
A GENERAL 
RELATIVITY 

WORKBOOK

Thomas A. Moore
Pomona College

 
University science Books

Mill valley, california



University Science Books
www.uscibooks.com

Production Manager: Paul Anagnostopoulos
Text Design: Yvonne Tsang
Cover Deisign: Genette Itoko McGrew
Manuscript Editor: Lee Young
Illustrator: Laurel Muller
Compositor: Cohographics
Printer & Binder: Victor Graphics

Copyright © 2013 by University Science Books

ISBN 978-1-891389-82-5

This book is printed on acid-free paper. 

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the  
1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for  
permission or further information should be addressed to the Permissions Department, University Science Books.

Library of Congress Cataloging-in-Publication Data

Moore, Thomas A. (Thomas Andrew)
 A general relativity workbook / Thomas A. Moore, Pomona College.
  pages cm
 Includes index.
 ISBN 978-1-891389-82-5 (alk. paper)
 1. General relativity (Physics) I. Title. 
 QC173.6.M66 2012
 530.11—dc23
 2012025909

Printed in North America

10 9 8 7 6 5 4 3 2 1



For Joyce, whose miraculous love always supports me and 

allows me to take risks with life that I could not face alone,

and for Edwin Taylor, whose book with Wheeler set me on this path decades ago,  

and whose gracious support and friendship has kept me going.





vii

CONTENTS

Preface xv

1. INTRODUCTION 1
Concept Summary 2

Homework Problems 9

General Relativity in a Nutshell 11

2. REVIEW OF SPECIAL RELATIVITY 13
Concept Summary 14

Box 2.1 Overlapping IRFs Move with Constant Relative Velocities 19

Box 2.2 Unit Conversions Between SI and GR Units 20

Box 2.3 One Derivation of the Lorentz Transformation 21

Box 2.4 Lorentz Transformations and Rotations 25

Box 2.5 Frame-Independence of the Spacetime Interval 26

Box 2.6 Frame-Dependence of the Time Order of Events 26

Box 2.7 Proper Time Along a Path 27

Box 2.8 Length Contraction 27

Box 2.9 The Einstein Velocity Transformation 28

Homework Problems  29

3. FOUR-VECTORS 31
Concept Summary 32

Box 3.1 The Frame-Independence of the Scalar Product 36

Box 3.2 The Invariant Magnitude of the Four-Velocity 36

Box 3.3 The Low-Velocity Limit of u 37

Box 3.4 Conservation of Momentum or Four-momentum? 38

Box 3.5 Example: The GZK Cosmic-Ray Energy Cutoff 40

Homework Problems  42

4. INDEX NOTATION 43
Concept Summary 44

Box 4.1 Behavior of the Kronecker Delta 48

Box 4.2 EM Field Units in the GR Unit System 48

Box 4.3 Electromagnetic Equations in Index Notation 49

Box 4.4 Identifying Free and Bound Indices 50

Box 4.5 Rule Violations 50

Box 4.6 Example Derivations 51

Homework Problems 52



viii  CONTENTS

5. ARBITRARY COORDINATES 53
Concept Summary 54

Box 5.1 The Polar Coordinate Basis 58

Box 5.2 Proof of the Metric Transformation Law 59

Box 5.3 A 2D Example: Parabolic Coordinates 60

Box 5.4 The LTEs as an Example General Transformation 62

Box 5.5 The Metric Transformation Law in Flat Space 62

Box 5.6 A Metric for a Sphere 63

Homework Problems 63

6. TENSOR EQUATIONS 65
Concept Summary 66

Box 6.1 Example Gradient Covectors 70

Box 6.2 Lowering Indices 71

Box 6.3 The Inverse Metric 72

Box 6.4 The Kronecker Delta Is a Tensor 73

Box 6.5 Tensor Operations 73

Homework Problems 75

7. MAXWELL’S EQUATIONS 77
Concept Summary 78

Box 7.1 Gauss’s Law in Integral and Differential Form 82

Box 7.2 The Derivative of m2 83

Box 7.3 Raising and Lowering Indices in Cartesian Coordinates 83

Box 7.4 The Tensor Equation for Conservation of Charge 84

Box 7.5 The Antisymmetry of F Implies Charge Conservation 85

Box 7.6 The Magnetic Potential 86

Box 7.7 Proof of the Source-Free Maxwell Equations 87

Homework Problems 88

8. GEODESICS 89
Concept Summary 90

Box 8.1 The Worldline of Longest Proper Time in Flat Spacetime 93

Box 8.2 Derivation of the Euler-Lagrange Equation 94

Box 8.3 Deriving the Second Form of the Geodesic Equation 95

Box 8.4 Geodesics for Flat Space in Parabolic Coordinates 96

Box 8.5 Geodesics for the Surface of a Sphere 98

Box 8.6 The Geodesic Equation Does Not Determine the Scale of x 100

Box 8.7 Light Geodesics in Flat Spacetime 101

Homework Problems 102

9. THE SCHWARZSCHILD METRIC 105
Concept Summary 106

Box 9.1 Radial Distance 110

Box 9.2 Falling from Rest in Schwarzschild Spacetime 111

Box 9.3 GM for the Earth and the Sun 112

Box 9.4 The Gravitational Redshift for Weak Fields 112

Homework Problems 114



CONTENTS   ix

 10. PARTICLE ORBITS 115
Concept Summary 116

Box 10.1 Schwarzschild Orbits Must Be Planar 120

Box 10.2 The Schwarzschild “Conservation of Energy” Equation 121

Box 10.3 Deriving Conservation of Newtonian Energy for Orbits 122

Box 10.4 The Radii of Circular Orbits 122

Box 10.5 Kepler’s Third Law 124

Box 10.6 The Innermost Stable Circular Orbit (ISCO) 125

Box 10.7 The Energy Radiated by an Inspiraling Particle 126

Homework Problems 127

 11. PRECESSION OF THE PERIHELION 129
Concept Summary 130

Box 11.1 Verifying the Orbital Equation for u(z) 135

Box 11.2 Verifying the Newtonian Orbital Equation 135

Box 11.3 Verifying the Equation for the Orbital “Wobble” 136

Box 11.4 Application to Mercury 136

Box 11.5 Constructing the Schwarzschild Embedding Diagram 137

Box 11.6 Calculating the Wedge Angle d 138

Box 11.7 A Computer Model for Schwarzschild Orbits 138

Homework Problems 141

 12. PHOTON ORBITS 143
Concept Summary 144

Box 12.1 The Meaning of the Impact Parameter b  148

Box 12.2 Derivation of the Equation of Motion for a Photon 148

Box 12.3 Features of the Effective Potential Energy Function for Light 149

Box 12.4 Photon Motion in Flat Space 149

Box 12.5 Evaluating 4-Vector Components in an Observer’s Frame 150

Box 12.6 An Orthonormal Basis in Schwarzschild Coordinates 150

Box 12.7 Derivation of the Critical Angle for Photon Emission 151

Homework Problems 152

 13. DEFLECTION OF LIGHT 153
Concept Summary 154

Box 13.1 Checking Equation 13.2 159

Box 13.2 The Differential Equation for the Shape of a Photon Orbit 160

Box 13.3 The Differential Equation for the Photon “Wobble” 160

Box 13.4 The Solution for u(z) in the Large-r Limit 161

Box 13.5 The Maximum Angle of Light Deflection by the Sun 161

Box 13.6 The Lens Equation 162

Box 13.7 The Ratio of Image Brightness to the Source Brightness 163

Homework Problems 164

 14. EVENT HORIZON 167
Concept Summary 168

Box 14.1 Finite Distance to r = 2GM 172

Box 14.2 Proper Time for Free Fall from r = R to r = 0 174



x  CONTENTS

Box 14.3 The Future Is Finite Inside the Event Horizon 175

Homework Problems 176

 15. ALTERNATIVE COORDINATES 179
Concept Summary 180

Box 15.1 Calculating /t r2 2c  184

Box 15.2 The Global Rain Metric 185

Box 15.3 The Limits on /dr dtc Inside the Event Horizon 185

Box 15.4 Transforming to Kruskal-Szekeres Coordinates 186

Homework Problems 188

 16. BLACK HOLE THERMODYNAMICS 189
Concept Summary 190

Box 16.1 Free-fall Time to the Event Horizon from r = 2GM + f 194

Box 16.2 Calculating E3  195

Box 16.3 Evaluating kB, & , and T for a Solar-Mass Black Hole 196

Box 16.4 Lifetime of a Black Hole 197

Homework Problems 198

 17. THE ABSOLUTE GRADIENT 199
Concept Summary 200

Box 17.1 Absolute Gradient of a Vector 204

Box 17.2 Absolute Gradient of a Covector 204

Box 17.3 Symmetry of the Christoffel Symbols 205

Box 17.4 The Christoffel Symbols in Terms of the Metric 205

Box 17.5 Checking the Geodesic Equation 206

Box 17.6 A Trick for Calculating Christoffel Symbols 206

Box 17.7 The Local Flatness Theorem 207

Homework Problems 210

 18. GEODESIC DEVIATION 211
Concept Summary 212

Box 18.1 Newtonian Tidal Deviation Near a Spherical Object 216

Box 18.2 Proving Equation 18.9 217

Box 18.3 The Absolute Derivative of n 217

Box 18.4 Proving Equation 18.14 218

Box 18.5 An Example of Calculating the Riemann Tensor 218

Homework Problems 220

 19. THE RIEMANN TENSOR 221
Concept Summary 222

Box 19.1 The Riemann Tensor in a Locally Inertial Frame 224

Box 19.2 Symmetries of the Riemann Tensor 225

Box 19.3 Counting the Riemann Tensor’s Independent Components 226

Box 19.4 The Bianchi Identity 227

Box 19.5 The Ricci Tensor Is Symmetric 228

Box 19.6 The Riemann and Ricci Tensors and R for a Sphere 228

Homework Problems 230



CONTENTS   xi

 20. THE STRESS-ENERGY TENSOR 231
Concept Summary 232

Box 20.1 Why the Source of Gravity Must Be Energy, Not Mass 236

Box 20.2 Interpretation of Tij in a Locally Inertial Frame 236

Box 20.3 The Stress-Energy Tensor for a Perfect Fluid in Its Rest LIF 237

Box 20.4 Equation 20.16 Reduces to Equation 20.15 239

Box 20.5 Fluid Dynamics from Conservation of Four-Momentum 239

Homework Problems 241

 21. THE EINSTEIN EQUATION 243
Concept Summary 244

Box 21.1 The Divergence of the Ricci Tensor 248

Box 21.2 Finding the Value of b 249

Box 21.3 Showing that –R + 4K = lT 250

Homework Problems 251

 22. INTERPRETING THE EQUATION 253
Concept Summary 254

Box 22.1 Conservation of Four-Momentum Implies ( )u0 0d t= o
o  258

Box 22.2 The Inverse Metric in the Weak-Field Limit 258

Box 22.3 The Riemann Tensor in the Weak-Field Limit 259

Box 22.4 The Ricci Tensor in the Weak-Field Limit 260

Box 22.5 The Stress-Energy Sources of the Metric Perturbation 261

Box 22.6 The Geodesic Equation for a Slow Particle in a Weak Field 262

Homework Problems 263

 23. THE SCHWARZSCHILD SOLUTION 265
Concept Summary 266

Box 23.1 Diagonalizing the Spherically-Symmetric Metric 270

Box 23.2 The Components of the Ricci Tensor 271

Box 23.3 Solving for B 274

Box 23.4 Solving for a(r) 275

Box 23.5 The Christoffel Symbols with t-t as Subscripts 275

Homework Problems 276

 24. THE UNIVERSE OBSERVED 279
Concept Summary 280

Box 24.1 Measuring Astronomical Distances in the Solar System 284

Box 24.2 Determining the Distance to Stellar Clusters 286

Box 24.3 How the Doppler Shift Is Connected to Radial Speed 287

Box 24.4 Values of the Hubble Constant 288

Box 24.5 Every Point Is the Expansion’s “Center” 288

Box 24.6 The Evidence for Dark Matter 289

Homework Problems 290

 25. A METRIC FOR THE COSMOS 293
Concept Summary 294

Box 25.1 The Universal Ricci Tensor 298



xii  CONTENTS

Box 25.2 Raising One Index of the Universal Ricci Tensor 298

Box 25.3 The Stress-Energy Tensor with One Index Lowered 298

Box 25.4 The Einstein Equation with One Index Lowered 301

Box 25.5 Verifying the Solutions for q 302

Homework Problems 303

 26. EVOLUTION OF THE UNIVERSE 305
Concept Summary 306

Box 26.1 The Other Components of the Einstein Equation 310

Box 26.2 Consequences of Local Energy/Momentum Conservation 311

Box 26.3 Deriving the Density/Scale Relationship for Radiation 312

Box 26.4 Deriving the Friedman Equation 312

Box 26.5 The Friedman Equation for the Present Time 313

Box 26.6 Deriving the Friedman Equation in Terms of the Omegas 313

Box 26.7 The Behavior of a Matter-Dominated Universe 314

Homework Problems 315

 27. COSMIC IMPLICATIONS 317
Concept Summary 318

Box 27.1 Connecting the Redshift z to the Hubble Constant 322

Box 27.2 Deriving the Hubble Relation in Terms of Redshift z 322

Box 27.3 The Luminosity Distance 323

Box 27.4 The Differential Equation for a(h) 323

Box 27.5 How to Generate a Numerical Solution for Equation 27.18 324

Homework Problems 325

 28. THE EARLY UNIVERSE 327
Concept Summary 328

Box 28.1 Single-Component Universes 332

Box 28.2 The Transition to Matter Dominance 333

Box 28.3 The Time-Temperature Relation 333

Box 28.4 Neutrino Decoupling 335

Box 28.5 The Number Density of Photons 337

Homework Problems 338

 29. CMB FLUCTUATIONS AND INFLATION 339
Concept Summary 340

Box 29.1 The Angular Width of the Largest CMB Fluctuations 345

Box 29.2 The Equation for Xk(t ) 346

Box 29.3 Cosmic Flatness at the End of Nucleosynthesis 347

Box 29.4 The Exponential Inflation Formula 347

Box 29.5 Inflation Calculations 348

Homework Problems 349

 30. GAUGE FREEDOM 351
Concept Summary 352

Box 30.1 The Weak-Field Einstein Equation in Terms of hno 355

Box 30.2 The Trace-Reverse of hno 356



CONTENTS   xiii

Box 30.3 The Weak-Field Einstein Equation in Terms of Hno 357

Box 30.4 Gauge Transformations of the Metric Perturbations 358
Box 30.5 A Gauge Transformation Does Not Change Rabno 359
Box 30.6 Lorentz Gauge 360
Box 30.7 Additional Gauge Freedom 361
Homework Problems 361

 31. DETECTING GRAVITATIONAL WAVES 363
Concept Summary 364
Box 31.1 Constraints on Our Trial Solution 368
Box 31.2 The Transformation to Transverse-Traceless Gauge 369
Box 31.3 A Particle at Rest Remains at Rest in TT Coordinates 371
Box 31.4 The Effect of a Gravitational Wave on a Ring of Particles 372
Homework Problems 373

 32. GRAVITATIONAL WAVE ENERGY 375
Concept Summary 376
Box 32.1 The Ricci Tensor 379
Box 32.2 The Averaged Curvature Scalar 379
Box 32.3 The General Energy Density of a Gravitational Wave 379
Homework Problems 382

 33. GENERATING GRAVITATIONAL WAVES 383
Concept Summary 384
Box 33.1 Htn for a Compact Source whose CM is at Rest 388
Box 33.2 A Useful Identity 388
Box 33.3 The Transverse-Traceless Components of Ano 390

Box 33.4 How to Find ITT
jkp  for Waves Moving in the nv  Direction 391

Box 33.5 Flux in Terms of I jk  393
Box 33.6 Evaluating the Integrals in the Power Calculation 394
Homework Problems 395

 34. GRAVITATIONAL WAVE ASTRONOMY 397
Concept Summary 398
Box 34.1 The Dumbbell I jk  402
Box 34.2 The Power Radiated by a Rotating Dumbbell 403
Box 34.3 The Total Energy of an Orbiting Binary Pair 404
Box 34.4 The Time-Rate-of-Change of the Orbital Period 404
Box 34.5 Characteristics of k Boötis 405
Homework Problems 406

 35. GRAVITOMAGNETISM 407
Concept Summary 408
Box 35.1 The Lorentz Condition for the Potentials 412
Box 35.2 The Maxwell Equations for the Gravitational Field 413
Box 35.3 The Gravitational Lorentz Equation 414
Box 35.4 The “Gravitomagnetic Moment” of a Spinning Object 414

Box 35.5 Angular Speed of Gyroscope Precession 415
Homework Problems 416



xiv  CONTENTS

 36. THE KERR METRIC 417
Concept Summary 418

Box 36.1 Expanding R r-
-1v v  to First Order in r/R 421

Box 36.2 The Integral for htx 422

Box 36.3 Why the Other Terms in the Expansion Integrate to Zero 423

Box 36.4 Transforming the Weak-Field Solution to Polar Coordinates 424

Box 36.5 The Weak-Field Limit of the Kerr Metric 425

Homework Problems 426

 37. PARTICLE ORBITS IN KERR SPACETIME 427
Concept Summary 428

Box 37.1 Calculating Expressions for dt/dx and dz/dx 431

Box 37.2 Verify the Value of [ ] g gg 2
ttt -z zz  432

Box 37.3 The “Energy-Conservation-Like” Equation of Motion 433

Box 37.4 Kepler’s Third Law 434

Box 37.5 The Radii of ISCOs When a = GM 435

Homework Problems 436

 38. ERGOREGION AND HORIZON 437
Concept Summary 438

Box 38.1 The Radii Where gtt = 0 441

Box 38.2 The Angular Speed Range When dr and/or di ≠ 0 442

Box 38.3 Angular-Speed Limits in the Equatorial Plane 443

Box 38.4 The Metric of the Event Horizon’s Surface 444

Box 38.5 The Area of the Outer Kerr Event Horizon 445

Box 38.6 Transformations Preserve the Metric Determinant’s Sign 445

Homework Problems 447

 39. NEGATIVE-ENERGY ORBITS 449
Concept Summary 450

Box 39.1 Quadratic Form for Conservation of Energy 454

Box 39.2 The Square Root Is Zero at the Event Horizon 454

Box 39.3 Negative e Is Possible Only in the Ergoregion 456

Box 39.4 The Fundamental Limit on dM in Terms of dS 457

Box 39.5 dMir ≥ 0 458

Box 39.6 The Spin Energy Contribution to a Black Hole’s Mass 459

Homework Problems 460

Appendix: A Diagonal Metric Worksheet 463

Index 467



xv

PREFACE

Introductory Comments. General relativity is one of the greatest triumphs of the hu-
man mind. Together with quantum field theory, general relativity lies at the foundation 
of contemporary physics, and currently represents the most durable physical theory in 
existence, having survived nearly a century of development and increasingly rigorous 
testing without being contradicted or superseded. Long admired for its elegant beauty, 
general relativity has also (particularly in the past two decades) become an essential 
tool for working physicists. It provides the basis for understanding a huge variety of 
astrophysical phenomena ranging from active galactic nuclei, quasars, and pulsars to 
the formation, characteristics and destiny of the universe itself. It has driven the devel-
opment of new experimental tools for testing the theory and for the detection of gravi-
tational waves that represent one of the most lively and challenging areas of contempo-
rary physics. Even engineers are starting to have to pay attention to general relativity: 
making the Global Positioning System function correctly requires careful attention to 
general relativistic effects.

In some ways, general relativity was so far ahead of its time that it took a long time 
for instrumentation and applications to catch up sufficiently to make it more than than 
an intellectual adventure for the curious. However, as general relativity has now moved 
firmly into the mainstream of contemporary physics with a wide and growing variety 
of applications, teaching general relativity to undergraduate physics majors has become 
both relevant and important, and the need for appropriate and up-to-date undergradu-
ate-level textbooks has become urgent.

Audience. This textbook seeks to support a one-semester introduction to general rela-
tivity for junior and/or senior undergraduates. It assumes only that students have taken 
multivariable calculus and some intermediate Newtonian mechanics  beyond a standard 
treatment of mechanics and electricity and magnetism at the introductory level (though 
students who have also taken linear algebra, differential equations, some electrodynam-
ics and/or some special relativity will be able to move through the book more quickly 
and easily). This book  has grown out of my experience teaching fourteen iterations of 
such an undergraduate course during my teaching career.

Those iterations have convinced me that undergraduates not only can develop a 
solid proficiency with the general relativity, but also that studying general relativity 
provides a superb introduction to the best practices of theoretical physics as well as 
a uniquely exciting and engaging introduction to ideas at the very frontier of physics, 
things that students rarely experience in other undergraduate courses.

Pedagogical Principles. Since students rarely see the tensor calculus used in general 
relativity in undergraduate mathematics courses, a course in general relativity must 
either teach this mathematics from scratch or seek to work around it (at some cost in co-
herence and depth of insight). In my experience, junior and senior undergraduates can 
master tensor calculus in an appropriately designed course, and that doing this is well 
worth the effort, as it provides the firm foundation needed for confidence and flexibility 
in confronting applications. 

The pedagogical key for developing this mastery is for you (the student) to person-
ally own the mathematics by working through most of the arguments and derivations 
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yourself. Therefore, I have designed this textbook as a workbook. Each chapter opens 
with a concise core-concept presentation that helps you see the big picture without 
mathematical distraction. This presentation is keyed to subsequent “boxes” that I have 
designed to guide you in working through the supporting derivations as well as oth-
er details and applications whose direct presentation would obscure the core ideas. I 
have found this combination of overview and guided effort to be uniquely effective in 
building a practical understanding of the theory’s core concepts and their mathematical 
foundations.

The overview-and-box design also helps keep you focused on the physics as op-
posed to the mathematics, underlining how the mathematics supports and expresses the 
physics. Other aspects of the textbook’s design also support the principle that the phys-
ics should be foremost. I have ordered the topics so that the mathematics is presented 
not in one big lump but rather gradually and “as needed,” thus allowing the physics to 
drive the presentation. For example, you will extensively practice using tensor notation 
by exploring real physical applications in flat space before learning about the geodesic 
equation that describes an object’s motion in a curved spacetime. You will then spend 
a great deal of time exploring the physical implications of the geodesic equation in 
the particular curved spacetime surrounding a simple spherical object before learning 
the additional mathematical tools required to show why spacetime is curved in that 
particular way around a spherical object. Along the way, I use many “toy” examples in 
two-dimensional flat and curved spaces help develop your intuitive understanding of 
the physical meaning of the core ideas. The gradual development of the mathematics 
throughout the text also helps ensure that you have time to gain a firm footing for each 
step before continuing the climb.

The key to using this book successfully is working carefully through all the boxes 
in this book. Doing this will ultimately provide you with a range of experience and 
depth of understanding difficult to obtain any other way. 

Chapter Dependencies. The chart that appears on each chapter’s title page (and on the 
next page) shows how the major sections of the book depend on each other. For exam-
ple, you can see from the chart that the Introduction, Flat Space, and Tensors sections 
(chapters 1 through 8) provide core material that every other section uses. After chapter 
8, I strongly recommend going on to the Schwarzschild Black Holes section, because 
this will develop your understanding of how to work with curved spacetimes before 
having to wrestle with yet more math (and because black holes are fascinating applica-
tions of the theory). However, this is not essential; in a short course focused on cosmol-
ogy, for example, one could go directly on to the Calculus of Curvature, Einstein 
Equation, and Cosmology sections. Note also that the final three sections (Cosmology, 
Gravitational Waves, and Spinning Black Holes) are completely independent of each 
other and can be explored in any order one might choose. However, all three of these 
sections require the Calculus of Curvature and Einstein Equation sections.

One also does not have to go all the way through the Schwarzschild section. The 
last three chapters (on black holes) are only necessary if you also plan to go through 
the last two chapters of the Spinning Black Holes section (though it is hard to imagine 
why anyone would want to avoid learning about black holes!). One can easily omit the 
Deflection of Light chapter without loss of continuity. The Precession of the Perihelion 
chapter is necessary background for the Deflection of Light chapter, but you could omit 
both. The first two chapters are required for all of the other chapters in this section, and 
the fourth chapter on Photon Orbits presents a mathematical technique that is employed 
in certain homework problems throughout the rest of the book, but is only absolutely 
required for the Deflection of Light and the Black Hole Thermodynamics chapters.

In the Cosmology section, the first four chapters provide core material and should 
all be included if this section is to be explored at all. The last two chapters, however, are 
completely optional; you can omit either both or the last, as desired.
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While in principle it is possible to stop at after the first two chapters in the Gravi-
tational Wave section, I think that a discussion of gravitational wave energy and gen-
eration is pretty important. I therefore recommend going through at least the first three 
chapters of this section if you want to explore gravitational waves at all.

One might reasonably elect to explore the Gravitomagnetism chapter alone in the 
Spinning Black Holes section, or stop after either the Kerr Particle Orbits chapter or 

INTRODUCTION

The Universe Observed

A Metric for the Cosmos

Evolution of the Universe

Cosmic Implications

The Early Universe*

CMB Fluctuations & Inflation*

COSMOLOGY

Gravitomagnetism*

The Kerr Metric*

Kerr Particle Orbits*

Ergoregion and Horizon*

Negative-Energy Orbits*

SPINNING
BLACK HOLES

Gauge Freedom

Detecting Gravitational Waves

Gravitational Wave Energy*

Generating Gravitational Waves*

Gravitational Wave Astronomy*

this depends on this

GRAVITATIONAL
WAVES

The Absolute Gradient

Geodesic Deviation

The Riemann Tensor

THE CALCULUS
OF CURVATURE

The Stress-Energy Tensor

The Einstein Equation

Interpreting the Equation

The Schwarzschild Solution

THE EINSTEIN
EQUATION
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Event Horizon*
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SCHWARZSCHILD
BLACK HOLES

A chart showing the chapters of the book grouped in their major sections and how those sections depend on each other.  
Chapters marked with a * are optional, though later optional chapters typically depend on earlier such chapters.



xviii  PREFACE

the Ergoregion and Horizon chapter. However, the chapters in this section do need to 
be discussed in sequence; one cannot easily drop one from the middle.

The First Chapter. Please also note that the first chapter has a different structure than 
the others. After dealing with preliminaries, I usually end the first class session of the 
course I teach with a 40-minute interactive lecture. For the sake of completeness (and 
for later reference), I have provided in the first chapter what amounts to a polished 
transcript of that lecture. This chapter has no boxes because I don’t expect my students 
to have read (or perhaps even own) the book before the first class. To help them track 
the lecture, I instead give them a two-sided handout that appears as the last two pages 
of the first chapter.

The Second Chapter. This chapter presents a very terse review of special relativity 
aimed primarily at students that have already encountered some relativity in a previous 
course. If you have not seen relativity before, you may find this chapter harder going. 
Even so, everything you need to know about special relativity for this book is presented 
there, and if you work through the chapter slowly, and do many of the homework prob-
lems, you should be fine. I have also included references to supplemental reading that 
you may find helpful.

Book Website. You can find a variety of other helpful information and supporting 
computer software on this textbook’s website:

 http://pages.pomona.edu/~tmoore/grw/ 

Please also feel free to email me suggestions, questions, and error notices: my email 
address is tmoore@pomona.edu.

Information for Instructors. So far in this preface, I have addressed issues of con-
cern to all readers in language directed mostly to students. In the remainder, I want to 
specifically address issues of interest to instructors who are designing undergraduate 
courses around this book.

Course Pacing. I have designed the text so that (in my experience) each chapter can 
generally be discussed in a single (50-minute) class session, particularly if you use 
the format for class sessions I describe below. Your mileage may vary (for example, 
you may need to spend more time on chapter 2 if your students’ background in special 
relativity is weak), but this general rule should help you appropriately pace the course.

You also have a lot flexibility in choosing which chapters to cover and which you 
might omit: there are at least twenty different chapter sequences that make sense. Be 
sure to examine thoroughly the section above on Chapter Dependencies above before 
designing a syllabus that omits chapters. However, I find that I can usually get through 
the entire book in one semester.

Let me emphasize again that the last three sections (Cosmology, Gravitational 
Waves, and Spinning Black Holes) are independent; you can present them in any or-
der. One of my colleagues likes to end the course with cosmology, which he thinks 
provides an exciting climax. I have made that section first of the three precisely because 
I also think it is the most important. If I am working through the book sequentially and 
run out of time, I’d rather do so in the Spinning Black Holes section than omit any of the 
cosmology material! I also find that students have many other pressures and concerns 
near the end of the semester, so I tend to schedule material that I consider less crucial 
toward the end. But you can certainly choose what works best for you and your students, 
and you have lots of flexibility to do so.

How to Spend Class Time. The workbook format will push students to gain mastery 
only if your course design somehow rewards students for filling out the boxes. The last 
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time I taught the course, I asked several students chosen at random each class session 
to hand me their books, which I subsequently graded for thoughtful effort in filling 
out the boxes since the last time they submitted their book, with special emphasis on 
the chapter discussed in class that day. Each student’s average grade for these random 
samples counted about 13% of their course grade. I arranged things so that each student 
was called on about five to six times a semester.

One of my colleagues at a another institution uses a different approach that may 
be even better. After determining which box exercises seemed easy enough to skip 
discussion, he then assigns each remaining box exercise to a student in a strict rotation 
(including himself in the rotation). The student must present the solution in front of the 
class. This strongly motivates the students to come to class prepared without having to 
assign a formal grade for preparation, and also makes class time a bit more active than 
the way I did it. I intend to use this approach myself the next time that I teach the course.

You might find some other approach better than either of these for your students, but 
I consider it very important when designing a course based on this book to find some 
way of rewarding students for doing work in the boxes before class.

In either of the approaches outlined above, we spend much of the class period dis-
cussing the challenges students encountered in going through the boxes. Because stu-
dents have at least tried to work out the boxes before class, they typically bring good 
questions to the table, questions that directly address the difficulties they are experienc-
ing personally. We are therefore able to spend class time efficiently addressing students’ 
actual needs. If we have time (and we often do), I often work some example problems 
in class, targeted toward either some interesting physics and/or preparing them better 
to do the homework. In my experience, this approach to using class time is much more 
effective and efficient than lecturing would be.

I also recommend that you (the instructor) work through all the boxes in an assigned 
chapter yourself before class. (I myself do this every time I offer the course, even though 
I have worked through all the boxes several times now!) This will help refresh your 
memory, help isolate any issues that you might need to resolve for yourself before class, 
and (most importantly) help you anticipate and appreciate the difficulties that students 
will have with the boxes.

I intentionally designed most of the boxes so that they ask students to prove some-
thing, as the primary goal of the boxes is to help students gain ownership of the con-
cepts and derivations discussed in the text. The homework problems are usually much 
more open-ended, providing opportunities for students to extend the ideas presented in 
the text, explore physical applications, and even think about new topics. Some of the 
problems are also designed to provide a basis for class discussion of topics not covered 
in the main text.

Homework. I typically assign about two homework problems per chapter: this is 
enough to keep students pretty busy. Homework problems for this class can be pretty 
challenging, and even the best students may not get them right the first time. Home-
work-grading schemes that focus only on the final results can therefore make students 
anxious. However, one can devise grading schemes that (1) allow students to engage 
difficult problems without anxiety, (2) provide them with an opportunity for further 
learning, and (3) make grading easier for you or your TAs. The “Course Design” sec-
tion of the book’s website provides a link to a page that discusses a scheme for grading 
homework that I strongly recommend that you consider: it not only encourages students 
to tackle tough problems without fearing failure, but I can also guarantee that it will 
save you time grading!

Website for Instructors. I have set up a special, controlled-access website especially 
for instructors. If you are an instructor that has adopted the book, send me (1) your 
name, (2) your institution, and (3) how many students are in your course, and I will tell 
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you how to access that site. This site includes complete problem solutions, box solutions, 
sample tests, and other information that instructors will find helpful but which should 
not be available to students in an uncontrolled way. 

I also welcome emails if you have questions, error notices, or other comments.

Appreciation. I am grateful to many people have helped bring this text to fruition. 
First, let me thank the students in my Physics 160 class (and particularly Nathan Reed 
and Ian Frank) for documenting errors in early versions and offering feedback. The 
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son, and David Miller, who all sent me individual reviews), Tom Baumgarte, Tom Car-
roll, Bryan van der Ende, and an unknown reviewer for reading a nearly final draft and 
offering a number of valuable suggestions and error corrections. Needless to say, any 
remaining errors are my own. I want to thank the developers of MathMagic (my equa-
tion-editing software) for extraordinary attention and help beyond the call of duty when 
I encountered various problems. Hilda Dinolfo and Christine Maynard were very help-
ful in printing copies for various early readers. I am very grateful to Sergio Picozzi and 
John Mallinckrodt for carefully reviewing the final draft and being willing to write such 
nice endorsements for the back cover. I want to thank the book’s production team, (Lee 
Young, Richard Camp, Yvonne Tsang, Genette Itako McGrew, and especially Laurel 
Muller and Paul Anagnostopoulos) for their excellent work, care, and extraordinary 
patience in dealing with a difficult book (and a sometimes difficult author). I also want 
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Introduction to Arbitrary Coordinates. As we saw at the beginning of the course, 
general relativity tells us that gravity results from curved spacetime. We have seen in 
the past few chapters how to describe the flat spacetime of special relativity using carte-
sian spatial coordinates and a time coordinate defined by synchronized clocks in an in-
ertial frame. But in curved spacetimes, we cannot use cartesian coordinates. Moreover, 
since our eventual goal is to calculate how matter curves the spacetime around it, we 
often do not know the spacetime’s geometry a priori, and therefore do not know what 
kind of coordinate system to use.

Our goal in the next few chapters is to develop mathematical techniques for writing 
physical equations in a way that is completely independent of the coordinate system 
we actually end up using. This will generalize the principle of relativity: we will learn 
how to express the laws of physics in a way that is not only independent of our choice of 
inertial reference frame, but in fact entirely independent of our choice of coordinates!

A coordinate system is ultimately simply some kind of organized scheme for 
attaching numbers (coordinates) to points in space and/or events in spacetime. The 
clock-lattice scheme that we considered in chapter 2 is one way, but by no means the 
only way, to attach coordinates to events. The only assumptions that we will make here 
about our coordinate systems are that (1) our space is not so horribly curved that we 
cannot treat a sufficiently small patch of it as if it were flat, and (2) our coordinates vary 
smoothly so that neighboring points have nearly the same coordinates.

To make things simple and easy to visualize, we will in this chapter be primarily 
working with arbitrary coordinates in a flat two-dimensional (2D) space. However, the 
methods we develop for handling arbitrary coordinates will end up working just as well 
for curved spaces in any number of dimensions. 

No matter how we construct our coordinate system, the distance ds between two 
infinitesimally separated points is a coordinate-independent quantity, because we can 
measure it directly with a ruler without having to define a coordinate system at all. 
The fundamental way that we connect arbitrary coordinates to physical reality is by 
specifying how the distance between two infinitesimally-separated points depends on 
their coordinate separations. A cartesian x, y coordinate system is one in which the 
distance ds between two infinitesimally-separated points is given by ds dx dy2 2 2= +  
everywhere in the 2D plane. A curvilinear coordinate system is any non-cartesian 
coordinate system where this simple Pythagorean relationship is not true. How can we 
connect the coordinate-independent distance between two points with their coordinate 
separations in such a case?

Definition of a Coordinate Basis. Consider arbitrary coordinates u, w for a 2D space. 
When using index notation, we will interpret dxu  as being equivalent to du, and dxw  as 
being equivalent to dw, and we will assume that Greek indices have two possible values 
u and w. (In the last chapter, in the context of cartesian coordinates in flat spacetime, I 
stated that indices could represent either t, x, y, or z, but when we use arbitrary coordi-
nates, the indices represent whatever the index names might be.) I will also represent 
2D vectors with the same bold-face notation as we used for four-vectors in the previ-
ous chapters. This will keep the notation from changing when we generalize to 4D 
spacetimes.

Now, no matter how our u, w coordinate system is defined, at each point P in the 
space, we can define a pair of basis vectors e,eu w  such that

1. eu  points tangent to the w = constant curve toward increasing u.
2. ew  points tangent to the u = constant curve toward increasing w.
3. The lengths of e,eu w  are defined so that the displacement vector ds between the 

point P  at coordinates u, w and any infinitesimally separated neighboring point P 
at coordinates u + du, w + dw can be written

 d du dw dxs e e eu w= + = n
n  (5.1)

Figure 5.1 illustrates how these basis vectors are defined.
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If we define basis vectors this way, then du and dw become the components of ds 
in that basis, and we call the set of basis vectors e,eu w  a coordinate basis. We do not 
have to define the basis vectors this way, but it proves very convenient, as we will see. A 
coordinate basis is generally different than the cartesian coordinate basis vectors e,ex y  
(more commonly written i, j or ,x yt t) in that (1) e eu w:  may be nonzero, (2) eu  and ew  
may not have unit length, and (3) eu  and ew   may change in magnitude and/or direction 
as one moves from point to point.

An Example. Consider r and i coordinates for a flat 2D space. The coordinate basis 
for this coordinate system consists of the vectors er  and ei , whose directions vary from 
point to point (er  pointing radially away from the origin, and ei  perpendicular to it) and 
whose magnitudes are given by e( )mag 1r =  and e( )mag r=i  (see figure 5.2). This 
definition ensures that we can write e ed dr ds r i= + i . If we were to use conventional 
polar-coordinate unit vectors erT  and eiV, which both have unit magnitude by definition, 
we would have to write e ed dr rds r i= + iT V  instead. Therefore, the conventional polar-
coordinate basis vectors erT  and eiV do not comprise a “coordinate basis.” This example 
is discussed more fully in box 5.1.

General Vectors. Once we have established a coordinate basis, then we can define the 
components ,A Au w  of an arbitrary vector A at the point P so that

 A A AA e e eu
u

w
w/ = +n

n  (5.2)

The Metric Tensor. The scalar product of ds with itself is the square of the physical 
distance between the endpoints of ds:

 ( ) ( )ds d d du dw du dws s e e e eu w u w
2 : := = + +

 du du dw dw du dwe e e e e e e eu u u w w u w w
2 2: : : := + + +

 dx dx g dx dxe e: /= a b
a b ab

a b  (5.3)

The set of four components g e e:/ab a b  comprises the metric tensor for our 2D co-
ordinate basis. The equation above therefore specifies the relationship between the co-
ordinate separations and the physical distance between two points, and represents a 
generalization of the Pythagorean theorem for our arbitrary coordinate system. Note 
that gab  is generally a function of position in space.

This is the generalization of the metric tensor hab  introduced in the last section. 
In flat spacetime, we can always find a cartesian coordinate basis where the basis 
vectors are mutually orthogonal (e e 0: =a b  when a ≠ b) and have unit magnitude 
(e e 1: !=a b  when a = b, with the negative value indicating a time coordinate) at all 
events. This is not generally possible in a curved spacetime.

P

ew

eu edw w

edu u

ds

u = 3 u = 4 u = 5 u = 6

w = 7

w = 6

w = 5

w = 6

w = 6 + dw

u = 5 u = 5 + du

P

Q

FIG. 5.1 This drawing shows an arbitrary coordinate system, a point P, the basis vectors eu  and ew  
at that point, and a close-up view of how we describe an infinitesimal displacement ds as a sum of 
the basis vectors multiplied by the corresponding changes in the coordinate values. Ensuring that 

edw w  and edu u  add up to the actual displacement ds  defines the lengths of eu  and ew .
y

x

i  = constant 
= π/3

r = constant = 3 cm

FIG. 5.2 Coordinate basis vectors for a polar 

coordinate system.
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Transformation of Coordinates. Now consider a general coordinate transformation 
in two dimensions between coordinates u, w and new coordinates p(u, w) and q(u, w). 
The chain rule for partial derivatives implies that infinitesimal changes in the new co-
ordinates are related to changes in the old coordinates as follows:

 dp
u
p
du

w
p
dw

2
2

2
2

= +    and    dq
u
q
du

w
q
dw

2
2

2
2

= +  (5.4)

If we consider the p, q coordinate system the primed coordinates and u, w the unprimed 
coordinates, then we can write this compactly in index notation as follows:

 dx
x
x
dx

2
2

=n
o

n
ol

l
 (5.5)

(with an implicit sum over the o index, since we will consider the superscript in the 
denominator of a derivative to be equivalent to a subscript).

But if we use a coordinate basis in both coordinate systems, then dp and dq are the 
actual components of the infinitesimal displacement ds in the primed system, and du 
and dw play the same role in the unprimed system. Since by definition the components 
of an arbitrary vector A must transform in the same way that the components of the 
displacement do, the components of A must transform as follows:

 A
x
x
A

2
2

=n
o

n
ol

l
 (5.6)

This is the general transformation law for the components of a vector when we are using 
a coordinate basis. The simplicity of this transformation law is precisely why coordinate 
bases are so useful. From this point on, we will assume that we will use coordinate 
bases unless we explicitly state otherwise.

It follows from the argument above that the reverse transformation of vector com-
ponents from the primed to the unprimed system is simply

 A
x
x
A

2
2

=n
o

n
o

l
l  (5.7)

An Important Identity. Basic partial differential calculus implies that

 
x
x
x
x

2
2
2
2 d=a

n

o

a
n
o

l
l

 (5.8)

If we write this out explicitly for our p, q and u, w coordinate systems, this says that

 , ,
p
u p

p dp
dp

u
p u

w
p w

d
dp

u
p

w
w

q q q
1 0

2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

+ = = + = =  (5.9a)

 ,
u p
u

w p
w

dp
d

u q
u

w q
w

dq
dq q q q q q

0 1
2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2

+ = = + = =  (5.9b)

We will find this identity very useful in what follows.

The Transformation of the Metric Tensor. The fact that the magnitude of ds is a 
frame-independent quantity by definition directly implies that

 ds g dx dx g dx dx2 = =no
n o

ab
a bl l l  (5.10)

This directly implies (see box 5.2) that

 g
x
x
x
x
g

2
2
2
2

=no n

a

o

b

abl
l l

    and    g
x
x

x

x
g

2
2

2

2
=ab a

n

b

o

no
l l

l  (5.11)

(Note again that we assume there to be implicit sums over the a and b indices in the 
first equation and the n and o indices in the second.)

 Equations 5.11 provides a handy way to find the components of the metric tensor 
in a new coordinate system if you know how the new coordinates depend on the old 
coordinates and you know the metric tensor in latter system. Box 5.3 illustrates such a 
calculation for a simple 2D coordinate system.
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Coordinate Transformations in Flat Spacetime. The cartesian-like coordinates that 
we use for an inertial reference frame in the flat spacetimes of special relativity are an 
example of a coordinate basis. The Lorentz transformation equations in fact represent 
a special case of the general transformation rule given above. To see this, consider 
the full coordinate transformations between two inertial frames in standard orientation 
and where the primed frame is moving with speed b in the +x direction relative to the 
unprimed frame are

 
( )

t t x

x t x

y y

z z

c b

c b

= -

= - +

=

=

l

l

l

l

^ h
          and          

( )

t t x

x t x

y y

z z

c b

c b

= +

= +

=

=

l l

l l

l

l

^ h
 (5.12)

By taking the partial derivatives of these equations, you can easily show that
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(See box 5.4.) Because the transformation equations 5.12 are linear, the partial deriva-
tives in equations 5.13 are constant, which is not generally the case for arbitrary coor-
dinate transformations.

Equations 5.13 imply that for cartesian-like coordinates in flat spacetime, the gen-
eral transformation law for the components of an arbitrary four-vector A given in equa-
tion 5.6 is the same as the Lorentz transformation law we saw earlier:

 A
x
x
A A

2
2 K= =n

o

n
o n

o
ol

l
 (5.14)

(compare with equation 4.5). We also know that Lorentz transformations obey the iden-
tity specified in equation 5.8,
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x
x
x
x1

2
2
2
2 dK K = =n

a
a
o a

n

o

a
n
o

- l
l

 (5.15)

(compare with equation 4.12), and that the transformation law for the metric tensor of 
flat spacetime is

 ( ) ( )
x

x

x 1 12

2

2h h h hK K= = =ab a

n

b

o

no no
n
a

o
b ab

- -

x2
l

l l
 (5.16)

according to equation 4.19. This means that the components of the metric tensor for flat 
spacetime have the same numerical value in all cartesian-like coordinate systems con-
nected by Lorentz transformations. You can check that equation 5.16 is true component 
by component (see box 5.5 ).

The Metric for a Spherical Surface. In curved spaces and spacetimes, we are stuck 
with curvilinear coordinates. As an example, box 5.6  discusses the curvilinear i, z 
(latitude-longitude) coordinate system for the 2D surface of a sphere of radius R. We see 
there that the metric for this space in this coordinate system is
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; ;E E (5.17)

This result will be very valuable to us later as a simple example of a curved space and 
when we seek to construct metrics for spherically symmetric spacetimes.
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BOX 5.1 The Polar Coordinate Basis

Consider ordinary polar coordinates r and i (see figure 5.3). Note that the distance 
between two points with the same r coordinate but separated by an infinitesimal 
step di in i is r di  (by the definition of angle). So there are (at least) two ways 
to define a basis vector for the i direction (which we define to be tangent to the 
r = constant curve): (1) we could define a basis vector eit  with a unit magnitude, 
in which case the differential displacement vector for the step we are considering 
would be ed r ds i= it , or (2) we can define a basis vector ds with magnitude r, 
so that we can write ed ds i= i . In each case, the magnitude of the displacement 
will be r di , but in the second case, the coordinate change di itself becomes the 
component of ds, which is convenient. This latter choice is the one that defines the 
“coordinate basis” vector for the i direction in polar coordinates.

The length of an infinitesimal step dr in the r direction (tangent to the i = 
constant curve) is simply dr, so if we define er  to have unit magnitude, we have 

ed drs r=  for such a step. Here, the basis vector with unit length is (in this case) 
the appropriate choice for a “coordinate basis” vector in the r direction.

Once we have established these basis vectors, we can write the components of 
an arbitrary infinitesimal displacement in any direction as

 e ed dr ds r i= + i  (5.18)

Note carefully that this equation does not apply to finite displacements, but only 
displacements small enough so that the basis vectors er  and ei  do not change sig-
nificantly over the distance spanned by the displacement. (See the exercise below.)

Note that by the nature of polar coordinates, basis vectors that point tangent to 
the i = constant and r = constant curves are perpendicular to each other at all points, 
but er  (for example) does not point in the same direction at one point as it does at 
another, as illustrated in figure 5.3. The metric for the polar coordinate basis is

 e e e e
e e

e e
e eg

r

1

0

0r r

r

r

2:
:

:

:

:
/ = =no n o

i

i

i i
< <F F (5.19)

Important note: We can always specify the components of a metric tensor either 
by listing them in a matrix (as above) or by writing out the metric equation. For 
example, if we compare the abstract and concrete versions of the metric equation

 ds g dx dx dr r d2 2 2 2i= = +no
n o  (5.20)

we can immediately infer that grr = 1, gii = r2, and gri = gir = 0 (because terms in-
volving dr di and di dr do not appear). The latter approach is often very convenient.

Exercise 5.1.1. By drawing on the diagram below, show that the displacement 
∆s between the two points with coordinates of r = 1 cm, i = 0° and r = 2 cm,  
i = 90° is not accurately given by equation 5.18 (because it is not infinitesimal).

y

x

r = const. = 3 cm

i = const. = π/6
FIG. 5.3. A diagram that displays the 
r = constant and i = constant curves 
for polar coordinates and the polar 
coordinate basis vectors at selected 
points.

er
ei

er

ei
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BOX 5.2 Proof of the Metric Transformation Law

One can prove equation 5.11 as follows. Start with equation 5.10, repeated here for 
convenience:

 g dx dx g dx dx=no
n o

ab
a bl l l  (5.10r)

Use the inverse transformation law for the components of an infinitesimal displace-
ment (equation 5.7) to rewrite the above as

 g dx dx g
x
x
x
x
dx dx

2
2
2
2

=no
n o

ab n

a

o

b
n ol l l

l l
l l  (5.21)

Now you can follow the mode of argument used in box 4.6 to show that

 g g
x
x
x
x

2
2
2
2

=no ab n

a

o

b

l
l l

 (5.22)

This is equation 5.11.

Exercise 5.2.1. Fill in the gap between equation 5.21 and 5.22. Note that be-
cause of the implicit sums in equation 5.21, this is more complicated than saying 
“divide both sides by dx dxn ol l ”!
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BOX 5.3 A 2D Example: Parabolic Coordinates

q

q = 3

q = 2

q = 1

q = 0

q = –1

q = –2

q = –3

p =  –4    –3    –2   –1    0     1     2      3     4

O

FIG. 5.4. A diagram that displays 
the p = constant and q = constant 
curves for parabolic coordinates 
and the parabolic coordinate basis 
vectors at selected points.

ep

ei

eq

eq

Consider the parabolic coordinate system p, q shown in figure 5.4. The transforma-
tion functions from ordinary cartesian coordinates x, y to these coordinates are

 ( , )p x y x=      and     ( , )q x y y cx2= -  (5.23)

where c is a constant. The inverse transformation functions are

 ( , )x p q p=    and   ( , )y p q cp q2= +  (5.24)

Exercise 5.3.1. Show that equations 5.24 are the correct inverse transformations.

Exercise 5.3.2. Calculate all eight partial derivatives /x x2 2n ol  and /x x2 2n ol .

The metric equation for the cartesian coordinates x, y is ds dx dy2 2 2= + , so the 
metric tensor for these coordinates must be

 g
1

0

0

1
=ab < F (5.25)

You can use equation 5.11 to show that the metric for the p, q system is

 g
c p

cp

cp1 4

2

2

1

2 2

=
+

nol = G (5.26)
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BOX 5.3 (continued) A 2D Example: Parabolic Coordinates

For example, if we choose the coordinate indices n = p, o = q, we see that

 g
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q
x
g
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q
x
g
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g
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= = + + +
a b

ab

 cp cp1 0 1 0 0 2 1 2$ $ $= + + + =   (5.27)

Exercise 5.3.3. Use the same technique to verify the other components of 
equation 5.26. Does the fact that this metric has off-diagonal components make 
sense?

Exercise 5.3.4. Let a vector A have p, q components ,A A1 0p q= = . 
  a) Find this vector’s components in the x, y coordinate system. 
  b) Do these components make sense? (Hint: Sketch e e,p q  at a typical point.) 
  c) Show that A A A2 :=  of this vector has the same value in both systems.
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BOX 5.4 The LTEs as an Example General Transformation

BOX 5.5 The Metric Transformation Law in Flat Space

Notice that for the Lorentz transformation

 ( )
x
x

t
t

t
t x 0t

t
t
t2

2
2
2

2
2 c b c c K= = - = + = =

l l
 (5.28)

Exercise 5.4.1. Similarly, check that /x x2 2 K=n o n
ol  when n = x and o = t, 

and when n = o = y.

Let’s check equation 5.16 for a = b = t.

 ( ) ( )tt t t
1 1h hK K= n o
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Now, th o  is only nonzero when o = t, xh o  only when o = x, and so on. Moreover 
( ) ( ) 0y
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- +
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The other components are analogous.

Exercise 5.2.1. Check the cases where a = t and b = x, and where a = b = x.
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BOX 5.6 A Metric for a Sphere

Consider the 2D surface of a sphere of radius R. The most commonly used coor-
dinate system for a spherical surface is a latitude-longitude system using angular 
coordinates i and z. As illustrated in figure 5.5,  curves of constant longitude z are 
great circles that intersect at both poles. The coordinate z labels these curves by 
the angle each makes at the north pole with a longitude curve arbitrarily chosen to 
have z = 0 (in the case of the earth’s surface, the great circle going through Green-
wich, England). The curves of constant latitude are circles a constant distance from 
the pole (as measured along the sphere’s surface). On the earth’s surface, we con-
ventionally label these circles by the angle i that a line drawn from any point on the 
circle to the earth’s center makes with the earth’s equatorial plane (so that the equa-
tor has i = 0). However, in physics, we usually define i to be the angle measured 
down from the north pole, so that i = 0 at the north pole, r/2 at the equator, and r 
at the south pole. I will use the physics definition throughout this book.

A nice feature of this coordinate system is that the curves of longitude and 
latitude are always perpendicular to each other. This means that g g= =iz zi  
e e 0: =i z , i.e., the matrix for this coordinate system’s metric is diagonal. We can 
determine the other metric components as follows. Consider first the infinitesi-
mal displacement corresponding to an infinitesimal change in latitude di along a 
curve of constant longitude. Since that curve is a great circle, its radius is R, so 
the arclength along the sphere’s surface subtended by the angle di is R di. Simi-
larly, since the diagram shows that a circle of latitude i has a radius of R sin i, the 
length of the infinitesimal displacement corresponding to an infinitesimal change 
dz along a circle of constant latitude must have a length R sin i dz. Because these 
displacements are perpendicular, and because in the infinitesimal limit, the patch 
of area spanned by these displacements is almost flat, we can use the Pythagorean 
theorem to determine the squared length of the displacement ds that is the sum of 
such displacements:

 ( ) ( )sin sinds Rd R d R d R d2 2 2 2 2 2 2 2i i z i i z= + = +  (5.31)

Comparing this to the abstract form of the metric equation ds g dx dx2 = no
n o , we 

see that gii = R2, gzz =  R2 sin2 i, and gzi = giz = 0.

Exercise 5.6.1. What would the metric components be if we were to measure i 
up from the equator rather than down from the pole?

i

sinR i

di

dz

R

Rdi

ds

curves of constant zcircle of 
constant i

sphere

FIG. 5.5: A drawing of the surface 
of a sphere, showing curves of 
constant longitude z and latitude i, 
and an infinitesimal displacement 
ds comprised of infinitesimal steps 
in both the i and z directions.

R sin i dz

HOMEWORK PROBLEMS
P5.1 Consider the coordinate basis discussed in box 5.1 
for polar coordinates r, i.
a. Find the transformation equations that take one from 

2D cartesian coordinates x, y to r, i and vice versa.

b. Evaluate the partial derivatives of x and y with respect 
to r and i and vice versa.

c. Find the metric for polar coordinates by transforming 
the metric from cartesian coordinates. Is your result 
consistent with equation 5.19?
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P5.2 (Do problem P5.1 first.) Consider the coordinate 
basis discussed in box 5.1 for polar coordinates r, i.
a. We know that an object in uniform circular motion has 

a constant radius, so it must have a velocity v such that 
vr = 0. Use the polar-coordinate metric to show that if 
we assume this velocity has a constant (and coordinate-
system-independent!) squared magnitude of vv v 2: = , 
then we must have vi = ±v/r (where the sign depends on 
which way the object moves around the circle). 

b. Find this object’s velocity components vx and vy in 
cartesian coordinates. Express your result as a func-
tion of r and i. Use a sketch to show that these com-
ponents do indeed describe a vector tangent to a circle 
of radius r, and also show that the squared magnitude 
of this vector in the cartesian system is indeed v2.

P5.3 (Do problem 5.1 first.) Consider the coordinate ba-
sis discussed in box 5.1 for polar coordinates r, i.
a. Consider an object moving at a constant speed v in 

the +y direction of the cartesian coordinate system, so 
that vy = v, vx = 0. Find the components vr and vi of 
this object’s velocity in the polar coordinate system. 
Express your results both purely in terms of r and i 
and purely in terms of x and y.

b. Imagine that the object starts at x = b, y = 0 at time 
t = 0. Its subsequent y position at later times t will 
therefore be simply y = vt. Use this to express both the 
object’s r and i position and its polar coordinate veloc-
ity components vr and vi at all times t > 0 in terms of v, 
b, r, and t. Does your result make sense? (In particular, 
if you sketch the object’s path, you should be able to 
see that its velocity will be mostly in the i direction at 
early times, but mostly in the r direction at late times. 
Is this consistent with your mathematical expressions?)

P5.4 We can define “semilog” coordinates p, q for a flat 
2D plane by the relations p = x and q = eby, where b is a 
constant. For the sake of argument, let b = 0.40 cm–1. 
a. Sketch what the “curves” of constant p and constant q 

look like in a cartesian x, y coordinate system.
b. An object at y = 2.0 cm has an acceleration a whose 

coordinates in the cartesian coordinate system are ax = 
0.2 cm/s2 and ay = –0.5 cm/s2. What are the components 
of a in the semilog system? (Be careful with units!)

c. What is the metric of the semilog coordinate system? 
Is this metric diagonal?

d. Show that a as defined in part b has the same magni-
tude in both the cartesian and semilog systems.

e. What is the length of the basis vector x2 ?

P5.5 We can define “sinusoidal” coordinates u, w on a 
flat 2D plane by the relations u = x and w = y – A sin(bx), 
where A and b are constants. For the sake of concrete-
ness, let A = 1.0 cm and b = r/2 cm–1.

a. Sketch what the “curves” of constant u and constant w 
look like in a cartesian x, y coordinate system.

b. What is the metric of the sinusoidal coordinate sys-
tem? Is this metric diagonal?

c. Imagine that an object moves with constant velocity v 
such that vx = v  and vy = 0. Such an object’s position 
will be x = vt (assuming x = 0 at t = 0) and y = con-
stant. Find the object’s velocity components vu and vw 
in the u, w coordinate system. Express your results in 
terms of v, t, A, and b.

d. Show that the squared magnitude of v is still the con-
stant v2 in this coordinate system, even though the ve-
locity component vw is not constant in time. Explain 
why vw is not constant, even though the vector v in ab-
stract always points in the same direction and always 
has the same magnitude.

e. Argue therefore that dvw/dt cannot be equal to the 
component aw of the object’s acceleration vector a in 
the u, w coordinate system. (Hint: Note that ax = ay = 0 
in the cartesian system.) We will learn in a later chap-
ter how to take derivatives correctly in an curvilinear 
coordinate system.

P5.6 Consider polar-coordinate-like “radial-longitude” 
coordinates r, z for the 2D surface of a sphere of radius 
R, where r is the distance along the sphere’s surface mea-
sured from the north pole and z is an angular longitude 
coordinate measured around the pole. Note that curves of 
constant r and curves of constant z are always perpendic-
ular to each other everywhere on the sphere. Therefore (as 
we did in Box 5.1 for polar coordinates), by considering 
displacements on the sphere’s surface that lie purely in the 
i and z directions, infer the components gno of the metric 
for this coordinate system (assuming we use a coordinate 
basis). Express these components purely in terms of R and 
r. (We will later find a similar coordinate system helpful 
in describing the spatial geometry of the universe.)

P5.7 Consider the two-dimensional surface of a parabo-
loid defined by the relation z = br2 (where b is some con-
stant and r2 = x2 + y2) in a 3D flat (Euclidean) space.
a. Sketch this surface in a 3D xyz plot.
b. Define coordinates r, z for this surface, where the r 

coordinate of a point on the surface is defined as above 
and z is an angle measured around the surface’s axis 
of symmetry (the z axis), like a longitudinal coordi-
nate on the earth. Determine the metric components 
gno for these coordinates on the paraboloid’s surface, 
assuming that we use a coordinate basis. (Hint: Note 
that a step toward larger r on the surface means not 
only moving away from the z axis in the 3D space but 
also moving upward to more positive z. What is the 
distance ds along the surface involved in a step of dr 
along a curve of constant z?)
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Introduction. In chapter 8, we discussed the general geodesic equation for arbitrary 
coordinates in arbitrary spacetimes. The geodesic equation, in the form that will be 
most useful in this chapter, reads
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In this chapter, we will use the geodesic equation to explore the trajectories that par-
ticles with nonzero rest mass follow in Schwarzschild spacetime and develop a variety 
of tools for visualizing and modeling those trajectories.

The Schwarzschild Metric Tensor. The Schwarzschild metric equation is

 sinds
r
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r
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dr r d r d1
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Comparing this with the general metric equation ds g dx dx2 = no
n o , we can read off the 

nonzero components of the Schwarzschild metric tensor:
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Conserved Quantities. The n = t component of equation 10.1 tells us that
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The Schwarzschild metric is both diagonal and time-independent, so this becomes

 constant
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dt
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tt tt& /x x x x= + = - = -b bl l  (10.5)

The quantity e is therefore conserved along all geodesic trajectories in Schwarzschild 
spacetime. We can interpret this quantity to be the relativistic energy per unit mass that 
the object would have at infinity, because if we substitute r 3=  into equation 10.5, 
then e reduces to /dt dx . Since t is the time measured by a clock at infinity, this is the 
same as the object’s four-velocity component ut  as measured by the observer at infinity, 
which in turn is /p mt  = relativistic energy per mass.

 The n = z component of equation 10.1 tells us that
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The Schwarzschild metric is both diagonal and independent of z, so this becomes
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The quantity , is therefore also conserved along all geodesic trajectories in Schwar-
zschild spacetime. For a trajectory on the equatorial plane, sin 12i = , so this quantity 
reduces to being ( / )r d d2, z x= , which we can interpret as being relativistic angular 
momentum per unit mass [in Newtonian mechanics, / ( / )L m r r d dt2 2~ z= = .]

 As discussed in box 10.1, symmetry requires that each geodesic in Schwarzschild 
spacetime lies on a plane through the origin. We can, therefore, without loss of general-
ity, choose our coordinates so that any given orbit of interest lies in the equatorial (i = 
r/2) plane. We will assume this in what follows.

The Radial Equation of Motion. Since all of the Schwarzschild metric components 
depend on r, the r component of the geodesic equation is a bit complicated. This is an-
other case where using g u u1 u u:- = = no

n o  really pays off. If you substitute in the 
metric components from equation 10.3 and use the results in equations 10.5 and 10.7, 
the result (see box 10.2) is that
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FIG. 10.1 These graphs show the effective potential-energy-per-unit-mass functions governing 
radial motion in the Schwarzschild case (left) and Newtonian case (right).

We can interpret this as being structurally equivalent to a conservation-of-energy 
equation, with ( / )K dr d2

1 2/ xu  serving as an effective “radial kinetic energy per unit 
mass,” Eu  as an effective conserved “energy per unit mass,” and

 ( )V r r
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r r
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2 2
2
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/- + -u  (10.9)

as an effective “potential energy per unit mass” that depends only on r. With these defi-
nitions, equation 10.8 becomes simply ( )E K V r= +u u u .

Indeed, one can show (see box 10.3) that one can use conservation of Newtonian 
energy to derive an analogous equation for Newtonian orbits:
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and ENu  is the actual Newtonian total energy per unit mass. The only formal difference 
between the two equations is that the Schwarzschild equation has an extra inverse- r3  
term in the ( )V ru  function. (But also note that in the Schwarzschild case, r is the circum-
ferential radius, and e, not Eu , is the true relativistic energy per unit mass.) 

Graphical Interpretation of the Possible Orbits. Figure 10.1 shows graphs of the 
effective potential-energy-per-unit-mass curves for the Schwarzschild and Newtonian 
cases. One can read these graphs to determine characteristics of the possible trajectories 
much the way that one interprets potential energy graphs for one-dimensional motion in 
ordinary mechanics. For both cases:

•	 K 0=u  where ( )E V r=u u :  such points are “turning points” where outgoing radial 
motion becomes ingoing motion and vice versa.

•	 E 0<u  orbits correspond to bound orbits (ellipses in the Newtonian case) that have 
maximal and minimal radial coordinates [at radii where ( )E V r=u u ].

•	 E 0>u  orbits correspond to unbound orbits (hyperbolas in the Newtonian case).

•	Radii where /dV dr 0=u  are possible circular-orbit radii (see box 10.4).

However, there are special features of the curve for Schwarzschild spacetime:

•	The effective potential energy goes to negative infinity as r 0"  instead of going 
to positive infinity.

•	For sufficiently high Eu , spiral orbits exist that go into r = 0.

•	As long as GM12>,  (see box 10.4 and box 10.6), we have an unstable circular 
orbit (at the radial coordinate where ( )V ru  is maximum) and a stable circular orbit 
(at the radial coordinate where ( )V ru  is minimum).
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Circular Orbits. Indeed, by solving for the radii where /dV dr 0=u , one can show (see 
box 10.4) that for a given value of ,, the radial coordinates rc  of possible circular orbits 
in Schwarzschild spacetime are
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with the inner orbit being unstable and the other orbit being stable. The radius of the sin-
gle (stable) Newtonian circular orbit is /r GM2 2,= . One can also prove (see box 10.5) 
that Kepler’s third law
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still applies in Schwarzschild spacetime as long as we take T to be the period of the orbit 
as measured by an observer at infinity ( /d dtzX =  is the angular speed of the orbiting 
object as determined by an observer at infinity). However, it does not quite mean the 
same thing, as the Schwarzschild radial coordinate is not equal to the Newtonian radial 
coordinate.

Equations for Radial Acceleration. By taking the x-derivative of both sides of equa-
tion 10.8, you can find the following equation for the radial acceleration of an object in 
Schwarzschild spacetime:
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The corresponding Newtonian equation (found by taking t-derivative of both sides of 
equation 10.10) is
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Note that again the Newtonian equation lacks the final term that appears in the Schwarz-
schild case. Note that for an object moving radially, /r d d2, / z x  = 0, so the radial 
acceleration is precisely / /d r d GM r2 2 2x =-  in such a case.

These equations turn out to be more useful for constructing computer models of 
trajectories than equations 10.8 or 10.10. 

Astrophysical Implications. For Schwarzschild spacetime, one can show (see 
box 10.6) that contrary to the predictions of Newtonian gravity (where stable circular 
orbits exist for all radii), there are no stable circular orbits with r ≤ 6GM. Therefore, 
r = 6GM represents the “innermost stable circular orbit” (ISCO) for anything orbiting a 
highly compact (non-rotating) object.

This has astrophysical relevance, because compact objects do exist whose outer ra-
dii are smaller than 6GM. Neutron stars, which are created by catastrophic stellar core 
collapse during supernova, have masses typically on the order of 1.4 solar masses and 
radii of roughly 10 km . 5GM. The spacetime in the vacuum outside this radius will 
be Schwarzschild if the star is not rotating (we will study rotating objects later). A non-
rotating black hole (which we will also discuss more later) is entirely Schwarzschild 
spacetime all the way down to r = 0. Astrophysicists have strong evidence that both 
neutron stars and black holes exist in the universe.

Part of the evidence comes from observations of point-like X-ray sources in our 
local group of galaxies. The graphs shown in figure 10.1 mean that particles with any 
significant angular momentum per unit mass , falling toward a compact object will 
“bounce off” of the potential barrier in ( )V ru  before reaching the object. Eventually, 
such particles will organize themselves into a flat “accretion disk” around the object. 
Friction between particles in the disk radiates energy away, rapidly circularizing their 
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orbits (note that stable circular orbits have the lowest energy for a given angular mo-
mentum, since they correspond to the bottom point of a valley in the “potential energy” 
graph). Since there is no easy way for particles to “radiate” angular momentum out of 
the disk, it might seem the disk’s total angular momentum should be conserved, thus 
keeping the circularized orbits stable. However, it is now widely believed that magnetic 
interactions between charged particles create turbulence that allows a few particles to 
carry angular momentum outward, slowly decreasing the angular momentum of the 
rest. This allows most particles in the disk to slowly spiral inward. Once particles pass 
through the ISCO, there is no longer any barrier in ( )V ru  (see box 10.6), so particles 
rapidly fall into or accrete onto the object from there.

 How much energy can be released by particles in the accretion disk? Consider a 
particle starting essentially at rest at r = 3. According to equation 10.5, its relativistic 
energy per unit rest mass at infinity is e = 1 (meaning that it has its mass energy and 
nothing else). At the ISCO radius r = 6GM, equation 10.11 implies that the particle’s 
angular momentum per unit mass , in its last circular orbit is such that

 GM
GM12 1 12

2

&
,

,= =b l  (10.15)

If you plug this, r = 6GM, and dr/dx = 0 into the energy equation 10.8, you can show 
(see box 10.7) that the particle’s final energy-per-unit-mass just as it drifts past the ISCO 
has decreased by about

 .e
9
8
1 0 057T .= - -  (10.16)

This means that in order to make it from infinity to the ISCO, the particle must radiate 
away energy equivalent to 5.7% of its rest mass. Even if the particle then falls into a 
black hole (where its remaining energy is entirely absorbed), the energy released just by 
the disk is enormous. For comparison, the fusion reaction used by most stars converts 
only about 0.7% of their hydrogen fuel’s mass-energy into radiated energy (and nuclear 
fission is more than an order of magnitude less efficient).

One can get an order-of-magnitude estimate of how the inner disk’s temperature 
depends on its luminosity as follows. The inner disk is where particle velocities are 
highest and the disk will be hottest. Let’s crudely estimate that essentially all of the 
energy comes from the portion of the disk between its inner radius R and 2R, that the 
disk’s temperature T is constant over this region, that it radiates energy like an ideal 
black body, and that the rest of the disk emits nothing. The Stefan-Boltzmann law says 
that the luminosity L of a blackbody of area A at temperature T is
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L AT4/ v=  (10.17)

where v is the Stefan-Boltzmann constant = 5.67 × 10–8 W/(m2K4). Given the assump-
tions above, you can show (see problem P10.1) that the temperature of the disk will be 
of order of magnitude
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6#+
9
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where L9  and M9  are the sun’s luminosity and mass, respectively. Note that although 
the temperature goes up with increased luminosity and decreases with increasing mass, 
T varies as small powers of these quantities, so for any stellar-sized source radiating a 
stellar-like energy, T will not be much different than 106 K. Since such temperatures are 
about 500 times higher than the sun’s surface temperature, the typical wavelengths of 
light emitted will be about 500 times shorter, or on the order of magnitude of 1 nm, in 
the X-ray region (photon energy . 1.2 keV).

 In fact, we observe a number of point X-ray sources in our galaxy and in neighbor-
ing galaxies having luminosities up to L106 9 . Emission from accretion disks around 
highly compact objects is the most reasonable explanation for such sources (as other 
energy sources would require an implausible rate of fuel consumption).
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BOX 10.1 Schwarzschild Orbits Must Be Planar

A simple symmetry argument provides the proof that all Schwarzschild orbits must 
be planar. Consider an object whose initial velocity lies in the equatorial plane. Its 
subsequent trajectory must also lie in the equatorial plane, because in this spheri-
cally symmetric spacetime, one side of the equatorial plane is identical to the other, 
so there is no reason for a free object (whose motion is completely determined by 
the spacetime) to leave the plane and thus choose one side over the other. Also in 
a spherically symmetric spacetime, the equatorial plane is no different than any 
other plane going through the origin. No matter what an object’s initial velocity 
might be, that velocity and the origin define a plane through the origin, so the ob-
ject’s trajectory will be confined to that plane. Therefore all geodesic trajectories 
in Schwarzschild spacetime must be planar.

You can show that this statement is consistent with the geodesic equation. The 
n = i component of equation 10.1 tells us that
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You can show that this component of the geodesic equation becomes
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and that i = r/2 = constant is a solution to this equation. This means that orbits in 
the equatorial plane are allowed by the geodesic equation. Moreover, the fact that 
the value of i does not accelerate when /d d 0i x =  and i = r/2 also means that if 
the object’s trajectory initially lies in the equatorial plane, it cannot not curve away 
from that plane. Again, since the equatorial plane is no different than any other 
plane through the origin, this proves (in a different way) that geodesic trajectories 
in Schwarzschild spacetime must be planar.

Exercise 10.1.1. Verify equation 10.20 and show that i = r/2 = constant is a 
solution to that equation.
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BOX 10.2 The Schwarzschild “Conservation of Energy” Equation

The Schwarzschild metric tensor is diagonal, so the implied sums in the equation 
g u u1- = no

n o  yield only four nonzero terms:
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If you substitute in the value of the metric components and use equations 10.5 and 
10.7, you should be able to show that this can be written
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for orbits in the equatorial plane ( /2i r= = constant).

Exercise 10.2.1. Verify equation 10.22.

From equation 10.22, it is only a few steps to equation 10.8.

Exercise 10.2.2. Work out the steps between equation 10.22 and equation 10.8.
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BOX 10.4 The Radii of Circular Orbits

BOX 10.3 Deriving Conservation of Newtonian Energy for Orbits

Consider an object following a Newtonian orbit in the r, z plane. We can write con-
servation of Newtonian energy for such an orbit in the following form:

  ( )E m r
GMm

m
dt
dr

r
dt
d

r
GMmv vr2

1 2 2
2
1

2
2

2z
= + - = + -z b cl m< F  (10.23)

where E is the object’s total Newtonian energy, m is its mass, M is the mass of the 
primary at the origin, vr  is the radial component of the object’s velocity, and vz  
is the component perpendicular to the radial component in the direction in which 
z increases. But notice that the object’s angular momentum around the origin is 

 L mr mr
dt
d

v 2 z
= =z ,   so     m

L
r
dt
d2, /
z

=  (10.24)

Exercise 10.3.1. Show that these equations together imply equation 10.10, as 
long as we define /E E mN /u .

Note that if we take the x-derivative of both sides of equation 10.8, we get
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This means that points where /dV dr 0=u  will be points where an object will ex-
perience no radial acceleration. If the object’s effective energy ( )E V r=u u  at such a 
point, then the object will have no radial velocity and no radial acceleration, so it 
will remain at constant r. Such a particle must have nonzero angular momentum 
(figure 10.1 makes it clear that if 0, = , then we will never have /dV dr 0=u ), so it 
will therefore follow a circular orbit around the origin.

So the radii rc  of possible circular orbits correspond to values of the radial co-
ordinate r where /dV dr 0=u . Setting the r-derivative of equation 10.9 to zero yields
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Exercise 10.4.1. Verify equation 10.26.
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BOX 10.4 (continued) The Radii of Circular Orbits

The fastest way to equation 10.11 (which is the most useful form for the equation 
for rc) is to define /u r1c c/ . If you substitute this into equation 10.26, divide both 
sides by uc

2 , and solve the resulting quadratic equation, you will get equation 10.11, 
which (for the sake of convenience) I reproduce here:
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c 2! ,
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 (10.11r)

Exercise 10.4.2. Verify this.

Note that equation 10.11 implies that as long as the square root is real, there will 
be a circular orbit outside r = 6GM (corresponding to the negative sign in the de-
nominator) and one inside that radius (corresponding to the positive sign). From 
this equation, you can also find the smallest value for , for which circular orbit 
solutions exist at all.

Exercise 10.4.3. What is this value of ,?
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BOX 10.5 Kepler’s Third Law

The component of the geodesic equation 10.1 with n = r implies that for the diago-
nal Schwarzschild metric
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For a circular orbit ( /dr d 0x = ) in the equatorial plane ( /d d 0i x = ), you can show 
that this reduces to
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Exercise 10.5.1. Verify this.

Define /d dt/ zX . This is the angular speed that an observer at infinity (whose 
time is equal to the coordinate time t) will consider the orbiting particle to have. 
The orbital period T this observer measures is simply /T 2r X= . If we multiply 
equation 10.28 through by ( / )d dt 2x  and apply the chain rule, we get
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From this, you can prove that /GM r2 3X =  and from that the other part of equation 
10.12.

Exercise 10.5.2. Do this.
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BOX 10.6 The Innermost Stable Circular Orbit (ISCO)

Stable circular-orbit radii correspond to local minima of the effective potential en-
ergy function ( )V ru  displayed in figure 10.1 (see if you can remember why). To 
determine whether an extremum is a minimum, we need to see whether /d V dr2 2u  is 
positive (i.e., the curve is concave up) at the extremum. Equation 10.26 implies that
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At a local minimum, we must have /dV dr 0=u  and /d V dr 0>2 2u .

Exercise 10.6.1. Set the first expression to 0, multiply it by 2/r, and add it to the 
second to prove that minima can exist only for r > 6GM.

For the record, figure 10.2 shows a graph of ( )V ru  when /GM 12, =  (the value of  
, that leads to a circular orbit of radius r = 6GM according to equation 10.11). You 
can see that r = 6GM in this case corresponds to an inflection point, not a mini-
mum, and that there is no barrier preventing a particle with slightly more energy 
than the circular-orbit energy from falling in.

FIG. 10.2 A plot of ( )V ru  when GM12, =  (the value 
of ,  that an object has in the ISCO).

r/GM

( )V ru
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BOX 10.7 The Energy Radiated by an Inspiraling Particle

Exercise 10.7.1. Substitute /GM 12, = , r = 6GM, and dr/dx = 0 into equa-
tion 10.8 and solve for e to find a particle’s energy per unit rest mass as measured 
at infinity when it is in the ISCO. Then subtract from the value of e for the par-
ticle when it was at infinity to find its change in e during the inspiral process. 
Note that it is e that is the physically relevant energy here, not Eu  (which was 
invented to make it easier to compare the Schwarzschild and Newtonian cases.)
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HOMEWORK PROBLEMS
P10.1 Verify that equation 10.18 is correct. (Hint: Cal-
culate the approximate area A of the disk between R = 
6GM and 2R, substitute this into equation 10.17, multiply 
top and bottom by L9  and M9 , and solve for T. Note that 
GM9  = 1477 m and L9  = 3.9 × 1026 W.)

P10.2 An object falls radially inward toward a black hole 
with mass M), starting at rest at infinity. How much time 
will a clock on the object register between the events of 
the object passing through the Schwarzschild radial co-
ordinates r = 10GM and r = 2GM?  (Hint: Argue that an 
object released from rest at infinity will have E 0=u , i.e.,  
e = 1.)

P10.3 Two objects fall radially in from infinity, one hav-
ing e = 1 and the other having e = 2. An observer at rest at 
r = 6GM watches these objects pass. How much faster is 
the second object moving than the first object according 
to this observer? (Hints: Remember that the observer will 
measure each object’s energy to be .E p uobs:=-  Cal-
culate this in Schwarzschild coordinates: you may find 
equation 9.20 helpful. Then one can infer the speed the 
observer will measure using /E m 1 v2= - .) (Adapted 
from problem 9.7 in Hartle, Gravity, Addison Wesley, 
2003.)

P10.4  a. Find a general expression for dr/dt for a geo-
desic in the equatorial plane as a function of r, GM, 
e, and ,. What does this equation say happens as r 
approaches 2GM? (As we will see in chapter 14, this 
proves to be an artifact of the Schwarzschild coordi-
nate system.)

b. Find expressions for both dr/dx and dr/dt if we drop 
an object from rest in the equatorial plane at radial 
coordinate r0. (Hint: You should be able to determine 
specific values of e and ,  in this case.)

P10.5 Imagine we launch an object radially from r = r0 
with sufficient speed so that it comes to rest at r = r1 > r0 

before falling back to r = r0. Find an expression (in terms 
of GM, r0, and r1) for the proper time measured by the 
object during this trajectory. (Hints: Determine e in 
terms of r1, and change variables to /u r r1/ . Note that  
u ≤ 1 for the entire trajectory. Feel free to look up a fairly 
nasty integral.)

P10.6 Imagine that an object in a stable circular orbit 
around a neutron star (GM = 2.2 km) has an angular mo-
mentum per unit mass of GM6, =  = 13.2 km.
a. Calculate the radius of the orbit.
b. Calculate the period of orbit as measured by a clock 

traveling with the object. Express your answer in 
milliseconds. (Hint: You can very easily calculate 
/d dz x, which is constant for the orbit.)

c. Calculate the period of the orbit as measured by an ob-
server at infinity. Express your answer in milliseconds.

P10.7  a. Use equation 10.11 to show that for a circular 
orbit around a gravitating object of mass M,
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for both signs of the original equation, where rc is the 
circular orbit’s radial coordinate. Note that this equa-
tion implies that for objects with nonzero mass, no cir-
cular orbits of any kind exist for r ≤ 3GM.

b. Use this to show that the effective energy-per-unit-
mass Eu  for a circular orbit as a function of rc is
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 and compare to the Newtonian result E/m = –GM/2rc.
c. Find e as a function of rc alone and check that 

/e 8 9=  when rc = 6GM.

P10.8 Consider an object starting essentially at rest at 
infinity, but with an infinitesimal tangential velocity suf-
ficient to give it an angular-momentum-per-unit-mass , . 
Argue that if ,  has the appropriate value, this particle can 
spiral in to an unstable circular orbit at rc = 4GM, and find 
that appropriate value of ,  in terms of GM. (Hint: Use the 
results of problem P10.7.)

P10.9 A spaceship is in a stable circular orbit at a 
Schwarzschild radial coordinate of r = 10GM around a 
supermassive black hole whose mass is 106 solar masses.
a. What is this orbit’s circumference in kilometers?
b. What is the effective energy per unit mass Eu  and 

angular momentum per unit mass , for this object? 
(Hint: Use the results of problem P10.7.)

c. What is the period of the spaceship’s orbit according 
to its own clock?

P10.10 Find the relation between /d d/~ z x  and r for a 
circular orbit. How does this compare to the relationship 

/GM r2 3X =  found in box 10.5?

P10.11 Using the method displayed in box 10.4, calcu-
late the expression that for Newtonian mechanics is anal-
ogous to equation 10.11. Also show that the Newtonian 
result is the large-, , large-r limit of equation 10.11.

P10.12 Consider three observers, one in a spaceship in 
a circular orbit of radius r, one stationary at radius r, and 
one effectively at infinity. Calculate the period of the 
orbit measured by each observer as a function of r, and 
from that period, infer the speed at which each would 
consider the spacecraft to be moving if we define that 
speed to be the circumference of the orbit 2rr divided 
by the observer’s time. Rank these speeds from smallest 
to greatest, and explain why this ranking makes sense 
physically. Are any of the speeds (so calculated) possibly 
greater than 1? If so, also explain how that is possible. 
(Hint: Equation 10.32 may be helpful.)
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P10.13 In chapter 12 we will see that photons can orbit a 
Schwarzschild black hole at a constant radial coordinate 
of r = 3GM. Consider a photon in such an orbit. 
a. The definition of the Schwarzschild r coordinate im-

plies that if the photon moves through an angular dis-
placement of dz in a certain coordinate time dt, the 
physical distance the photon moves is r dz. Therefore, 
an observer at infinity (whose clock measures time dt) 
will conclude that the photon’s speed is r dz/dt. Use 
the fact that ds = 0 along a photon worldline to show 
that its speed (so defined) is V = 0.577.

b. An observer at r = 3GM observes this same photon 
orbit exactly once in a time T. Use the Schwarzschild 
metric to compute the time T this stationary observer’s 
clock measures between the two events of the photon 
passing once and then passing a second time as a frac-
tion of the coordinate time ∆t between these events. 
Use this to calculate the photon’s speed v as measured 
by that stationary observer.

c. Explain qualitatively and physically why v measured 
by the observer at r = 3GM is not the same the value 
of V measured by the observer at r . 3.

P10.14 A comet with mass m comes in from essentially 
rest at infinity but with sufficient angular momentum so 
that it approaches a black hole, loops partway around it, 
then recedes back to to infinity. Our goal in this problem 
is to determine the comet’s speed as measured by a sta-
tionary observer at the comet’s point of closest approach.
a. Argue that as r goes to infinity, dz/dx must go to zero 

for any finite , . Then use the metric equation and the 
definition of e to argue that e . 1 for an comet having 
dr/dx . 0 at large r, even if it has finite , .

b. Show that at any radial coordinate r
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c. Write out the relation 1 u u:- =  at the point of clos-
est approach and use equation 10.34 to show that this 
comet’s four-momentum p / mu at its point of clos-
est approach has the following time component in the 
Schwarzschild coordinate system:

  p

R
GM

R
GM

R

m

1
2

1
2

t

2

2

2,
=

- - -a ak k
 (10.35)

 where R is the (unknown) radial coordinate of the 
comet’s closest approach.

d. We have seen in previous contexts that an object’s en-
ergy as measured by an observer moving with four-
velocity uobs will be E p uobs obs:=- . Since dot prod-
ucts have the same value in every coordinate system, 

we can use Schwarzschild coordinates to calculate this 
dot product, but the result will still be the energy that 
the observer would measure. Find uobs in Schwarz-
schild coordinates for a stationary observer at R, and 
evaluate Eobs for the comet in terms of , , GM, and R.

e. In the observer’s orthonormal frame / 1E m v2= - . 
Use this to evaluate the comet’s speed v according to a 
stationary observer at R in terms of , , GM, and R.

f. Use equation 10.8 to find the radial coordinate of clos-
est approach R in terms of , . Explain why there are 
two solutions, and argue which one you want. Also, 
show that in the large-,  limit, your desired solution 
approaches the result we would get if gravity were 
Newtonian, which is ,2/2GM. Is the point of closest 
approach closer or farther than the Newtonian result? 
Does this make sense? (Hint: Study figure 10.1 to help 
you answer the question about why there are two solu-
tions and answer the last question.)

P10.15 As you may know from discussions of the so-
called twin paradox, one can effectively travel to the 
future by getting into a spaceship and traveling to and 
back from some distant point at nearly the speed of light. 
However, if you have a local black hole, you can do this 
much less expensively as follows. Put yourself in an orbit 
with the correct Eu  and ,  at your starting point at approxi-
mately infinite r so that (subsequently without using any 
fuel) you spiral into an unstable circular orbit near to the 
black hole, hang out there for a while, and then spiral 
back out to your starting place. 
a. If you start essentially at rest at a very large radius, but 

give yourself just the right tiny bump in the tangential 
direction to give yourself the right , , show that you 
can spiral in to an unstable circular orbit at r = 4GM 
and hang out there for a while, before spiraling back 
out again. Calculate the correct value of , . (Hint: See 
problem P10.7.) Also, for the portion of your trajectory 
where your orbit is approximately circular at r = 4GM, 
by what factor does your clock run slower than one at 
approximately infinite r?

b. You can improve this performance by giving your-
self enough radially inward velocity at very large r to 
end up in an unstable circular orbit at a closer radius. 
Imagine that for the portion of your trajectory where 
your orbit is approximately circular, you want your 
clock to run 10 times more slowly than a clock at very 
large r. Calculate the value of ,  that you would need 
and what your speed v at very large r needs to be to 
put yourself into the required orbit. You should find 
that the required v will be relativistic, but that trav-
eling such a speed in flat spacetime would give you 
much less of a slowdown.
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Introduction. In the previous chapter, we developed a trial metric for an homogeneous 
and isotropic universe that had the form

 ( )sinds dt a dr q d d2 2 2 2 2 2 2 2i i z=- + + +r7 A (26.1)

where rr is a radial coordinate that is comoving with the galactic “gas” as the universe 
expands, a(t) is a unitless time-dependent quantity that specifies the scale of the uni-
verse, and ( )q rr  is either ( / ), ,sinR r R rr r  or ( / )sinhR r Rr . We have (arbitrarily) defined the 
fixed rr coordinate of an object at rest with respect to the galactic “gas” to be equal to 
its radial distance from the origin at the present time, implying that the scale factor a 
has the value 1 at the present time. In the last chapter, we used the Einstein equation to 
determine the possible solutions for ( )q rr : our goal in this chapter is to use the Einstein 
equation to link these solutions to the total energy density of the universe and to solve 
for the time-dependent scale factor a(t).

The Einstein Equation Revisited. If we substitute equations 25.5 into the Einstein 
equation components given by equations 25.12, we get
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where / , / , /a da dt a d a dt d dq q r2 2 2 2/ / /llo p r , and 0t  and p0 are the energy density and 
pressure of the galactic “gas” in its own rest frame. But since we know from our previ-
ous work that ( ) ( / ), , ( / )sin sinhq r R r R r R r Ror=r r r r , we know that
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for the three cases, respectively. K is the constant of integration we encountered before 
(note that K = 0 corresponds to the curvature radius R going to infinity). If we substitute 
this back into equation 26.2b, we see that equations 26.2 become

 ( )a
a

G p
3

4 30 0r t K=- + +
p

 (26.4a)
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(The i-i and z-z components of the Einstein equation are the same as equation 26.4b: 
see box 26.1). Note that the energy density 0t  and the pressure p0 of the galactic “gas” 
depend on time, so equations 26.4 represent two equations in three unknown time-de-
pendent quantities, so we do not yet have enough information to solve these equations.

Local Conservation of Energy. We can get some useful information that we need 
from the local conservation-of-energy law

 T T0 t td d= =n
n

n
n  (26.5)

where the last step follows because the stress-energy tensor is symmetric. We can lower 
the t index and expand the absolute divergence to get

 T T T0 t t t2 C C= + -n
n

an
n a

n
b n

b  (26.6)

You can use the Diagonal Metric Worksheet to compute the necessary Christoffel sym-
bols (or even compute them by hand; they are not that difficult). The number of Christ-
offel symbols you need is greatly reduced by the fact that T n

o  is diagonal. The result 
(see box 26.2) is the simple relationship

 ( ) ( )
dt
d

a p
dt
d
a0

3
0

3t =-  (26.7)

This result has a simple physical interpretation. Remember that the coordinate rr is 
comoving with the galactic “gas” in the expanding universe. The number of galaxies 
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enclosed by a given coordinate rr is therefore constant. But the metric implies that the 
physical radius of the volume enclosed by a given value of rr is proportional to a, so the 
physical volume enclosed is proportional to .a3  Let’s say that V Ba3= , where B is the 
constant of proportionality. The total energy U in this volume is thus U Ba0

3t= . Equa-
tion 26.7 can therefore be written

 
dt
dU

p B
dt
d
a dU p dV0
3

0&=- =-  (26.8)

This is the first law of thermodynamics for the universal “gas” inside the volume V:  the 
change in the total energy inside the volume has to be equal to the work energy flowing 
into the volume. (Note that there can be no heat flow across the boundary because the 
universe is homogeneous, so all points in space at a given instant of cosmic time t have 
the same temperature.)

However, it should be noted that equation 26.5 is a consequence of the definition of 
the Einstein equation, so it does not actually tell us anything that is not already implicit 
in equations 26.4 (which also specify the implications of the Einstein equation). So 
while we will find equation 26.7 helpful in solving the field equations in a moment, it 
does not provide the missing information we need.

Equations of State. What we really need to complete the solution of equations 26.4 is 
how the pressure p0 of the galactic “gas” depends on its density 0t . An equation that 
specifies ( )p t  is called an equation of state.

In general, the “stuff” in the universe has three important components, non-
relativistic matter, relativistic radiation, and vacuum energy. The matter component 
is (now) represented by galaxies and the dark matter that accompanies them. The 
measured random velocities of galaxies with respect to each other are on the order 
of 100 km/s, which (though large by human standards) is very small compared to the 
speed of light. The pressure of the universal “gas” whose “molecules” are galaxies will 
thus be negligible compared to its energy density, and we can accurately model this 
component as if it were pressureless dust. Equation 26.7 implies that

 ( ) .
dt
d

a a0 constm m m
3 3

0&t t t= = =     (for matter) (26.9a)

where mt  is the portion of the total energy density 0t  that is matter and m0t  is that 
density at the present time (note that a = 1 at the present time).

However, some of the “stuff” of the universe consists of photons, neutrinos, and 
other highly relativistic particles. As discussed in problem P20.4, the pressure pr  of 
a photon gas is related to its energy density rt  as follows: pr r3

1t= . If you plug this 
relationship back into equation 26.7, you can show (see box 26.3) that

 ar
4t = const. r0t=     (for radiation) (26.9b)

where r0t  is the present density of radiation.
Now, a photon gas in thermal equilibrium with its surroundings at an absolute tem-

perature T has an energy density that is proportional to T4 (this is a consequence of the 
Stefan-Boltzmann law). This means that the effective temperature of the photon gas 
(and whatever is in thermal equilibrium with it) varies as follows:

 Ta = const. (26.10)

In other words, the temperature of any “radiation” component of the universe varies in 
inverse proportion to the universe’s scale a.

Finally, there is the vacuum energy. As discussed in chapter 21, we can treat the 
cosmological constant term as if it were a type of energy that we can include on the 
stress-energy side of the Einstein equation. In what follows, it will help us to treat the 
density of this energy like that of other sources. According to equation 21.21, the effec-
tive stress-energy tensor for this vacuum energy term is
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We see that the vacuum energy density is constant and so does not vary with a.
Note also that if we consider the pressure of the vacuum to be
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(see equation 25.9), then /p G4v vt rK- = , so the right side of equation 26.4b can be 
written as ( )G p4 0, 0,tot totr t - , where pand, ,0 0tot tott  include contributions from matter, 
radiation, and vacuum. We see from that equation that the difference p, ,0 0tot tott -  (by 
specifying K) uniquely determines the type and magnitude of spatial curvature here, 
just as that difference does in the weak-field limit.

The Friedman Equation. Now we are finally ready to finish our solution of the Ein-
stein equation. If you add the negative of equation 26.4a to 3 times equation 26.4b (as 
discussed in box 26.4), you will find that the terms involving /a ap  cancel on the right and 
the pressure terms cancel on the left, leaving the simpler equation

 a
G

a K
3
8

m r v
2 2r t t t- + + =o ^ h  (26.13)

where I have written m r0t t t= +  and used equation 26.11 to express the vacuum en-
ergy term as an energy density. This is the Friedman equation for the time-evolution 
of the universe.

 There is some hidden time dependence in this equation, because the densities of 
matter and radiation depend on a and thus on time. We can use equations 26.9 to make 
this dependence explicit. Remember that we have defined the value of a to be unity at 
the present time. Using this notation and equations 26.9, we can write equation 26.13 in 
the form
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G
a a

a K
3
8 m r

v
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0

4

0 2r t t
t- + + =o d n  (26.14)

where andm r0 0t t  are the matter and energy densities at the present ( vt  is constant in 
time, so v v0t t= ). If we know the values of K, , , andm r v0 0t t t , we can in principle 
solve this differential equation for a(t).

The Hubble Parameter. While we might be able to measure the densities of matter, 
radiation, and vacuum in the present universe, it is hard to see how we might determine 
K and a. There is a clever way to address this problem, though.

We saw earlier that the distance from the origin to a particular galaxy at a given 
fixed value of rr is given by d = arr. The rate at which the distance to that galaxy in-
creases due to the expansion of the universe (as reflected by the increase in the value of 
the universal scale factor a) is thus aro r. We can interpret this rate of increase of distance 
as a recessional velocity v. So at any instant of cosmological time t,

 ( )a a
a
ar a

a
d Hdrv / = = =o r

o
r

o
    where  H a

a
/
o
 (26.15)

H is therefore the Hubble “constant” at that t. Note that H is not generally constant with 
time. It only appears constant if we limit ourselves to observing the motion of relatively 
nearby galaxies, so that the difference in the cosmological t between light’s departure 
from a galaxy and its detection on earth is tiny compared to the age of the universe. 
Therefore, I will call H the Hubble parameter.

However, we can measure H at the present time by examining the distances and 
apparent recessional velocity of relatively nearby galaxies. The present value of H is 
therefore /H a a a0 0 0 0/ =o o  (since a 10 / ). I will call H0 (the present value of the Hubble 
parameter H) the Hubble constant. If we divide both sides of equation 26.14 by a2o  and 
evaluate it at the present time, we get (see box 26.5)
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The Critical Density. Now, /K R1 2= , where R is the scale of the universe’s spatial 
curvature and the sign of K determines the type of that curvature. We see here that both 
the value and sign depends on how the present total energy density of the universe com-
pares to the value of /H G3 80

2 r . If / ,H G3 8>m r v0 0 0
2

tot /t t t t r+ +  then K is negative, 
meaning that the geometry of the spatial part of the universe is spherical, with radius 

/ .aR a K
/1 2

=  If /H G3 8< 0
2

tott r , then K is positive, meaning that the universe’s spa-
tial geometry is like that of a saddle surface, with aR again specifying roughly the ra-
dial scale where this curvature becomes important. If /H G3 80

2
tott r= , then K is zero, 

and the universe has a flat spatial geometry. We therefore define the critical density ct  
for the universe at the present to be
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8
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/t r  (26.17)

and compare the present energy densities of matter, radiation, and the vacuum to this 
critical density by defining the unitless ratios
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X X X  (26.18)

Then we can rewrite equation 26.16 in the form

 ( )
H
K

1 m r v k
0
2 /X X X X- + + =  (26.19)

Therefore, if we can measure the present density of matter, radiation, and vacuum en-
ergy, and we know the Hubble constant H0, then we can determine the present value of 
the curvature parameter kX . The sign of kX  determines the spatial curvature of the 
universe just as the sign of K does: if kX  is positive, the universe’s spatial geometry is 
saddle-shaped. If kX  is negative, then the universe’s spatial geometry is spherical. If 

kX  = 0, then K = 0, and the universe’s spatial geometry is flat.

An Equation of Motion for the Universe. If you divide both sides of equation 26.14 
by a H0

2
0
2=o  and use equations 26.17 through 26.19, you can show (see box 26.6) that we 

can express the Friedman equation in the form
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We can in principle solve this equation for ( )a t  at all times, thereby comparing the 
scale of the universe at any time as a fraction or multiple of the present scale. Taking 
the absolute value of equation 26.19  and using equation 26.3 allow us to determine the 
spatial comoving curvature scale R given H0, Xm, Xr, and Xv:

 
H H

R
1

1

1

k m r v0 0X X X X
= =

- - -
 (26.21)

(K = 0 corresponds to infinite curvature scale, meaning that space is flat.) From these 
last two equations we see that the four parameters H0, Xm, Xr, and Xv completely deter-
mine the evolution and spatial geometry of the universe.

Equation 26.20 has the form of a one-dimensional conservation of energy equation 
where the (1/H0)2(da/dt)2 term is the kinetic energy, the curvature parameter plays the 
role of the conserved total energy, and the remaining terms (when negated) play the role 
of an a-dependent potential energy. Interpreted this way, we see that in determining 
how a evolves with time t, matter density acts like a simple attractive gravitational force, 
radiation acts like the potential for an attractive 1/a3-dependent force, and the vacuum 
energy acts like a repulsive spring-like force. This means that you can predict the dy-
namical behavior of the universe by drawing an effective potential energy graph that 
expresses these ideas. You can practice this by working through box 26.7, where you 
will consider the possible behaviors for a matter-dominated universe ( ,0 0r v. .X X ) 
for values of mX  both greater than and less than 1.
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BOX 26.1 The Other Components of the Einstein Equation

According to equation 25.5c,

 ( )R R
a
a

a
a
a q

q qq2
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2 2
2= = + + - -i

i
z
z l ll

o p 7 A (26.22)

Equation 25.12b tells us that the Einstein equation implies that

 R R G p4 0 0r t K= = - +i
i

z
z ^ h  (26.23)

One can see that that the i-i and z-z components of the Einstein equation yield 
only one distinct differential equation connecting the metric functions a and q with 
, p0 0t  and K. Moreover, you can show that if ( / ), , ( / ),sin sinhq R r R r R r Ror= r r r  

then this differential equation becomes equivalent to equation 26.4b, repeated here 
for convenience:
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a
a
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G p
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42

2

2 0 0r t K+ - = - +
p o

 (26.4br)

Exercise 26.1.1. Verify that the last statement is true.
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BOX 26.2 Consequences of Local Energy/Momentum Conservation

According to equation 25.9, the universal stress-energy tensor is diagonal and has 
components / , /T G T T T p G8 8t

t
r
r0 0t r rK K=- - = = = -i

i
z
z

r
r . Using this and 

the Diagonal Metric Worksheet, you can prove that ( ) ( )//d a dt p d a dt0
3

0
3t =-   

(equation 26.7) follows from T T T0 t t t2 C C= + -n
n

an
n a

n
b n

b  (equation 26.6). 

Exercise 26.2.1. Verify this. (Hint: You should find that you need to calculate 
only Christoffel symbols of the form tj

iC , where i and j are spatial indices. These 
are very easy to calculate from the definition of the Christoffel symbols if you 
don’t want to bother with the Diagonal Metric Worksheet.)
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BOX 26.4 Deriving the Friedman Equation

BOX 26.3 Deriving the Density/Scale Relationship for Radiation

Exercise 26.3.1. Show that ( )/ ( )/d a dt p d a dt0
3

0
3t =-  (equation 26.7) and the 

relationship pr r3
1 t=  implies ar

4t = constant (equation 26.9b).

In equations 26.4 (repeated here), we saw that the Einstein equation becomes

 ( )
a
a G p3 4 30 0r t K=- + +
p

 (26.4ar)
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Exercise 26.4.1. Add the negative of equation 26.4a to three times equation 
26.4b to derive the Friedman equation a G a Kv

2
3
8

0
2r t t- + =o ^ h  (equation 

26.13).
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BOX 26.6 Deriving the Friedman Equation in Terms of the Omegas

BOX 26.5 The Friedman Equation for the Present Time

Equation 26.20 (repeated here for convenience) claims that
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Exercise 26.6.1. Show that if we divide both sides of equation 26.14 (see above)
by a H0

2
0
2=o  and use / ,H G3 8c 0

2/t r  / ,m m c0/ t tX  / ,r cr 0/ t tX  / ,v cv/ t tX  
and /K H k0

2 / X  (equations 26.17–26.19), we get the above.

Equation 26.14 (repeated here for convenience) says that
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If we divide both sides of this by a2o  and evaluate at the present time using using 
H a0 0/ o  and a0 = 1, we get equation 26.16 (repeated below).
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Exercise 26.5.1. Verify this.
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BOX 26.7 The Behavior of a Matter-Dominated Universe

Assume that the universe always has been dominated by matter ( 0r v. .X X ) 
throughout its history. Equation 26.20 then becomes

 
H dt
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1 m

k
0

2 X
X- =c m  (26.24)

Exercise 26.7.1. Interpreting this as a one-dimensional “conservation of en-
ergy” equation, plot a potential energy graph, and use the graph to qualitatively 
describe the evolution of a in the case where 1>mX  and when 1<mX . Also 
describe how the time evolution of the universe is connected with its spatial 
curvature in this case. (Hint: What does 1>mX  mean for the value of kX ? See 
equation 26.19.)
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HOMEWORK PROBLEMS
P26.1 Use a “potential energy graph” approach to dis-
cuss the qualitative behavior of a radiation-dominated 
universe where 0m v. .X X . Describe the evolution of 
the universal scale a in the case where 1>rX  and when 

1<rX .

P26.2 Use a “potential energy graph” approach to dis-
cuss the qualitative behavior of an empty vacuum-dom-
inated universe where 0m r. .X X . Qualitatively de-
scribe the evolution of the universal scale a in the cases 
where 1>vX  and .1<vX  For what such universes will 
there be a Big Bang? (Empty vacuum-dominated uni-
verses are called Lemaître universes.)

P26.3 When Einstein first applied general relativity to 
the problem of cosmology in 1917, it was reasonable to 
consider the universe to be a homogeneous, isotropic, and 
static collection of stars similar to the stars near to the 
earth. Einstein could find a static solution to the Einstein 
equation R g R GT82

1 r- =no no no  if and only if he added 
the “cosmological constant” term gK no  to the left side of 
the equation. As we saw in chapter 21, we now consider 
this “cosmological constant” term to be instead a “vacu-
um energy” term that we add to the equation’s right side.
a. Use a “potential energy graph” approach to argue that 

one can indeed find a static solution to the Friedman 
equation in the form given in 26.14 if tm0 and tv are 
both nonzero, tr0 ≈ 0, and K has exactly the right 
value.

b. Assuming that a = 1 at the present, express tv and K 
in terms of tm0 assuming that the universe is static at 
present and tr0 is negligibly small.

c. A plausible mass density for the universe in Einstein’s 
time might have been the approximate local density of 
stars near the earth, which is very roughly 0.05 solar 
masses per cubic parsec. Determine the value of tm0 
corresponding to this value, and use your result from 
part b to determine the values of tv and K.

d. Is your value for tv comfortably smaller than the up-
per limit established by solar system measurements 
(see equation 21.36 in problem P21.1)?

e. You should have found K to be negative for this hypo-
thetical static universe, implying that its spatial geom-
etry is spherical. Assuming that it is also topologically 
spherical, find its radius in light-years, its total volume 
in cubic light-years, and the total mass of matter in 
solar masses. (Hint: Be sure to use the metric to find 
the volume, which you should find to be .V R2 2 3r= )

f. However, use the “potential energy diagram” to argue 
that this static universe is unstable (something that 
wasn’t initially clear to Einstein).

As we saw in chapter 24, Lemaître and Hubble estab-
lished in 1927 and 1929, respectively, that the universe 

was in fact expanding. In 1931, Einstein formally aban-
doned the cosmological constant term, later calling it 
“the biggest blunder of his life” according to George 
Gamow in his autobiography My Worldline (Viking 
Press, 1970, p. 44).

P26.4 Consider a model of the universe where there 
is no vacuum energy, only matter and radiation. Argue 
that the age of such a universe must be less than H0

1-  = 
13.7 Gy. [Hint: Use a “potential energy graph” approach 
to determine qualitatively how a depends on time, and 
sketch a qualitative graph of a(t). Note that H0 is related 
to the present slope of such a graph.]

P26.5 Consider the case of an empty, vacuum-dominat-
ed universe where 0m r. .X X  and vX  = 1. (Such a uni-
verse is called a De Sitter universe.)
a. Show that this universe expands exponentially:

 ( ) ( )a t e a t eor( ) ( )H t t H t t0 0 0 0= =+ - - -  (26.25)

b. Argue that for this to be consistent with an expanding 
universe, we must choose the first solution.

c. What is the age of the universe in this case?
d. Show that the Hubble parameter /H a a/ o  in such a 

universe happens to actually be constant in time.

P26.6 (Important!) Argue that the universe’s present 
age is

t
H a a a

da1

k r m v

0
0 2 1 20
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X X X X
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+ + +- -
#  (26.26)

P26.7 Consider a universe whose metric is

 ( )ds dt t
t
dx dy dz2 2

0

2 2 2=- + + +c m  (26.27)

where t0 is some constant.
a. Explain how we can interpret this metric as a special 

case of the general universal metric given by equation 
26.1. What is a(t) in this case? What is the age of the 
universe when a = 1?

b. Is the spatial geometry of this universe saddle-like, 
flat, or spherical? Explain your reasoning.

c. Is this universe radiation, matter, or vacuum domi-
nated? Explain your reasoning.

P26.8 When I first learned cosmology in the 1970s, both 
the average matter density of the universe and the value 
of the Hubble constant H0 were so poorly known that it 
was possible (though improbable) that Xm > 1. This was 
also during the time that most physicists believed that 
Xv = 0 (and, more correctly, that Xr is negligible). Let’s 
consider the evolution of such a super-critical “matter-
only” universe.
a. Argue that the spatial geometry of such a universe is 

spherical (“closed”).
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P26.8 (continued)
b. Equation 26.20 for the time evolution of the universe 

in this case (where Xr = Xv = 0) is still a nonlinear 
differential equation. To solve such an equation, one 
must use intelligent guessing, trickery, or both. Usu-
ally people use intelligent guessing to get the solution 
the first time and then invent clever tricks to find the 
solution more elegantly after it is known. We will use 
such a trick in this case. Let’s define a “time param-
eter” } such that

 ( ) H dt ad1 /
m

1 2
0 }X - =   (26.28)

  and } = 0 at t = 0. Show that if we consider a to be a 
function of of the new parameter }, we can re-express 
equation 26.20 in the form
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c. Take the }-derivative of both sides of this expression 
to show that
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d. This is the harmonic oscillator equation with a con-
stant driving term. In a differential equations or me-
chanics course, you may have learned that the general 
solution to such an equation is the most general solu-
tion to the homogeneous equation
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 plus any particular solution to the full equation. Ar-
gue that /( )a 1m m2

1X X= - = constant / A is a solu-
tion to the full equation.

e. The solution to the homogeneous harmonic oscillator 
equation is sin cosa B C} }= + , where B and C are 
constants determined by initial conditions. Therefore, 
the general solution to equation 26.30 is

 ( ) sin cosa A B C} } }= + +  (26.32)

 Argue that requiring that a 0 0as" "}  puts no 
constraints on B but requires that C = –A.

f. Argue, however, that this solution will not satisfy the 
original relation in equation 26.29 as 0"}  unless 
we also have B = 0.

g. Use equation 26.28 to determine t in terms of H0, Xm 
and }. Your answer to this part and equation 26.32 
with B = 0 and A = –C = /( )1m m2

1X X -  provide a 
parametric solution for a(t) in terms of the param-
eter }.

h. Argue that such a universe expands, reaches a maxi-
mum scale a, and then contracts to a Big Crunch. Is 
this consistent with the results of box 26.7?

i. If H0
1-  = 13.9 Gy, and Xm = 1.10, how long after the 

Big Bang does the universe reach its maximum spatial 

size, and what is the radius of its spherical geometry 
at that point? How long does the universe last between 
the Big Bang and the Big Crunch? (Hint: See equation 
26.21.)

j. Argue that a graph of Ra(t) has the shape of a cycloid, 
i.e., the path of a point on the rim of a rolling wheel. 
(Hint: Look up “cycloid” online.)

P26.9 Consider a universe where Xv > 1 and matter and 
energy densities are negligible (Xm ≈ 0 and Xr ≈ 0). It 
turns out that such a universe will never have a Big Bang 
singularity, but will have an instant of maximal (finite) 
density. Define that instant to be t = 0. Assume that ob-
servers in this universe at some time t0 measure the Hub-
ble constant to be H0 = (15 Gy)–1.
a. Show that for such a universe, a = b cosh(~t), where 

( )/b 1v vX X= -  and H v0~ X= . If this universe 
is expanding at time t0, will it ever cease expanding? If 
so, at what time t?

b. Imagine that observers in this universe determine 
from observations of their cosmic microwave back-
ground that Xv = 2. How old is their universe at 
time t0?

c. Is the spatial geometry of this universe spherical, flat, 
or saddle-like?

d. What is the scale factor R of this universe (which is 
the scale over which the spatial curvature of the uni-
verse becomes evident)?

P26.10 We have expressed our equations of motion for 
the universal scale factor a in terms of the constants Xm, 
Xr, and Xv, which are ratios of the current mass, radia-
tion, and vacuum energy densities (respectively) to the 
current critical density. However, a hypothetical observer 
at a different cosmic time t would determine these con-
stants to have different values. Define
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where tm(t) is the density of matter at time t, tc(t) is the 
critical density at time t, and ( ) /H t a a/ o  is the Hubble 
constant at time t. We can define Xr and Xv similarly.
a. Show that we can write
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X X= a k  (26.34)

 where Xm and Xv are the values we would measure.
b. Imagine a vacuum-dominated universe where the cur-

rent value of Xv ≈ 1 and Xm and Xr are both << Xv. 
Argue that if the value of Xm is not strictly zero, then 
observers in the distant past would determine the val-
ue of Xm(t) to be greater than Xm, while Xv(t) = Xv 
always. Argue therefore that the approximation that 
the universe is vacuum dominated must break down at 
some point sufficiently far in the past. (Hint: You can 
use the results of problem P26.5.)


