Math 131
Homework 2

Read chapters 2 and 3.1 of Rosenlicht.

1. Prove that any non-empty set of reals which is bounded from below has a greatest lower bound. That is, prove that the GLB Axiom follows from the LUB Axiom.

2. For each \(n \in \mathbb{N} \), let \(a_n \leq b_n \) and suppose that \([a_1, b_1] \supseteq [a_2, b_2] \supseteq \ldots\). Use the LUB Axiom to prove that there exists an \(x \) such that for every \(n \in \mathbb{N} \), \(x \in [a_n, b_n] \). In particular, don’t use results about sequences.

4. Show that
 \[
 d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2 \right)^{\frac{1}{2}}
 \]
 is a metric for \(\mathbb{R}^n \).

 Hint: to prove the triangle inequality, fill in the details in the outline of steps given below.

 a) Suppose that \(a \geq 0 \), and \(b \) and \(c \) are real numbers such that for all \(\lambda \) we have \(a\lambda^2 + b\lambda + c \geq 0 \). Prove that \(b^2 \leq 4ac \).

 b) Show that \(\sum_{i=1}^{n} (u_i - \lambda v_i)^2 \) can be rewritten as \(a\lambda^2 + b\lambda + c \) where \(a \geq 0 \). Then use part a) to show that \(\sum_{i=1}^{n} u_i v_i \leq \left(\sum_{i=1}^{n} u_i^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} v_i^2 \right)^{\frac{1}{2}} \).

 c) Use part b) to show that
 \[
 \sum_{i=1}^{n} (x_i - y_i)^2 + \sum_{i=1}^{n} (y_i - z_i)^2 + 2 \left(\sum_{i=1}^{n} (x_i - y_i)^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} (y_i - z_i)^2 \right)^{\frac{1}{2}} - \sum_{i=1}^{n} (x_i - z_i)^2 \]
 \[
 \geq 2 \sum_{i=1}^{n} y_i^2 + 2 \sum_{i=1}^{n} x_i z_i - 2 \sum_{i=1}^{n} x_i y_i - 2 \sum_{i=1}^{n} y_i z_i + 2 \sum_{i=1}^{n} (x_i - y_i)(y_i - z_i).\]

 Use this inequality to prove the triangle inequality.