1. Data should be either in comma delimited (sep=",") or tab delimited (sep="\t") format. Data should live in the same directory as the R program (.RData). (Or import data using RStudio.)

```R
> oldfaith <- read.table("oldfaithful.csv", header=T, sep=","
> dim(oldfaith)
> names(oldfaith)
```

Notice that the variable names are INTERVAL and DURATION.

```R
> attach(oldfaith)
```

When we attach we create new variables from the data set. That is, we can now use INTERVAL and DURATION as their own variables / vectors.

```R
> oDUR <- order(DURATION) # needed for prediction lines
```

The order command simply tells us which values are smallest to largest (ordered).

2. It’s always a good idea to plot the data to see the visual representation.

```R
> plot(DURATION, INTERVAL, pch=19)
```

3. Running the model. We use the lm command, which takes as its argument y~x.

```R
> oldfaith.lm <- lm(INTERVAL ~ DURATION)
> summary(oldfaith.lm)
```

Call:
```
lm(formula = INTERVAL ~ DURATION)
```

Residuals:
```
   Min     1Q   Median     3Q    Max
-14.644 -4.440  -1.088  4.467 15.652
```

Coefficients:
```
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  33.8282    2.2618  14.960  <2e-16 ***
DURATION     10.7410    0.6263  17.152  <2e-16 ***
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1  1
```

Residual standard error: 6.683 on 105 degrees of freedom
Multiple R-squared: 0.7369, Adjusted R-squared: 0.7344
F-statistic: 294.1 on 1 and 105 DF, p-value: < 2.2e-16
> anova(oldfaith.lm)

Analysis of Variance Table

Response: INTERVAL

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DURATION</td>
<td>1</td>
<td>13133.0</td>
<td>13133.0</td>
<td>294.08</td>
<td>< 2.2e-16 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>105</td>
<td>4689.0</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

4. To predict mean values, use the sub-command `interval="confidence"`.
 To predict future values, use the sub-command `interval="prediction"`.
   ```r
   > predict.lm(oldfaith.lm, newdata=data.frame(DURATION=c(2.2,3.8)),
                se.fit=T, interval="confidence")
   > predict.lm(oldfaith.lm, newdata=data.frame(DURATION=c(2.2,3.8)),
                se.fit=T, interval="prediction")
   ```

To draw prediction lines on the scatterplot, plot `DURATION` versus the mean or predicted upper and lower bounds (in the 2nd and 3rd columns of the output). Try the commands below without the `oDUR` subsetting, and you should get zig-zag lines. That’s because the `lines` plotting command always “connects the dots”.
```r
> plot(DURATION, INTERVAL, pch=19)
> abline(oldfaith.lm)
> lines(DURATION[oDUR], predict.lm(oldfaith.lm, interval="confidence")[,2],
       col="red")
> lines(DURATION[oDUR], predict.lm(oldfaith.lm, interval="confidence")[,3],
       col="red")
> lines(DURATION[oDUR], predict.lm(oldfaith.lm, interval="predict")[,2],
       col="green")
> lines(DURATION[oDUR], predict.lm(oldfaith.lm, interval="predict")[,3],
       col="green")
```

5. Residual analysis. Read in the data just like above (again, it is comma delimited).
```r
> wineheart <- read.table("wineheart.csv", header=T, sep=",")
> dim(wineheart)
> names(wineheart)
> attach(wineheart)

> wine.lm <- lm(MORTALITY ~ WINE)
```
Figure 1: The interior lines represent 95% confidence bounds on the mean values. The exterior lines represent 95% confidence bounds on the future predicted values.

6. Below is the code for various residual plots. Note that

- `win.graph()` opens a new graphics window.
- `par(mfrow=c(2,2))` creates a 2x2 array of plots that fill in by row. `par(mfcol=c(2,3))` creates a 2x3 array of plots that fill in by column.
- `abline` adds a line to the plot of the form “a” “b” (that is, with a slope b and an intercept a). The function can also draw vertical and horizontal lines (“v” and “h”).
- The log function is actually the natural log.

```r
> par(mfrow=c(2,2))
> plot(WINE, MORTALITY, pch=19)
> abline(wine.lm)
> plot(fitted(wine.lm), resid(wine.lm), xlab="fitted", ylab="residuals", pch=19)
> abline(h=0)
> plot(fitted(wine.lm), rstandard(wine.lm), xlab="fitted", ylab="standardized resid", pch=19)
> abline(h=0)
> plot(fitted(wine.lm), resid(wine.lm) / summary(wine.lm)$sigma, xlab="fitted", ylab="semistudentized resid", pch=19)
> abline(h=0)
```
Figure 2: Note that the residuals tell the same story regardless of the scaling.
```r
> win.graph()
> par(mfcol=c(2,3))
> wine.lm2 <- lm(MORTALITY ~ log(WINE))

> plot(log(WINE), MORTALITY, pch=19)
> abline(wine.lm2)

> plot(fitted(wine.lm2),rstandard(wine.lm2),
      xlab="fitted",ylab="standardized resid",pch=19)
> abline(h=0)

> wine.lm4 <- lm(log(MORTALITY) ~ WINE)

> plot(WINE, log(MORTALITY), pch=19)
> abline(wine.lm4)

> plot(fitted(wine.lm4),rstandard(wine.lm4),
      xlab="fitted",ylab="standardized resid",pch=19)
> abline(h=0)

> wine.lm3 <- lm(log(MORTALITY) ~ log(WINE))

> plot(log(WINE), log(MORTALITY), pch=19)
> abline(wine.lm3)

> plot(fitted(wine.lm3),rstandard(wine.lm3),
      xlab="fitted",ylab="standardized resid",pch=19)
> abline(h=0)
```
Figure 3: Transforming X (WINE) removes the effect of the extreme value(s). Transforming Y (MORTALITY) creates more constant variance.