The motivation

We can simulate real numbers on the interval [0,1]. We’d like to be able to simulate variables from other distributions. In fact, we’d like to be able to simulate observations from the following distribution:

\[
\text{pdf: } g(*) = \lambda e^{-\lambda *} \quad * \geq 0 \\
\text{cdf: } G(*) = 1 - e^{-\lambda *} \quad * \geq 0
\]

The set up

Let \(X \) be a uniform [0,1] random variable. That is, \(f_X(x) = 1 \quad 0 \leq x \leq 1; F_X(x) = x \quad 0 \leq x \leq 1. \)

Let \(Y = G^{-1}(X) \). What is the distribution of \(Y \)?

Note:

\[
X = 1 - e^{-Y\lambda} \\
Y = -\ln(1 - X)/\lambda
\]

The solution

\[
F_Y(y) = P(Y \leq y) = P(G^{-1}(X) \leq y) \\
= P(X \leq G(y)) \\
= F_X(G(y)) \\
= G(y)
\]

That is, if we let \(Y = G^{-1}(X) \), then the random variable \(Y \) will have exactly the distribution for which we were hoping.

The implications

The relationship above holds in both directions. That is, if \(Y \) has any distribution \(G \), then \(X = G(Y) \) will have a uniform distribution on [0,1].

\[
F_X(x) = P(X \leq x) \\
= P(G(Y) \leq x) = P(Y \leq G^{-1}(x)) \\
= G(G^{-1}(x)) = x \quad 0 \leq x \leq 1
\]

Which proves that \(X \) has a uniform distribution on [0,1].

How does it work?

1. (a) Find a random uniform observation, \(x^* \)
 (b) \(G^{-1}(x^*) \) will be the random exponential observation we simulate.

2. (a) Find a random observation from any distribution, \(y^* \)
 (b) \(G(y^*) \) will be the random uniform [0,1] observation we simulate.