Homework due on Thursday, March 24th, start of class. Note: we won’t cover 3.10 or the ideas about the Jacobian from 3.9.

1. DeGroot (3rd or 4th ed.), section 3.9: # 2, 4, 5, 7, 8

2. CAN YOU FORM A TRIANGLE? Let A, B, and C be independent random variables uniform on [0, 1]. What is the probability that three sticks of length A, B, and C can form a triangle?

 (a) In R, simulate the above situation. According to your simulation, how often does there exist a triangle? [As always, if you want help with R, tell me exactly what you want to do, and I’ll tell you how to do it in R.] You may want to use the \texttt{pmax} function which takes the maximum value element-wise in an array.

 \begin{verbatim}
 > vector1 <- c(1, 7, 8, 1, 2)
 > vector2 <- c(1, 4, 1, 2, 3)
 > max(vector1, vector2)
 > [1] 8
 > pmax(vector1, vector2)
 > [1] 1 7 8 2 3
 \end{verbatim}

 (b) Analytically: find the probability that three random \text{U}[0,1] sticks will form a triangle. [Hint: the easiest way I found to do this was to start by assuming one of the values (say \(C\)) was the biggest one. Then to generalize I realized that any of the values could have been the biggest one. It is much harder to approach this problem using the theory of order statistics.]