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POWDER X‑RAY DIFFRACTION

OBJECT:  To determine the structure of a crystalline solid with cubic symmetry using the powder X‑ray diffraction technique.

REFERENCES:

1)  D. P. Shoemaker et al., “Experiments in Physical Chemistry”, any edition, McGraw-Hill, NY.  Refer to the experiment “Determination of Crystal Structure by X-Ray Diffraction”.

2) “International Tables for Crystallography", International Union of Crystallography, D. Reidel Publishing.  (Several editions of this important reference are in the library.  The information relevant to this experiment is the same in all editions in our collection.)

3)  D. F. Eggers, N. W. Gregory, G. D. Halsey, and B. S. Rabinovitch, "Physical Chemistry", J. Wiley and Sons, Inc., N.Y. (1964).  (A copy of the section relevant to this experiment is included with the lab manual.)
4) V. Vand, P. F. Erland, & R. Pepinky, Acta Cryst., 10, 303 (1957).

5) J. B. Forsyth and M. Wells, Acta Cryst., 12, 412 (1959).
6) Berhard Rupp, Crystallography 101, 

http://www-structure.llnl.gov/Xray/101index.html
EXPERIMENTAL:

X-Ray Measurements.  You will be provided a sample of a binary ionic crystalline material with cubic symmetry and the stoichiometry MmXx. Determine the X‑ray powder diffraction pattern on the diffractometer in the geology department. Your instructor will provide the instruction on the instrument. The instrument in the Geology Department uses a scintillation counter rather than a photographic plate for detection of the scattered X‑rays. The geology instrument differs from the apparatus described in Shoemaker et al. in other details such as the sample mount.

Since the analysis of your X-ray data may require effort and time, we shall no longer require you to determine experimentally the density of your sample.  If you did, you would employ the following protocol.

Density Determination Using a Pycnometer (Weld Type).

1) Determine the Volume of the Pycnometer.
a) Weigh the empty and dry complete pycnometer (flask, capillary, cap).
b) Fill flask with solvent and seat capillary firmly. Wipe off excess solvent and immerse in the thermostat bath. Record the temperature.
c) After thermal equilibrium is reached, wipe off excess solvent from the capillary tip being careful not to draw out any solvent.
d) Remove the pycnometer and place the cap on the pycnometer. Let it cool to room temperature being careful not to heat it with your hands.
e) Carefully wipe all the water off the whole pycnometer, but not the tip of the capillary. Remove the cap if necessary.

f) Place the capped pycnometer in the balance and wait about 10 minutes before weighing.
g) From the density of the solvent at the temperature of the bath, determine the volume of the pycnometer.

2. Determine the density of your solid.

a) Weigh the pycnometer and solid.

b) Fill the pycnometer with solvent and follow steps lb) ‑ lf) above.

c) Determine the volume of solid from Vpycnom - Vsolv.

d) Determine the density of your solid.

CALCULATIONS:

Refer to Shoemaker et al. or to your General Chemistry text for a discussion of crystal symmetry.  All crystal structures fall into one of 6 crystal systems: triclinic or anorthic, monoclinic, orthorhombic, tetragonal, hexagonal, and cubic or isometric.  If one builds a lattice of equivalent atoms by applying the principles of symmetry, one finds that there are exactly 14 types of lattices, the so-called Bravais lattices.  There is only one possibility, primitive triclinic (aP), for triclinic crystals.  Cubic crystals which are more symmetric exhibit exactly 3 possibilities: primitive cubic (cP), face-centered cubic (cF), and body-centered cubic (cI).
In each of the Bravais lattices, any atom in the crystal can be converted into an equivalent atom by one or more steps of translation, i.e. moving the atom parallel to one of the unit cell axes.  Usually, crystals possess additional elements of symmetry, e.g. a four-fold axis of rotation in the case of a cube.  If one combines translational symmetry with these other symmetry operations, one obtains exactly 230 possibilities.  Each possibility is called a space group.  Each space group has a particular combination of symmetry operations with respect to symmetry elements.  Of the total of 230 space groups, 36 belong the crystals with a cubic crystal system.   

If a crystal possesses only translational symmetry, e.g. a triclinic crystal belonging to space group 1, there would be no restrictions on the reflections.  In this case, the intensity of a reflection would be non-zero irrespective of the value of the Miller indices {h,k,l} that label the reflection and at the atomic level the planes participating in the diffraction.  However, for certain elements of symmetry, reflections with particular values of {h,k,l} have exactly zero intensity.  The absences in the reflections allow one to determine the symmetry of the crystal.

The pattern of absences, however, is usually not sufficient to determine the space group of the sample.  It is sufficient to determine the Bravais lattice and to narrow down the space group down to a small subset of all 230 space groups.  The 32 cubic space groups fall into exactly 16 sets of space groups consistent with the lattice spacing.  Shoemaker et al. only consider a small number of possibilities.  A complete list is given in the following two-page table.  For unique each subset of space groups, the first page of the table lists the values of {h,k,l} and M2 = h2 + k2 +l2 corresponding to a non-zero reflections. The second page lists the subsets and the members of the subsets.

CONDITIONS ON REFLECTIONS FOR ALL 36 CUBIC SPACE GROUPS

            value of M2 yielding a non-zero reflection for each category

hkl       A      B      C      D      E      F     G    H    I    J    K    L   M   N   O   P  Q
100                                                                           1

110                                                  2     2     2         2    2     2    2     2    2 

111       3      3        3      3      3                                3    3     3           3         3

200       4                4                       4                       4    4     4    4     4    4   4   4
210                                                                           5    5     5    5                5     

211                                                  6     6     6    6   6    6     6    6     6   6    6   6
220       8      8        8      8      8       8     8     8    8   8    8     8    8     8   8    8   8
300                                                                           9   

221                                                                           9    9     9           9         9

310                                                10    10  10        10  10   10  10  10  10

311     11    11               11                                      11  11  11         11        11

222     12    12      12     12    12    12    12  12  12  12  12  12  12   12  12  12  12
320                                                                          13  13  13  13    

321                                                14    14  14  14  14  14  14  14   14  14  14  14
400     16    16      16      16    16   16    16  16  16  16  16  16  16   16  16  16  14
410                                                                          17  17  17  17               17

322                                                                          17  17  17         17        17

411                                                18    18              18  18  18  18   18  18  18  18
330                                                18    18  18  18  18  18  18  18   18  18  

331     19     19               19                                     19  19  19  19   19        19

420     20     20     20                     20    20  20  20  20  20  20  20   20  20  20  20
421                                                                          21  21  21  21   21  21  21

332                                                22    22  22  22  22  22  22  22   22  22  22  22
422     24     24     24      24   24    24    24  24  24  24  24  24  24   24  24  24  24
500                                                                          25  

430                                                                          25  25  25  25               25

510                                                26    26  26        26  26  26  26   26  26 

431                                                26    26  26  26  26  26  26  26   26  26  26  26
511     27     27               27                                     27  27  27  27   27        27

333     27     27               27                                     27  27  27         27        27  

520                                                                          29  29  29  29 

432                                                                          29  29  29  29   29  29  29

521                                                30    30  30  30  30  30  30  30   30  30  30  30
440     32     32     32     32   32     32    32  32  32  32  32  32  32   32  32  32  32
522                                                                          33  33  33         33        33
441                                                                          33  33  33         33        33
530                                                34    34  34        34  34  34  34   34  34  

433                                                34    34              34  34  34  34   34  34  34  34
531     35     35     35     35   35                               35  34  34  34   35  35  35

600     36              36                     36                36  36  36        36   36  36  36  36
442     36     36     36     36   36     36    36  36  36  36  36  36  36   36  36  36  36
610                                                                          37  37  37  37               37

The above table is based on the more complete Table 3.2 in the International Tables of Crystallography.

Space and Point Groups for Each Category of Reflections in the Table 

(Categories A, F, and J are the most common and the ones assumed in Shoemaker et al. for face-centered, body-centered, and primitive cubic structures.)

Syntax for each column

Category

Space Group (space group number) [point group]

A                                  B                           C                                 D

F23(196) [23]

Fm-3(202) [m-3]

F432(209) [432]

F-432 (216) [-43m]                                    F-43c(219) [-43m]    Fd-3(203) [m-3]

Fm-3m(225) [m-3m]   F4122(210) [432]  Fm-3c(226) [m-3m]  Fd-3m(227) [m-3m]

E                                 F                                 G                           H

                                   I23(197) [23]

                                   I213(199) [23]

                                   Im-3(204) [m-3]

                                   I432(211) [432]

                                   I-43m(217) [-43m]

Fd-3c(228) [m-3m]    Im-3m(229) [m-3m]   I4132(214) [432]   I-43d(220) [-43m]

I                                J                                      K                          L

                                 P23 (195) [23]

                                 Pm-3(200) [m-3]

                                 P432(207) [432]

                                 P-43m(215) [-43m]       P213(198) [23]     p4132(213) [-43m]

Ia-3d(230) [m-3m]    Pm-3m(221) [m-3m]    P4232(208) [432]  P4332(212) [-43m]

M                                N                                 O                              P

P-43n(218) [-43m]     Pn-3(201) [m-3]

Pm-3n(223) [m-3m]   Pn-3m(224) [m-3m]   Pn-3n(222) [m-3m]  Pa-3(205) [m-3]

Q
Ia-3(206) [m-3]

Correspondence of Schoenflies and Hermann-Mauguin Symbols for Cubic Point Groups

Hermann-Mauguin   23     m-3    432    -43m    m-3m

Schoenflies                T      Th       O       Td       Oh
Your first task is to determine from the space group from the macroscopic symmetry of your crystal and the pattern of reflections. Once this is done, you will also determine the lattice spacing, a0.  An approach is outlined in Shoemaker et al.  Their approach is too simple for two reasons.  First they ignore many cubic space groups. Secondly their approach can lead to problems if an allowed reflection has a very weak intensity and is not detected.   We offer instead the following modified procedure for indexing your reflections and determining the symmetry of your crystalline substance.  The approach is based on the following result from diffraction theory:
d(h,k,l) = a0/[h2 +k2 + l2]0.5 = a0/M  (1).

1) Obtain d values for the reflections.  Analyze the results obtained from the diffractometer using powderX.  You will probably want to baseline correct your data.  powderX will yield the intensity, area, and d for each non-zero reflection.  The value of d is in effect the slit-spacing in the constructive interference for the observed reflection.  At this point, you have a set of d's but know neither {h,k,l} nor a0.  You want to delete any peaks due to specular reflection, e.g. a peak at low scattering angle.  Consider the possibility of impurities.  For example, copper(I) oxide might be contaminated by elemental copper and copper(II) oxide.  The literature or runs of these samples would be informative.

2) Index the reflections.  As the first step in the assignment, make a guess about the symmetry subset.  This guess will determine uniquely {h,k,l} and hence M for the authentic reflection with the smallest value of 2(.  For example, if you guess that your crystal belongs to one of the space groups in set C, {h,k,l} for the first reflection is 111 and M2 =3.  Therefore, a tentative value for a0 is given by d110 = a0/30.5 or a0 = 30.5d.  Note that you have already discarded the peak due to specular reflection.  It is fortunate that the reflections at small angle are usually the most intense.

With this tentative assignment, one can calculate a value for a0 and apply equation (1) to the remainder of the data.  That is calculate M2 = (a0/d)2.   If your initial guess is correct, you will obtain integers or numbers close to integers.  For example, if your sample belongs to subset C and therefore either space group 219 or 226, then the values of M2 should equal 3, 4, 8, 12, 16, 20, ... for the first, second, third, fourth, fifth, ... reflections.  If the result is unconvincing, make another initial guess.  (There are only 3 possibilities for M2 of the first, non-zero reflection: 1, 2, or 3.)  One initial guess will yield significantly better results.  Use this optimal result to index the reflections and to calculate an average value of a0 (<a0> = <Md>).  Finally the pattern of absences should allow one to determine the subset or a collection of qualifying subsets.
3) Determine the space group.  At this point, you have the lattice spacing, a0, and have narrowed down the crystal symmetry to one of the sets in the table CONDITIONS ON REFLECTIONS.  You also now know the Bravais lattice of your crystal: primitive cubic or face-centered cubic, or body-centered cubic.  However, you do not know the apace group as several space groups are present in each set. However, in the case of highly symmetric cubic crystals, a visual examination of the macroscopic crystal symmetry resolves the ambiguity.  Suppose your sample were sodium chloride.  It is well known that NaCl forms cubic crystals.  If you doubt this claim, examine the crystals in table salt under a microscope.  A single crystal of sodium chloride exhibits elements of symmetry such as reflection through planes of symmetry and rotation of 90 degrees about an axis of symmetry.  This macroscopic symmetry is a consequence of the same symmetry elements at the atomic level.  These symmetry operations displayed by the macroscopic crystal are chosen from a repertoire of inversion, reflections, rotations, and improper rotation (rotation followed by reflection) but not translation.  The set of symmetry operations for a particular crystal defines its point group.  For all crystals, there are exactly 32 point groups.  There are only 4 point groups for the case of cubic crystals.  Two systems of notation are employed: the Hermann-Mauguin notation (popular with crystallographers) and the Schoenflies notation (popular with quantum mechanics and spectroscopists).  We shall employ the Hermann-Mauguin notation here.

Hence, examine a single crystal of your substance.  In some cases, the instructor may provide a photograph of a single crystal. The five choices are described in the following table.  Of the 5 cases, only two, -43m and m-3m, are familiar.  Note that only two of the point groups are centro-symmetric; they possess a center of symmetry.  The consequences of this element of symmetry will be discussed later.
point group  elements of symmetry                              crystal form(s)
23 (T)       three mutually perpendicular 2-fold axes          tristetrahedron

             four three-fold axes

m-3 (Th)     three two-fold axes                               didodecahedron
             three mutually perpendicular planes

             four three-fold axes

             center of symmetry

432 (O)      three four-fold axes                              pentagonal

             four three-fold axes                              icositetrahedron

             six two-fold axes      

-43m (Td)    three two-fold axes                               tetrahedron

             four three-fold axes

             six planes of symmetry

m-3m (Oh)    six two-fold axes                                 octahedron, cube

             four three-fold axes

             three four-fold axes

             nine planes of symmetry

             center of symmetry

So, upon observation of salt grains under a microscope, one observes well formed cubes.  Hence, NaCl crystals belong to the point group m-3m.  The powder X-ray diffraction pattern yielded by NaCl can assigned by the procedure described above to set A.  Five space groups belong to this set.  However, only one of them,Fm-3m (number 225), has the point group m-3m.  Therefore, a combination of the diffraction pattern and the macroscopic crystal symmetry yields an unambiguous determination of the space group.  
Unfortunately, this combination of information which work well in the case of the materials provided in this experiment does not always work as crystal morphology is not always well enough defined to allow a determination of the point group from a physical examination of the crystal.  In this case, one must use the intensities of the reflections and a determination of the structure to determine the space group.  One makes a guess on the space group and determines the structure.  If the resulting structure is not consistent with the experimental data or has anomalous bond lengths, one tries another space group.  One continues until the fit is optimized and the results are physically reasonable.  Careless crystallographers who rush this step have the misfortune of publishing erroneous structures.    

4)Calculate Z.  Obtain a literature value for the density.  Using the density and the stoichiometry of your sample, determine the molecular volume of your substance.  Also calculate the number of molecules per unit cell which is given by the quotient of the unit cell volume and the molecular volume.  Round the result up to the nearest integer but present both results, the un-rounded and the rounded on your report. The result, often denoted as Z in tables of space groups, will confirm the result from step (3).  
5) Determine the structure.  At this point, you have the space group and therefore a complete set of symmetry operations for the crystal.  Except in special cases which will not be discussed here, the space group and the lattice spacing reveal the packing of the molecules in the unit cell and the symmetry of the packing but not the structure of the individual molecules.  The molecular structure is obtained from the intensities of the reflections.  With a full set of reflections obtained from a single crystal of a small molecule, there now exist direct methods that yield a structure directly from the intensities.  We shall take a different approach in this experiment, one employed by the pioneers of X-ray crystallography.  That is, propose a structure for the lattice, calculate the relative intensities of the observed reflections, and compare the calculated and observed relative intensities. 
In building your structure, employ the models discussed in General Chemistry.  Construct a closest packing structure of the larger ion and pack the counter ions in either tetrahedral or octahedral holes.  Compare the observed and calculated intensities.  You model may predict non-zero intensities for reflections that were not observed.  That is, if the model is correct, there are reflections which are weak but not zero.  Look for them in your data.  In any event, these weak reflections often provide the strongest support for your model.  If necessary, refine your model to give better agreement.  If several structures are possible, calculate the relative intensities for each model.  Excellent agreement is obtained with single crystals.  The agreement with powder data is often disappointing as the assumption of random orientation of the crystallites is not satisfied.  Sample preparation and thorough grinding of the sample is important if one wishes to obtain useful intensities.  The most useful information often comes from the weakest reflections.
The calculation is outlined in the excerpt from Eggers et al.  It can be shown that the intensity of a reflection with Miller indices hkl is given by

I = |F|2[(1+cos22()/(sin2(cos()] (2)
The quantity in brackets is the Lorentz and polarization factors for a microcrystalline powder.  F is the structure factor which is given by

F  = ((fj)exp[2(i(huj + kvj + lwj)] (3)
You want to discuss this calculation with your instructor before proceeding further.  In special cases, the calculation can be simplified.  The sum could be performed over the atoms in the unit cell.  However, in cases with high symmetry, the sum can more easily be obtained by summing over just the atoms in the asymmetric unit.  The asymmetric unit is the minimum number of atoms required to be specified.  Given the atoms in the asymmetric unit and the symmetry operations, one can generate the locations of all atoms in the unit cell and therefore the crystal.  In the case of the sodium chloride structure, the asymmetric unit consists of one sodium cation and one chloride anion.  Refer to the lucid discussion in the excerpt from Eggers et al. for the details.  If the crystal possesses a center of symmetry and your origin corresponds to a center of symmetry, a second simplification occurs.  In this case exp[2(i(huj + kvj + lwj)] simplifies to cos[2((huj + kvj + lwj)] as the sin[2((huj + kvj + lwj)] terms equals zero.  (Recall that exp(ix) = cos(x) + isin(x).)

The calculation requires knowledge of the atomic scattering factors, fj, as a function of s = sin(/( = 1/(2d).  The following algorithm due to Vand et al. is useful if a spreadsheet is used to perform the tedious calculations:

f(s) = Aexp(-as2) + Bexp(‑bs2) + C  (4)
Tables of A, B, C, a, and b for elements H through U and selected ions can be found in the article by Forsyth and Miller.  Note that the effect of thermal vibrations is neglected in the calculations.  Alternatively, the excellent Crystallography 101 Web site maintained by Professor Bernhard Rupp has a Java Applet that will calculate the required form factors.
In summary, analyze the intensities by completing the following steps:
a) Convert each observed intensity I into an observed amplitude (actually the absolute value), |F| by employing equation (2).  Scale the results by dividing each by the largest value of |F|.  Enter these results in the report sheet.

b) Using equation (3) and a predicted structure, calculate |F| for each observed reflection.  You may also wish to calculate |F| for symmetry-allowed reflections that were not observed because they were weak.  Your predicted structure, if correct, must yield a low value of |F| for the "missing" reflections.  Be sure to discuss these calculations with your instructor.  Finally, scale the results by dividing each value of |F| by the maximum value.
c) Crystallographers compare the observed and calculated values of |F| and calculate the following quantity:

R = (|(|F(hkl)obsd| - |F(hkl)calcd|)|/((|F(hkl)obsd)| 
Note, we work with the absolute values of the amplitudes, F.  The numerator in equation (5) contains the absolute value of the differences in |F|.  A small value of R is obtained for the correct assumption of the crystal structure.  With a large data set obtained from a single crystal of a small molecule, R should be 0.05 or less.  The powder experiment will yield a fairly small data set and your value of R will be larger.
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Name:_____________________________________     Experiment completed:____________

Sample:___________________________________     Date due:________________________

Bravais lattice (Pc, Ic, or Fc):__________     Date submitted:__________________

lattice spacing:__________________________     space group set(A-P):____________
space group:________________________           point group:_____________________          
1) Density Calculations
density of sample:____________________   molecular volume:_____________________   
volume of the unit cell:_______________  number of molecules/unit cell:________

2) Diffraction Data for Each Reflection
                                     relative amplitude |F| of the reflection

((degree)    hkl     M       d(Å)     observed  calc., model 1 calc., model 2
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________

_________   _____  _____   _________  __________  ____________  ___________
_________   _____  _____   _________  __________  ____________  ___________
                                              R = ___________ R = __________
