use
this in the following lemma to obtain an equivalent char-
acterization of (un)exceptionality.

Lemma 2. If p and p+ 2 are prime and p " 5, then

ϕ(p− 1) " ϕ(p+ 1) ⇐⇒ ϕ(p− 1)
p− 1

" ϕ(p+ 1)
p+ 1

.

(3–1)

Proof. The forward implication is straightforward arith-
metic, so we focus on the reverse. If the inequality on the
right-hand side of (3–1) holds, then

0 ! p(ϕ(p− 1) − ϕ(p+ 1)) + ϕ(p− 1) + ϕ(p+ 1)
! p(ϕ(p− 1) − ϕ(p+ 1)) + 1

2 (p− 1) + 1
3 (p+ 1)

< p(ϕ(p− 1) − ϕ(p+ 1)) + 5
6 p

since 2|(p− 1) and 6|(p+ 1). For the preceding to hold,
the integer ϕ(p− 1) − ϕ(p+ 1) must be nonnegative.#
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Table . The first  exceptional p. Here δ(p) = ϕ(p− 1) − ϕ(p+ 1).

p δ(p) π2(p) πe(p) πe(p)/π2(p) p δ(p) π2(p) πe(p) πe(p)/π2(p)

 −    . , −    .
 −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , − ,   .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , − ,   .
, −    . , −    .
, −    . , −    .
, −    . , − ,   .
, −    . , −    .
, −    . , −    .
, −    . , − ,   .
, −    . , − ,   .
, −    . , −    .
, −    . , −    .
, −    . , − ,   .
, −    . , − ,   .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , −    .
, −    . , − ,   .

In light of (3–1) and the formula (in which q is prime)

ϕ(n)

n
=

∏

q|n

(
1 − 1

q

)
,

it follows that p is exceptional if and only if p+ 2 is prime
and

1
2

∏

q|(p−1)
q!5

(
1 − 1

q

)
<

1
3

∏

q|(p+1)
q!5

(
1 − 1

q

)
(3–2)

because 2|(p− 1), 3 ! (p− 1) and 6|(p+ 1). The condi-
tion (3–2) can occur if p− 1 is divisible by only small
primes. For example, if 5, 7, 11|(p− 1), then 5, 7, 11 !

(p+ 1) and the quantities in (3–2) become

24
77

∏

q|(p−1)
q!13

(
1 − 1

q

)
and

1
3

∏

q|(p+1)
q!13

(
1 − 1

q

)
.

Since
24
77

≈0.3117 <
1
3

and 2 · 5 · 7 · 11 = 770,

one expects (3–2) to hold occasionally if p = 770n +
1. Dirichlet’s theorem on primes in arithmetic progres-
sions ensures that p+ 2 = 770n + 3 is prime 1/ϕ(770) =
1/240 = 0.4167% of the time. Thus, we expect a small
proportion of twin prime pairs to satisfy (3–2). For
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Figure . Numerical evidence suggests that limx→∞ πe(x)/π2(x) exists and is slightly larger than 2%. The horizontal axis denotes the
number of exceptional twin prime pairs. The vertical axis represents the ratio πe/π2.

example, among the first 100 exceptional pairs (see
Table 2), the following values of phave the form 770n + 1:

3851, 20021, 26951, 47741, 50051, 52361, 70841, 87011,
98561, 117041, 165551, 167861, 197891, 225611, 237161,
241781, 274121, 278741, 301841, 315701, 322631,
345731, 354971, 357281, 361901, 371141, 410411,
424271, 438131, 440441, 470471.

This accounts for 31% of the first 100 exceptional
pairs. We now make this heuristic argument rigorous,

under the assumption that the Bateman–Horn conjecture
holds.

4. Proof of Theorem 1

Assume that the Bateman–Horn conjecture holds. We
first prove statement (a) of Theorem 1. In what follows,
p, q, r denote prime numbers.

Proof of (a). Consider twin primes p, p+ 2 such that
5, 7, 11|(p− 1). Letπ ′

2(x) be the number of such p ! x.

Figure . Plots in the xy-plane of ordered pairs (p,ϕ(p− 1)) (in red) and (p+ 2,ϕ(p+ 1)) (in cyan) for twin primes p, p+ 2. There
are no exceptional pairs visible in Figure a; that is, ϕ(p− 1) " ϕ(p+ 1) in each case. The exceptional pairs ,  and ,  are
visible in Figure b. A smattering of exceptional pairs emerge as more twin primes are considered.
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Step 1. Since 5 · 7 · 11 = 385, the desired primes are pre-
cisely those of the form

n = 385k + 1 ! x such that n + 2 = 385k + 3 is prime.

In the Bateman–Horn conjecture, let

f1(t ) = 385t + 1, f2(t ) = 385t + 3, and f = f1 f2.

Then

Nf (p) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if p = 2,
2 if p = 3,
0 if p = 5, 7, 11,
2 if p " 13.

(4–1)

Since p ! x, we must have k ! (x − 1)/385. For suffi-
ciently large x, the Bateman–Horn conjecture predicts
that the number of such k is

π ′
2(x) = (1 + o(1))

(x − 1)/385
(log((x − 1)/385))2

∏

p!2

(1 − Nf (p)/p
(1 − 1/p)2

)

= (1 + o(1))
(

2x
385(log x)2

) ∏

p!3

(1 − Nf (p)/p
(1 − 1/p)2

)

= (1 + o(1))
(

2x
385(log x)2

)

×
∏

p=5,7,11

(
1

(1 − 1/p)2

) ∏

p!13
or p = 3

(
1 − 2/p

(1 − 1/p)2

)

= (1 + o(1))
(

2x
385(log x)2

) ∏

p!3

(
1 − 2/p

(1 − 1/p)2

)

×
∏

p=5,7,11

(
1 − 2/p

)−1

= (1 + o(1))
(

2x
385(log x)2

) ∏

p!3

×
(
p(p− 2)
(p− 1)2

)
5 · 7 · 11

(5 − 2)(7 − 2)(11 − 2)

= (1 + o(1))
2C2x

135(log x)2

= (1 + o(1))
π2(x)
135

> 0.00740740π2(x). (4–2)

Step 2. Fix a prime r " 13. Let π ′
2,r(x) be the number

of primes p ! x such that p, p+ 2 are prime,
5, 7, 11|(p− 1), and r|(p+ 1). The desired
primes are precisely those of the form

n = 385k + 1 ! x such that
n + 2 = 385k + 3 is prime and r|(385k + 2).

In particular, kmust be of the form

k = k0 + rℓ,

in which k0 is the smallest positive integer with k0 ≡
−2(385)−1 (mod r). Let br = 385k0 + 1. Then

n = 385rℓ + br and n + 2 = 385rℓ + (br + 2),
(4–3)

are both prime, n ! x, and

ℓ ! x − br
385r

.

In the Bateman–Horn conjecture, let

f1(t ) = 385rt + br, f2(t ) = 385rt + (br + 2),
and f = f1 f2.

Then Nf (p) is as in (4–1) except for p = r, in which case
Nf (r) = 0. Indeed,

f1(t ) ≡ br ≡ 385k0 + 1 ≡ −1 (mod r)
and f2(t ) ≡ br + 2 ≡ 1 (mod r)

for all t . As x → ∞, the Bateman–Horn conjecture pre-
dicts that the number of such ℓ is

π ′
2,r(x) = (1 + o(1))

(x − br)/(385r)
(log((x − br)/(385r)))2

×
∏

p!2

(1 − Nf (p)/p
(1 − 1/p)2

)

= (1 + o(1))
x

385r(log x)2
∏

p!2

(1 − Nf (p)/p
(1 − 1/p)2

)

= (1 + o(1))
2x

385r(log x)2
∏

p!3

(1 − Nf (p)/p
(1 − 1/p)2

)

= (1 + o(1))
2x

385r(log x)2
∏

p=5,7,11,r

(
1

(1 − 1/p)2

)

×
∏

p=5,7,11,r

(
1 − 2/p

(1 − 1/p)2

)

= (1 + o(1))
(

2x
385r(log x)2

) ∏

p!3

(
p(p− 2)
(p− 1)2

)

× 5 · 7 · 11 · r
(5 − 2)(7 − 2)(11 − 2)(r − 2)

= (1 + o(1))
2C2x

135(r − 2)(log x)2

= (1 + o(1))
π2(x)

135(r − 2)
. (4–4)

Step 3. Suppose that p is counted by π ′
2(x); that is,

suppose that p, p+ 2 are prime and that
5, 7, 11|(p− 1). Then 6|(p+ 1), 5, 7, 11 !
(p+ 1), and

ϕ(p− 1)
p− 1

!
∏

q=2,5,7,11

(
1 − 1

q

)
= 24

77
.
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If the pair p is unexceptional, then Lemma 2 ensures
that

1
3

∏

r|(p+1)
r!13

(
1 − 1

r

)
= ϕ(p+ 1)

p+ 1
! ϕ(p− 1)

p− 1
! 24

77
.

Consequently,
∏

r|(p+1)
r!13

(
1 + 1

r − 1

)
" 77

72
,

in which r is prime. Let

F(p) =
∑

r|(p+1)
r!13

log
(
1 + 1

r − 1

)
.

Step 4. We want to count the twin primes pairs
p, p+ 2 with p ! x, F(p) " log(77/72), and
5, 7, 11|(p− 1). To do this, we sum up F (p) over
all twin primes p counted by π ′

2(x) and change
the order of summation to obtain

A(x) =
∑

p counted by
π ′
2(x)

F(p)

=
∑

r!13

π ′
2,r(x) log

(
1 + 1

r − 1

)

!
∑

13"r"z

π ′
2,r(x) log

(
1 + 1

r − 1

)

+
∑

z<r"(log x)3
π ′
2,r(x) log

(
1 + 1

r − 1

)

+
∑

(log x)3<r"x

π2,r (x) log
(
1 + 1

r − 1

)

= A1(x) + A2(x) + A3(x), (4–5)

in which z is to be determined later. We bound
the three summands separately.
(a) If 13 ! r ! z, then (4–4) asserts that

π ′
2,r(x) = (1 + o(1))

π2(x)
135(r − 2)

uniformly for r ∈ [13, z] as x → ∞. For suf-
ficiently large x we have1

A1(x) ! (1 + o(1))
π2(x)
135

⎛

⎝
∑

13"r"z

1
(r − 2)

log
(
1 + 1

r − 1

)⎞

⎠

! (1 + o(1))
π2(x)
135

⎛

⎝
∑

r!13

1
(r − 2)

log
(
1 + 1

r − 1

)⎞

⎠

 Since log(1 + t ) ! t for t > 0, the terms of the series are O(1/r2)
and hence it converges rapidly enough for reliable numerical evaluation.
Mathematica provides the value .....

! (1 + o(1))
0.02549678

135
π2(x)

< 0.000188865π2(x).

(b) If z < r ! (log x)3, we use the Brun sieve and
manipulations similar to those used to obtain
(4–4) to find an absolute constant K such
that

π ′
2,r(x) !

K(x/(135r))
(log(x/(135r)))2

for sufficiently large x. Since r ! (log x)3,

log(x/(135r)) " log(x1/2) " (log x)/2

holds if x " 1014. Then (1–1) ensures that

π ′
2,r(x) !

4Kx
135r(log x)2

! 5Kπ2(x)
135(r − 2)

for sufficiently large x. Now we fix z such
that 5K/(135(z − 2)) < 10−9. Since log(1 +
t ) < t for t > 0, for sufficiently large x we
obtain

A2(x) =
∑

z<r"(log x)3
π ′
2,r(x) log

(
1 + 1

r − 1

)

! 5Kπ2(x)
135

∑

r>z

1
r − 2

log
(
1 + 1

r − 1

)

<
5Kπ2(x)

135
∑

r>z

1
(r − 2)(r − 1)

= 5Kπ2(x)
135

∑

r>z

(
1

r − 2
− 1

r − 1

)

! 5Kπ2(x)
135(z − 2)

< 10−9 π2(x).

(c) Suppose that (log x)3 < r ! x. By (4–3), the
primes counted byπ ′

2,r(x) lie in an arithmetic
progression modulo 385r. Thus, their num-
ber is at most

π2,r(x) !
⌊ x
385r

⌋
+ 1 ! x

385r
+ 1.

Since log(1 + t ) < t , for sufficiently large x
we obtain

A3(x) =
∑

(log x)3<r"x

π2,r (x) log
(
1 + 1

r − 1

)

!
∑

(log x)3<r"x

1
(r − 1)

( x
385r

+ 1
)

! x
385

∑

r>(log x)3

1
r(r − 1)

+
∑

(log x)3<r"x

1
r − 1

′

′
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! x
385

∑

r>(log x)3

(
1

r − 1
− 1

r

)
+

∫ x

(log x)3−2

dt
t

! x
385((log x)3 − 1)

+
(
log t

∣∣∣
t=x

t=(log x)3−2

)

! 2x
385(log x)3

+ log x

=
(

1
385C2 log x

+ (log x)3

2C2x

)
2C2x

(log x)2

= (1 + o(1))
(

1
385C2 log x

+ (log x)3

2C2x

)
π2(x)

< 10−9 π2(x).

Step 5. Returning to (4–5) and using the preceding three
estimates, we have

A(x) = A1(x) + A2(x) + A3(x)
< 0.000188865π2(x) + 10−9 π2(x) + 10−9 π2(x)
< 0.000188866π2(x).

for sufficiently large x.
Step 6. Let U (x) be the set of primes p counted by

π ′
2(x) that are unexceptional; that is, ϕ(p− 1)/

(p− 1) " ϕ(p+ 1)/(p+ 1) by Lemma 2. As we
have seen, if p ∈ U (x), then F(p) " log(77/72).
Thus,

0 ! #U (x) log(77/72) !
∑

p∈U (x)

F(p) ! A(x)

! 0.000188866π2(x),

from which we deduce that

#U (x) !
(

0.000179
log(77/72)

)
π2(x) < 0.00281306π2(x).

The primes p counted by π ′
2(x) which are not in

U (x) are exceptional; that is ϕ(p− 1)/(p− 1) < ϕ(p+
1)/(p+ 1). By (4–2) and the preceding calculation, for
large x there are at least

π ′
2(x) − #U (x) > (0.00740740 − 0.00281306)π2(x)

> 0.00459π2(x)

such primes. This completes the proof of statement (a)
from Theorem 1. #

Proof of (b). This is similar to the preceding, although it is
much simpler. As before, p, q, r denote primes. If p, p+ 2
are prime and p is exceptional, then

1
2

∏

r|(p−1)
r!5

(
1 − 1

r

)
= ϕ(p− 1)

p− 1
! ϕ(p+ 1)

p+ 1
! 1

3

since 3 ! (p− 1) and 6|(p+ 1). If we let

G(p) =
∑

r|(p−1)
r!5

log
(
1 + 1

r − 1

)
,

then G(p) " log(3/2) holds for all exceptional primes p.
Letπe(x) denote the number of exceptional primes p ! x.
Then

πe(x) log(3/2) !
∑

p counted
by π2(x)

G(p)

=
∑

p counted
by π2(x)

∑

r!5
r|(p−1)

log
(
1 + 1

r − 1

)

!
∑

5"r"x

log
(
1 + 1

r − 1

) ∑

p counted
p≡1 (mod r)

1

! (1 + o(1))π2(x)
∑

r!5

1
(r − 2)

log
(
1 + 1

r − 1

)

< 0.14137π2(x),

which shows that there are at least

π2(x) − πe(x) " π2(x)
(
1 − 0.14137

log(3/2)

)
> 0.6513π2(x)

unexceptional primes at most x. #

5. Conjectured density

Below we conjecture a value for the density of the excep-
tional primes relative to the twin primes. In what follows,
we let P(n) denote the largest prime factor of n and let
p(n) denote the smallest. We let µ denote the Möbius
function and remind the reader thatµ2(n) = 1 if and only
if n = 1 or n is the product of distinct primes.

Conjecture 2. The density of the exceptional twin primes
is

lim
x→∞

πe(x)
π2(x)

= lim
ε→0

∏

5"q" 1
ε

(
q − 4
q − 2

)( ∑

a,b
µ2(ab)=1

5"p(ab)"P(ab)" 1
ε

ϕ(a)
2a " ϕ(b)

3b

∏

p|ab

(
1

p− 4

) )
.

(5–1)

A few remarks about the imposing expression (5–1)
are in order. First of all, for each fixed ε > 0, the sum
involves only finitely many pairs a, b. Indeed, the condi-
tion µ2(ab) = 1 ensures that ab is a product of distinct
prime factors. The restriction 5 ! p(ab) ! P(ab) ! 1

ε

implies that only finitely many prime factors are available
to form a and b. In principle, the right-hand side of
(5–1) can be evaluated to arbitrary accuracy by taking
ε sufficiently small. Unfortunately, the number of terms

by π2(x)
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involved in the sum grows rapidly as ε shrinks and we are
unable to obtain a reliable numerical estimate from (5–1).

As a brief “sanity check,” we also remark that the limit
in (5–1), if it exists, is at most 1. Without the condition

ϕ(a)
2a

! ϕ(b)
3b

,

the inner sum in (5–1) is
∑

a,b
µ2(ab)=1

5"p(ab)"P(ab)" 1
ε

∏

p|ab

(
1

p− 4

)
=

∑

n
µ2(n)=1

5"p(n)"P(n)" 1
ε

2ω(n)
∏

p|n

(
1

p− 4

)

=
∏

5"p" 1
ε

(
1 + 2

p− 4

)

=
∏

5"p" 1
ε

(
p− 2
p− 4

)
,

which precisely offsets the first product in (5–1).
To proceed, we need to generalize the functions F and

G that appeared in the proof of Theorem 1. Let ε > 0 and
define

Fε(p) =
∑

r|(p+1)
r! 1

ε

log
(
1 + 1

r − 1

)
and

Gε(p) =
∑

r|(p−1)
r! 1

ε

log
(
1 + 1

r − 1

)
.

Particular instances of these functions have appeared in
the proof of Theorem 1 with ε = 1/5 for Fε (called F) and
ε = 1/13 for Gε (called G), respectively.

Lemma 3. For ε > 0, the number of twin primes p ! x
such that Fε(p) > ε is O((log( 1

ε
))−1π2(x)). The same con-

clusion holds with Fε replaced by Gε.

Proof. The argument is essentially already in the proof of
Theorem 1. We do it only for Fε(p) since the argument
forGε(p) is similar.We sum Fε(p) for p ! xwith p, p+ 2
prime and use the fact that log(1 + t ) ! t to obtain

∑

p"x
p, p+2 prime

Fε(p) !
∑

p"x
p, p+2 prime

∑

q|(p−1)
q> 1

ε

1
q − 1

=
∑

q> 1
ε

1
q − 1

∑

p, p+2 prime
p≡1 (mod q)

1

=
∑

q> 1
ε

π2(x, q, 1)
q − 1

,

in which π2(x; q, 1) denotes the number of primes p !
x with p, p+ 2 prime and p ≡ 1 (mod q). By the usual
argument, the number of twin primes p, p+ 2 with p !
x and p ≡ 1 (mod q) equals the number of t ! x/q such

that qt + 1 and qt + 3 are prime. The number of them is,
by the Brun sieve,

π2(x; q, 1) ≪ x
(q − 1)(log x)2

.

The Prime Number Theorem and Abel summation reveal
that

∑

p"x
p, p+ 2 prime

Fε(p) ≪ x
(log x)2

∑

q> 1
ε

1
(q − 1)2

≪ επ2(x)
log( 1

ε
)
.

If we let

Aε = {p : p, p+2 prime and Fε(p) > ε},

then

#Aε(x)ε !
∑

p"x
p, p+2 prime

Fε(p) ≪ ε

(
log

(1
ε

))−1

π2(x),

which gives #Aε(x) = O((log( 1
ε
))−1π2(x)). #

To justify our conjecture, we look at the 1
ε
-part of

p2 − 1. We first let ε ! 0.5. We note that 2|(p− 1),
2|(p+ 1) and 3|(p+ 1) for all twin primes p " 5. For
two coprime square-free numbers a, b with 5 ! p(ab) !
P(ab) ! 1

ε
, we say that the twin prime p is of 1

ε
-type (a, b)

if

p− 1 = 2α
∏

q|a
qαq

∏

q> 1
ε

qγq and

p+ 1 = 2β3γ
∏

q|b
qβq

∏

q> 1
ε

qδq

for some positive α, β, γ , αq and βq for q | ab and non-
negative γq, δq for q " 1

ε
. That is, the prime factors of

p− 1 that are ! 1
ε
are exactly the ones dividing 2a and

the prime factors of p+ 1 that are! 1
ε
are exactly the ones

dividing 6b.
Given ε and (a, b), let

ca,b =
∏

5"q" 1
ε

q!ab

q.

Note that
ϕ(p− 1)
p− 1

= 1
2

ϕ(a)
a

∏

q|(p−1)
q> 1

ε

(
1 − 1

q

)
and

ϕ(p+ 1)
p+ 1

= 1
3

ϕ(b)
b

∏

q|(p+1)
q> 1

ε

(
1 − 1

q

)
.

Since

e−2y < 1 − y < e−y for y < 1
2 ,
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it follows that

1 − 4ε < e−2ε < e−Fε (p) =
∏

q|(p−1)
q> 1

ε

(
1 − 1

q

)

hold for all twin primes p ! x except the ones inAε(x), a
set of cardinality O((log( 1

ε
)−1π2(x)). Consequently,

(1 − 4ε)
ϕ(a)
2a

! ϕ(p− 1)
p− 1

holds for all but O((log( 1
ε
))−1π2(x)) twin primes p ! x.

Thus, the inequality

ϕ(p− 1)
p− 1

! ϕ(p+ 1)
p+ 1

implies that

ϕ(a)
2a

! (1 − 4ε)−1ϕ(b)
3b

.

Let us consider twin primes for which

ϕ(b)
3b

<
ϕ(a)
2a

< (1 − 4ε)−1ϕ(b)
3b

(5–2)

occurs. Since
ϕ(a)
2a

= ϕ(p− 1)
p− 1

(1 + O(ε)) and

ϕ(b)
3b

= ϕ(p+ 1)
p+ 1

(1 + O(ε))

for all p ! x with O((log( 1
ε
))−1π2(x)) exceptions, it fol-

lows that twin primes p ! x for which (5–2) holds have
the additional property that

∣∣∣∣
ϕ(p− 1)
p− 1

− ϕ(p+ 1)
p+ 1

∣∣∣∣ = O(ε). (5–3)

LetBε be the set of twin primes for which (5–3) holds.We
make the following additional assumption.

Additional assumption. The number of twin primes p !
x for which (5–3) holds is O(h(ε)π2(x)) for some func-
tion h(y) with h(y) → 0 as y → 0.

Assumption (5–3) has been shown to hold when p
is only a prime [Garcia and Luca]. That is, the num-
ber of primes p ! x such that (5–3) holds is at most
O(h(ε)π (x)), where h(ε) tends to zero when ε → 0. In
fact, this was a crucial step in showing that ϕ(p− 1) −
ϕ(p+ 1) has no bias if only p is assumed to be prime.

Proving this for primes uses the Turan–Kubilius the-
orem about the number of prime factors q ! y of p ± 1
when p is prime as the parameter y tends to infinity and
also Sperner’s theorem from combinatorics. With some
nontrivial effort, which involves proving first a Turan–
Kubilius estimate for the number of distinct primes q !
1/ε of p− 1 and p+ 1 when p ranges over twin primes

up to x, the same program can be applied to prove that the
additional assumption holds under the Bateman–Horn
conjectures. We do not give further details here.

Assume that the additional assumptionholds. Then the
set of twin primes p ! x such that

ϕ(p− 1)
p− 1

<
ϕ(p+ 1)
p+ 1

is within a set of cardinalityO(h(ε)π2(x)) from the set of
primes for which

ϕ(a)
2a

<
ϕ(b)
3b

. (5–4)

With this assumption, we proceed as in [Garcia and Luca,
Section 2.11]. Fix 1

ε
, a, b, and c = ca,b.We also fix a residue

class for pmodulo cwhich is not {0, ± 1, −2}. In this case
we need to count natural numbers of the form

abct + κ,

in which κ is fixed such that! abct + κ ! x,! abct + κ and abct + κ + 2 are prime,! abct + κ − 1 are divisible by all primes in a and
coprime to cb,! abct + κ + 1 is divisible by all primes in b (and
coprime to ca).

Observe that κ is uniquely determined modulo abc
once it is determined modulo c. By the Bateman–Horn
conjecture, this number is

(1 + o(1))π2(x)
∏

p|abc

1
(p− 2)

.

We next sum this over all q − 4 progressions modulo q
for which abct + κ is not congruent modulo q to some
member of {0, ± 1, −2} and for all q | c getting an amount
of

(1 + o(1))π2(x)
∏

p|ab

(
1

p− 2

)∏

p|c

(
q − 4
q − 2

)

= (1 + o(1))
∏

5"q" 1
ε

(
q − 4
q − 2

) ∏

q|ab

(
1

q − 4

)
.

We now sum up over all pairs a, bwith
ϕ(a)
2a

<
ϕ(b)
3b

,

which yields a proportion of

(1 + o(1))
∏

5"q" 1
ε

(
q − 4
q − 2

) ∑

a,b
5"p(ab)"P(ab)" 1

ε
ϕ(a)
2a < ϕ(b)

3b

µ2(ab)
∏

p|ab

(
1

p− 4

)

of π2(x) with a number of exceptions p ! x of counting
function O(h(ε)π2(x)). This supports Conjecture 2.
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6. Comments

We did not need the full strength of the Bateman–Horn
conjecture, just the case r = 2 and D = 1 for certain spe-
cific pairs of linear polynomials f1(t ) and f2(t ). Under
this conjecture, we have seen that ϕ(p− 1) ! ϕ(p+ 1)
for a substantial majority of twin prime pairs p, p+ 2.

There are a few twin primes p, p+ 2 for which

ϕ(p− 1) = ϕ(p+ 1). (6–1)

For only such p ! 100,000,000 are

5, 11, 71, 2591, 208,391, 16,692,551, 48,502,931,
92,012,201, 249,206,231, 419,445,251, 496,978,301.

The following result highlights the rarity of these twin
primes.

Theorem4. The number of primes p ! x with p+ 2 prime
and ϕ(p− 1) = ϕ(p+ 1) is O(x/ exp((log x)1/3).

Proof. Suppose that j and j + k have the same prime fac-
tors, let g = ( j, j + k), and suppose that

j
g
r + 1 and

j + k
g

r + 1 (6–2)

are primes that do not divide j. Then

n = j
(
j + k
g

r + 1
)

(6–3)

satisfies ϕ(n) = ϕ(n + k) [Graham et al. 99, Thm. 1].
For k fixed, the number of solutions n ! x to ϕ(n) =
ϕ(n + k) which are not of the form (6–3) is less than
x/ exp((log x)1/3) for sufficiently large x [Graham et al.
99, Thm. 2].

We are interested in the case k = 2 and n = p− 1, in
which p, p+ 2 are prime. If j and j + 2 have the same
prime factors, then they are both powers of 2. Thus, j = 2
and j + k = 4, so g = 2. From (6–2) we see that r is such
that

r + 1 and 2r + 1

are prime. Then n = 2(2r + 1) = p− 1, from which it
follows that p = 4r + 3 and p+ 2 = 4r + 5 are prime.
Consequently,

r + 1, 2r + 1, 4r + 3, and 4r + 5,

are prime. However, this occurs only for r = 2 since oth-
erwise one of the preceding is a multiple of 3 that is larger
than 3. #

In particular, the number of primes p ! x for which
p+ 2 is prime and ϕ(p− 1) = ϕ(p+ 1) is o(x/(log x)2).
Assuming the first Hardy–Littlewood conjecture, it

follows that the set of such primes has density zero in the
twin primes.
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