Homework 1

You must first install both R and R Studio onto your computer (or use one of the College's computers). http://research.pomona.edu/johardin/math151s15/ for many resources.

```r
#install.packages("mosaic")
# I've commented out the install command, because you only use that command once,
# and you use it inside the console. The library command belongs in your markdown file,
# and you run it every time.
library(mosaic)
```

Click on the Knit Word icon at the top of R Studio to run the R code and create a Word document simultaneously.

General notes on homework assignments (also see syllabus for policies and suggestions):

- please be neat and organized, this will help me, the grader, and you (in the future) to follow your work.
- be sure to include your name on all pages, and staple them together *prior* to class
- please include at least the number of the problem, or a summary of this question (this will also be helpful to you in the future to prepare for exams).
- it is strongly recommended that you write out the questions as soon as you get the assignment. This will help you to start thinking how to solve them!
- for R problems, it is required to use R Markdown
- in case of questions, or if you get stuck please don’t hesitate to email me (though I’m much less sympathetic to such questions if I receive emails within 24 hours of the due date for the assignment).

Homework assignments will be graded out of 5 points, which are based on a combination of accuracy and effort. Below are rough guidelines for grading.

Score & Description

5 All problems completed with detailed solutions provided and 75% or more of the problems are fully correct.
4 All problems completed with detailed solutions and 50-75% correct; OR close to all problems completed and 75%-100% correct
3 Close to all problems completed with less than 75% correct
2 More than half but fewer than all problems completed and > 75% correct
1 More than half but fewer than all problems completed and < 75% correct; OR less than half of problems completed
0 No work submitted, OR half or less than half of the problems submitted and without any detail/work shown to explain the solutions.
Assignment

[Hint: To use this Markdown file, first remove all of the non-R code from above. Keep the R code for the library commands. If you have LaTeX commands you will need to compile using LaTeX instead of to a Word document. Either is great, but LaTeX is sometimes difficult to learn.]

[4] DeGroot, section 1.4. Prove Theorem 1.4.11. Note: the intersection \bigcap is often written as a product, i.e., AB is the same as $A \bigcap B$.

[6] DeGroot, section 1.4. For example, a reasonable description of A^c would be “the event that an odd card is selected” (a description in words), or “the set of outcomes: \{Red1, Red3, REd5, Red7, Red9, Blue1, Blue3, Blue5, Blue7, Blue9\}” (a description as a subset of S).

[9] DeGroot, section 1.4

[R1] In an upcoming national election for the President of the United States, a pollster plans to predict the winner of the popular vote by taking a random sample of 1000 voters and declaring that the winner will be the one obtaining the most votes in his sample. Suppose that 48 percent of the voters plan to vote for the Republican candidate and 52 percent plan to vote for the Democratic candidate. To get some idea of how reasonable the pollster’s plan is,

(a) Write a program to make this prediction by simulation. Repeat the simulation 100 times and see how many times the pollster’s prediction would come true. That is, use your simulation to answer the question what is the probability that the pollster will correctly predict the election with 1000 observations?

(b) Repeat your experiment, assuming now that 49 percent of the population plan to vote for the Republican candidate; first with a sample of 1000 and then with a sample of 3000. what is the probability that the pollster will correctly predict the election with 3000 observations?

n.b. The Gallup Poll uses about 3000. [Problem taken from Grinstead and Snell, Introduction to Probability]

The following R code will may help you complete the simulation. Try: ?rflip to see how the function works.

```r
n.flip = 20
p.heads = 0.5
n.reps = 3
myflips = rflip(n=n.flip, p=p.heads)
myflips
```

```
# Flipping 20 coins [ Prob(Heads) = 0.5 ] ... 
# T T H T H H H H T H H H H T H H H H T
# Number of Heads: 12 [Proportion Heads: 0.6]

as.numeric(myflips)  # convince yourself that you understand this line
```

```
# [1] 12

myflips > n.flip/2  # convince yourself that you understand this line
```

```
# [1] TRUE
```
manyflips = c() # initializing a vector to hold our results
for(i in 1:n.reps){
 myflips = rflip(n=n.flip, p=p.heads)
 manyflips = c(manyflips, as.numeric(myflips)) # concatenating the results from reps
}
manyflips > n.flip/2 # convince yourself that you understand this line

[1] FALSE FALSE TRUE

sum(manyflips > n.flip/2) # convince yourself that you understand this line

[1] 1

Optional fun: You could also generate one flip at a time and plot the sequence using the cumsum function in R.